
1

Overview of Compiler Optimization Phases

Lexical
Analysis
(scanner)

Syntax
analysis
(parser)

Semantic
Analysis

Code
optimization

Code
generation

Sequence of
tokens

Intermediate
code - IR1

Intermediate
code IR2

Optimized
code

Target code

Code
optimization

CS 2210 Lecture 20 2

Not Really an Optimizer

•  NP complete problem

•  Instead, produces a “better” version:

–  memory
–  time
–  energy/power
–  network messages

•  Better use of resources
•  Reduce inefficiencies in generated code

3

3 Levels of Optimization

1.  Local
•  Apply to a basic block in isolation

2.  Global
•  Apply to a method/function in isolation

3.  Inter-procedural
•  Apply across method boundaries

Most compilers do (1)
 many do (2)
 very few do (3)

Representing the Program for Optimization
Each Method : Control Flow Graph

Let’s Try It – Construct the CFG

7

Another Example:
1. A = 4
2. T1 = A*B
3. L1: T2 = T1/C
4. If T2 < W go to L2
5. M = T1 * K
6. T3 = M + 1
7. L2: H = I
8. M = T3 - H
9. If T3 > 0 go to L3
10. Go to L1
11. L3: halt

1. A = 4
2. T1 = A*B

3. L1: T2 = T1/C
4.if T2<W go to L2

5. M = T1*K
6. T3 = M + 1

7. L2: H = I
8. M = T3-H
9. If 3 > 0 go to L3

10. go to L1

11. L3:halt

B1

B2

B3

B4

B5

B6

B2

B3

B6

B1

B4

B5

Connect the Methods/Functions through
Call Graph Representation

Node = function or method
Edge from A to B : A has a call site
 where B is potentially called

Let’s Try It: Construct a call graph

Local Optimization

11

Algebraic Simplification

•  Some statements can be deleted
x := x + 0
x := x * 1

•  Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y
 x := x * 8 ⇒ x := x << 3

 (Use fastest operation:
e.g., On some machines << is faster than *; but not on all!)

12

Copy Propagation

•  If w := x appears in a block, all subsequent uses
of w can be replaced with uses of x

•  Example:

 b := z + y b := z + y
 a := b ⇒ a := b
 x := 2 * a x := 2 * b

•  This does not make the program smaller or
faster but might enable other optimizations, e.g.,
–  Constant folding
–  Dead code elimination

13

Constant Folding

•  Operations on constants can be computed at
compile time

•  In general, if there is a statement

 x = y op z
–  And y and z are constants
–  Then y op z can be computed at compile time

•  Example: x = 2 + 2 ⇒ x = 4

•  Example: if 2 < 0 jump L can be deleted

14

Combining Copy Propagation and Constant Folding

•  Example:
a := 5 a := 5
x := 2 * a ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

15

Common Subexpression Elimination

•  Assume
–  Basic block is in single assignment form
(Contiguous instructions with no jumps in or out; no more than 1
assignment per variable)
–  A definition x := is the first use of x in a block

•  If any assignments have the same rhs, they compute the same
value

•  Example:

x := y + z x := y + z
… ⇒ …
w := y + z w := x

(the values of x, y, and z do not change in the code)

16

Dead Code Elimination

If w := rhs appears in a basic block
And w does not appear anywhere else in the block (not

live in block or rest of program)
Then

the statement w := rhs is dead and can be eliminated
–  Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
b := z + y b := z + y b := x + y
a := b ⇒ a := b ⇒ x := 2 * b
x := 2 * a x := 2 * b

17

Applying Local Optimizations

•  Each local optimization does very little by itself

•  Typically optimizations interact

–  Performing one optimization enables other opt.

•  Typical optimizing compilers repeatedly perform
optimizations until no more improvement
–  The optimizer can also be stopped at any time to limit

the compilation time

18

Compiler Optimization Challenge
•  Given the following code segment in a basic block, optimize

the code using algebraic simplification, copy propagation,
constant folding, common subexpression elimination and dead
code elimination.

•  The goal is to produce the least number of instructions that
will execute faster. Show each step of the optimization.

1.  a := x ** 2
2.  b := 3
3.  c := x
4.  d := c * c
5.  e := b * 2
6.  f := a + d
7.  g := e * f
8.  Print (g)

