
CISC 672 Advanced Compiler Construction Fall 2006

Programming Assignment II

Due Date: See online CISC 672 schedule

Individual Assignment

1 Overview

Programming assignments II–V will direct you to design and build a compiler for Cool. Each assignment
will cover one component of the compiler: lexical analysis, parsing, semantic analysis, and code generation.
Each assignment will ultimately result in a working compiler phase which can interface with other phases.
You will have an option of doing your projects in C++ or Java.

For this assignment you are to write a lexical analyzer, also called a scanner, using a lexical analyzer

generator (The C++ tool is called flex; the Java tool is called jlex.) You will describe the set of tokens
for Cool in an appropriate input format and the analyzer generator will generate the actual code (C++
or Java) for recognizing tokens in Cool programs.

The textbook shows an example Lex specification. The manuals for flex and JLex are available
online. The O’Reilly lex and yacc book is also a useful resource. For the Java programmers, the web site
www.cs.princeton.edu/˜appel/modern/java is useful.

You should do this assignment individually. That means that you should not be working in groups
with the same lex specification, but learning how to use flex (JLex) for your own specification.

2 Two installations (and versions) of Cool

I have installed the latest Cool project directory at ˜pollock/public/cool02. The version that was used
previously is in ˜pollock/public/cool. It turns out that there is a slight change in the syntax of the newer
Cool; we’ll call it Cool02. The difference is in the delimiters for blocks. They have made Cool02 more
C-like with { and } as delimiters in place of the old delimiter words.

You may choose to work with Cool, or Cool02. You just need to be careful which coolc compiler you
put in your path. Thus, once you decide, you need to place the correct path at the beginning of your
path variable to make sure the executables used are the ones the assignments are designed for. You can
do this by adding the following to your .login file.

setenv PATH ˜pollock/public/cool/bin:$PATH
for the original Cool.
setenv PATH ˜pollock/public/cool02/bin:$PATH
for the newer version, Cool02.
If you want to work with Java, you need to use the Cool02. C++ is available for either version of

Cool. I have written the instructions for the Cool02, but you can easily replace Cool02 by Cool below,
and it will all work the same. Again, the only difference is the syntax and the fact that Java support is
only available for Cool02.

3 Files and Directories

To get started, create a directory where you want to do the assignment and execute one of the following
commands in that directory. For the C++ version of the assignment, you should type

page 1 of 5

CISC 672 Advanced Compiler Construction Fall 2006

gmake -f ~pollock/public/cool02/assignments/PA2/Makefile

For Java, type:

gmake -f ~pollock/public/cool02/assignments/PA2J/Makefile

(notice the “J” in the path name). This command will copy a number of files to your directory. Some of
the files will be copied read-only (using symbolic links). You should not edit these files. In fact, if you
make and modify private copies of these files, you may find it impossible to complete the assignment. See
the instructions in the README file. The files that you will need to modify are:

• cool.flex (in the C++ version) / cool.lex (in the Java version)
This file contains a skeleton for a lexical description for Cool. You can actually build a scanner with
this description but it does not do much. You should read the flex/jlex manual to figure out what this
description does do. Any auxiliary routines that you wish to write should be added directly to this
file in the appropriate section (see comments in the file).

• test.cl

This file contains some sample input to be scanned. It does not exercise all of the lexical specification
but it is nevertheless an interesting test. It is not a good test to start with, nor does it provide adequate
testing of your scanner. Part of your assignment is to come up with good testing inputs and a testing
strategy.

You should modify this file with tests that you think adequately exercise your scanner. Our test.cl is
similar to a real Cool program, but your tests need not be. You may keep as much or as little of our
test as you like.

• README

This file contains detailed instructions for the assignment. You should also edit this file to include the
write-up for your project. You should explain design decisions, why your code is correct, and why your
test cases are adequate. It is part of the assignment to clearly and concisely explain things in text as
well as to comment your code.

Although these files are incomplete, the lexer does compile and run. There are a number of useful
tips in the README file.

All of the software supplied with this assignment is supported on the Solaris machines. How-
ever, if you switch platforms be sure to run gmake clean to remove files compiled for the other ar-
chitecture. A version of the project for Linux is available for downloading on Aiken’s web page
http://theory.stanford.edu/˜aiken. I make no guarantees about how well this works on Linux. I have not
tried it out.

4 Scanner Results

You should follow the specification of the lexical structure of Cool given in Section 10 and Figure 1 of
the CoolAid. Your scanner should be robust—it should work for any conceivable input. For example,
you must handle errors such as an EOF occurring in the middle of a string or comment, as well as string
constants that are too long. These are just some of the errors that can occur; see the manual for the rest.

You must make some provision for graceful termination if a fatal error occurs. Core dumps or
uncaught exceptions are unacceptable.

page 2 of 5

CISC 672 Advanced Compiler Construction Fall 2006

Programs tend to have many occurrences of the same lexeme. For example, an identifier generally is
referred to more than once in a program (or else it isn’t very useful!). To save space and time, a common
compiler practice is to store lexemes in a string table. We provide a string table implementation for both
C++ and Java. See the following sections for the details.

