Overview of Compiler Optimization Phases

Lexical
Analysis
(scanner)

Syntax

y

analysis
(parser)

Sequence of Intermediate Intermediate

Semantic
Analysis

tokens code - IR, code IR,

Code

generation

Optimized
code

v -

A

4

Target code

Not Really an Optimizer

NP complete problem

+ Instead, produces a “better” version:
- memory

- time

- energy/power

- network messages

Better use of resources
+ Reduce inefficiencies in generated code

3 Levels of Optimization

1. Local
Apply to a basic block in isolation

2. Global
Apply to a method/function in isolation

3. Inter-procedural
Apply across method boundaries

Most compilers do (1)
many do (2)
very few do (3)

Representing the Program for Optimization
Each Method : Control Flow Graph

The Control Flow Graph

'BEGIN /* main routine of a nonsense program */

Xe=als
WHILE (x =1) DO
e
test (x, 1);
M=
OD;
WHILE (x=1) DO
Mool
X =5
test (x, 2);
OD;
WHILE (x=1) DO
=t
IF (x=7)
RERNX:E18:
ELSE test (x, 3);
Fl;
OD;

END.

Node = a basic block

where Basic block =
maximal sequence of consecutive
statements in which flow
enters at the start and leaves
at the end without halt or
branching except at the end.

Edge = directed, to show the
flow of control between
basic blocks

Entry Node

Exit Node

CFG: Rooted, directed graph.

Construction of a CFG

A Leader = first statements of basic block
What constitutes a leader?
How can the CFG be built for a procedure?

Terminology:

pred(b) pr'ogr'am points
succ(b) ‘ join point
branch nodes split point

join nodes

Let’s Try It — Construct the CFG

—

;-

| —

13

Lk

L7

e

receive m (val)
£0 «— O

- R |

if m <= 1 goto L3
i <« 2

if 1 <= m goeto L2
return f2

f2 <« fQ + Il

£0 <« £1

f1 <« £2

i «i+1

goto L1

return &

Another Example:
A=4
T1 = A*B
. L1: T2 = T1/C
If T2 < W go to L2
M=T1*K
T3 =M+ 1
L22H=1I
M=T3-H
If T3 > 0go to L3
10. Go to L1
11. L3: half

WONTO~wh =

B|1

B2
=

o T:
B5 B6

B1

B2

1. A=4
2. Tl = A*B

A

3.L1: T2 = T1/C
4.if T2<W go to L2

B3 B. M = T1*K
6. T3 = M+ 1
7.L2: H=1I
B4 8. M=T3-H
9. If 3 >0go to L3
— |
B5
10. go to L1
=l |
B6 11. L3:halt

Connect the Methods/Functions through
Call Graph Representation

Node = function or method
Edge from A to B : A has a call site
where B is potentially called

7N
\ mam
-

_/

N

Copy | .

f & ™~

\ /

/
'\ copy fifo /- Py hlg n|\ spe Hl/

Let's Try It: Construct a call graph

1 procedure £()
2 begin

3 call g()

- call g()

35 call h()

6 end || £

2 procedure g()
8 begin

9 call h()
10 call i()
i['71 end || g

12 procedure h()
13 begin

14 end || &

15 procedure .i()
16 procedure j()
17 begin

18 snd' % 144
19 begin

20 call g()
21 eatds (o)
22 endi L} 4

Local Optimization

Algebraic Simplification

- Some statements can be deleted
x:=x+0
X :=x*1

+ Some statements can be simplified

X .=

y =
X =

(Use fastest operation:

x*0
y**z
x*8

= X :
= y:
= X :

0)
Y*y
X << 3

e.g., On some machines << is faster than *; but not on all!):

Copy Propagation

+ If w := x appears in a block, all subsequent uses
of w can be replaced with uses of x

» Example:
biz=z+y bizz+y
a:=b = a:=b
Xx:=2*a X:=2*b

» This does not make the program smaller or
faster but might enable other optimizations, e.g.,
- Constant folding

- Dead code elimination 2

Constant Folding

- Operations on constants can be computed at
compile time

* Ingeneral, if there is a statement
X=yopz

- And y and z are constants

- Theny op z can be computed at compile time

+ Example: x=2+2 =x=4

13

+ Example: if 2 <0 jump L can be deleted

Combining Copy Propagation and Constant Folding

+ Example:
a:=h a:=bh
Xx:=2%a = x:=10
y:=x+6 y =16
Ti=x>y ti=2x<«4

14

Common Subexpression Elimination

Assume
- Basic block is in single assignment form

(Contiguous instructions with no jumps in or out; no more than 1
assignment per variable)

- A definition x := is the first use of x in a block

If any assignments have the same rhs, they compute the same
value

Example:

x::y+z X::y+z
=

Wisy+z W i= X

(the values of x, y, and z do not change in the code)

Dead Code Elimination

If w := rhs appears in a basic block

And w does not appear anywhere else in the block (not
live in block or rest of program)

Then

the statement w := rhs is dead and can be eliminated
- Dead = does not contribute to the program’s result

Example: (ais not used anywhere else)
b::z+y b::z+y b::x+y
a:=b = a:=b = x:=2%b
x:=2%a x:=2%*b

16

Applying Local Optimizations

» Each local optimization does very little by itself

- Typically optimizations interact
- Performing one optimization enables other opt.

+ Typical optimizing compilers repeatedly perform
optimizations until ho more improvement

- The optimizer can also be stopped at any time to limit
the compilation time

17

© NOOL b~ whH

Compiler Optimization Challenge

Given the following code segment in a basic block, optimize
the code using algebraic simplification, copy propagation,
constant folding, common subexpression elimination and dead
code elimination.

The goal is to produce the least number of instructions that
will execute faster. Show each step of the optimization.

a:=x**2
b:=3

c:= X

di=c*c
e=b*2
fi=a+d
gi=e*f

18

