Code Generation & Run time Environments

1. What information do we need to execute a
program?

2. What does runtime memory layout look like?

3.What goes where?
4. How do we implement functions and calls?

5. Object-oriented features?

Executing a program is initially under control of operating system

When a program is invoked:
- the operating system allocates space for the program
 the code is loaded into part of the space

- jump to entry point of the code - the main program

Low address
Code

Other space

High address

Note: not necessary for all program space to be contiguous

What is the purpose of “other space”?

‘Holds all data that the program needs and creates

Compiler is responsible for
generating the code

orchestrating/managing the use of the data area

Names, Bindings, Scope, Lifetimes

Int x:
Int Function y(int a) - Declaration versus activation of a function
{int x; - Binding name to storage location
- Binding values to storage locations
} - Declaration versus binding
Void function z(int c) - Scope of declaration vs Lifetime of binding
{ int x;
call y(x);
}
Main()

X = read(). print(y(x)):

Stack

1

Heap

|

Static

Code

Sort(list)

d
Read {}
Qsort (low,high){
int x Sort

Partition (low,high){} Read &wt(lﬁ)

x = Partition(low,high) / \\

Partition(1,9) Qsort(1,3) Qsort(5,9)
call Qsort(low, x-1 }

call Qsort(x+1,high)

Class Main {
g() : Int {1 };
f(x:Int): Int {if x = 0 then g() else f(x - 1) fi};
main(): Int {{f(3); }};

}

What is the activation tree for this example?

» The activation tree depends on run-
time behavior

» The activation tree may be different
for every program input

* Need to keep track of procedure
activations during execution

9

10