All errors will be passed along to the parser, which is better equipped to handle them. The Cool
parser knows about a special error token called ERROR. When an invalid character is encountered,
that character and any invalid characters that follow should be gathered together into a string until the
lexer finds a character that can begin a new token. This string will be returned as the error message.
For errors besides strings of invalid characters (e.g., a string constant that is too long, or an end-of-file
inside of a comment) it is sufficient to return an informative error message (e.g., “String constant too
long” or “EOF in comment”). Make sure that the error message is informative so that we can understand
what you did. The following sections clarify how to actually return the error message in C++ and Java
versions of the assignment.

There is an issue in deciding how to handle the special identifiers for the basic classes (Object, Int,
Bool, String), SELF TYPE, and self. However, this issue doesn’t actually come up until later phases of
the compiler—the scanner should treat the special identifiers exactly like any other identifier.

Finally, if the lexical specification is incomplete (some input has no regular expression that matches)
then the generated scanner will invoke a default action on unmatched strings. The default action simply
copies the string to the console. Your final scanner should have no default actions. Note that default
actions are very bad for mycoolc, which works by piping output from one compiler phase to the next; any
extra output will cause errors in downstream phases.

5 Notes for the C++ version of the assignment

If you are working on the Java version, skip to the following section.

• Your scanner should maintain the global variable curr lineno that indicates which line in the source
text is currently being scanned. This feature will aid the parser in printing useful error messages.

• Each call on the scanner returns the next token and lexeme from the input. The value returned by the
function cool yylex is an integer code representing the syntactic category: whether it is an integer
literal, semicolon, the if keyword, etc. The codes for all tokens are defined in the file cool-parse.h. The
second component, the semantic value or lexeme, is placed in the global union cool yylval, which is of
type YYSTYPE. The type YYSTYPE is also defined in cool-parse.h. The tokens for single character
symbols (e.g., “;” and “,”, among others) are represented just by the integer value of the character
itself. All of the single character tokens are listed in the grammar for Cool in the CoolAid.

• For class identifiers, object identifiers, integers and strings, the semantic value should be a Symbol

stored in the field cool yylval.symbol. For boolean constants, the semantic value is stored in the
field cool yylval.boolean. Except for errors (see below), the lexemes for the other tokens do not
carry any interesting information.

• We provide you with a string table implementation, which is discussed in detail in A Tour of the Cool

Support Code and documentation in the code. For the moment, you only need to know that the type
of string table entries is Symbol.

• When a lexical error is encountered, the routine cool yylex should return the token ERROR.
The semantic value is the string representing the error message, which is stored in the field

page 3 of 5

CISC 672 Advanced Compiler Construction Fall 2006

cool yylval.error msg (note that this field is an ordinary string, not a symbol). See previous section
for information on how to construct error messages.

6 Notes for the Java version of the assignment

If you are working on the C++ version, skip this section.

• Each call on the scanner returns the next token and lexeme from the input. The value returned by
the method CoolLexer.next token is an object of class java cup.runtime.Symbol. This object
has a field representing the syntactic category of a token — whether it is an integer literal, semicolon,
the if keyword, etc. The syntactic codes for all tokens are defined in the file TokenConstants.java.
The component, the semantic value or lexeme (if any), is also placed in a java cup.runtime.Symbol

object. The documentation for the class java cup.runtime.Symbol as well as other supporting code
is available on the course web page.

• For class identifiers, object identifiers, integers and strings, the semantic value should be of type
AbstractSymbol. For boolean constants, the semantic value is of type java.lang.Boolean. Except
for errors (see below), the lexemes for the other tokens do not carry any interesting information. Since
the value field of class java cup.runtime.Symbol has generic type java.lang.Object, you will need
to cast it to a proper type before calling any methods on it.

• We provide you with a string table implementation, which is defined in AbstractTable.java. The doc-
umentation for this class is also available on the course web page. For the moment, you only need to
know that the type of string table entries is AbstractSymbol.

• When a lexical error is encountered, the routine CoolLexer.next token should return a
java cup.runtime.Symbol object whose syntactic category is TokenConstats.ERROR and the
semantic value is the error message string. See previous section for information on how to construct
error messages.

7 Testing the Scanner

There are two ways that you can test your scanner. The first way is to generate sample inputs and run
them using lexer which prints out the line number and the lexeme of every token recognized by your
scanner. When you think your scanner is working, you should try running mycoolc to invoke your lexer
together with all other compiler phases (which we provide). This will be a complete Cool compiler that
you can try on the sample programs and your program from Assignment I.

8 What to Turn in

When you are ready to turn in the assignment, tar your files and email the TA with your tarred files.
You may use the gmke submit-clean but it is restrictive in what you can submit. You may submit more
than one test case if you like.

Doctoring the output that is sent is considered cheating. If you want to explain something, do it in
the README file. The last turnin you do will be the one graded. Each turnin overwrites the previous one
in our mind. We will only grade the latest submission. Read the course syllabus for the late policy. The

page 4 of 5

CISC 672 Advanced Compiler Construction Fall 2006

burden of convincing us that you understand the material is on you. Obtuse code, output, and write-ups
will have a negative effect on your grade. Take the extra time to clearly (and concisely!) explain your
results.

9 Evaluation Criteria

Correctness: token recognition (50), token attribute handling (20), error detection (15), 85%,
Program Structure 5 %,
Documentation 5%,
Efficiency 5%.

page 5 of 5

