From Lexical and Syntax Analysis
to
Semantic Analysis

Find 6 problems with this code.
These issues go beyond syntax.

fie(a,b,c.d) {
inta, b, c, d;

h
fee() {
int f[3],g[0], h, i, |, k;
char "p;
fie(h,i,"ab",j, k);
K=f"i+];
h =g[17];
printf(“<%s,%s>.\n",p.q):
p=10;

What kinds of questions does the
semantic analysis/code generator
need to answer?

Semantic Analysis = Values/Meaning
Context-Sensitive Analysis

How can we answer these questions?

* Use formal methods

— Context-sensitive grammars?

— Attribute grammars? (attributed grammars?)
* Use ad-hoc techniques

— Symbol tables

— Ad-hoc code (action routines)

In parsing, formalism won; here, ad-hoc technigues dominate
actual practice

What is an attribute grammar?

Attribute Grammars

* A context-free grammar augmented with a set of rules

Each symbol in the derivation (or parse tree) has a set of

named values, or attributes

The rules specify how to compute a value for each attribute
— Attribution rules are functional; they uniquely define the value

Example grammar

1 Number —
2 Sign -
3 |
4 List —
5 |
6 Bit —
7 |

Sign List
+

List Bit
Bit

0

1

This grammar describes
signed binary numbers

We would like to augment it
with rules that compute the
decimal value of each valid
input string

Example Trees for this Grammar

N Oy O B W N e

Numb — Sign List
flm = | gn =i Consider strings:
Sign - o+
| 1011
List — List Bit
| Bit 10
Bit —- 0
| 1

Adding Attributes/semantic rules:

Productions Attribution Rules Symbol Attributes
Number — SignList Number val
Sign neg
List pos, val
Sign . Bit pos, val
| -
List, - List, Bit
| Bit
Bit — 0
1 Bit.val =0

Bit.val = 2 A Bit.pos

Answers — the semantic rules

List.pos < O
if Sign.neg
then Number.val — - List.val
else Number.val — List.val
Sign.neg — false
Sign.neg < true
List,pos < List,pos + 1
Bit.pos «— List,pos
Listyval — List.val + Bit.val
Bit.pos < List.pos
List.val — Bit.val
Bit.val — O

Bl.f. Va/ -— Zgi'f.pos

Try Evaluating the values for examples

* Consider strings:

1011

e -10

Some Terminology/Observations

Attributes
Attribute rules
Decorating the tree

Dependences among attributes -> evaluation
order

Attribute dependence graph
Inherited attributes versus synthesized attributes

Which attributes are inherited?
Svnthesized?

For “-101”

Try another rule set for same problem

Productions

Number

Bit

- SignList

Attribution Rules

Bit.val =0
Bit.val =1

Symbol Attributes
Number val
Sign neg
List pos, val
Bit pos, val

The Rules of the Game

* Aftributes associated with nodes in parse tree

* Rules are value assignments associated with productions
* Attribute is defined once, using local information
* Label identical tferms in production for uniqueness

* Rules & parse tree define an attribute dependence graph
— Graph must be non-circular

This produces a high-level, functional specification

SynTheSized attribute N\ N.B.: AG is a specification
— Depends on values from children for the computation, not an
Inherited attribute aigorithm

— Depends on values from siblings & parent

Using Attribute Grammars

Attribute grammars can specify context-sensitive actions

* Take values from syntax

* Perform computations with values

* Insert tests, logic, ...

Synthesized Attributes

* Use values from children
& from constants

* S-attributed grammars

* Evaluate in a single
bottom-up pass

Good match to LR parsing

Inherited Attributes

* Use values from parent,
constants, & siblings

* Directly express context
* Can rewrite to avoid them
* Thought to be more natural

Not easily done at parse time

Evaluation Methods

Dynamic, dependence-based methods
* Build the parse tree

* Build the dependence graph

* Topological sort the dependence graph
* Define attributes in topological order

Rule-based methods (treewalk)
* Analyze rules at compiler-generation time

* Determine a fixed (static) ordering

* Evaluate nodes in that order

Oblivious methods (passes, dataflow)
* Ignore rules & parse tree
* Pick a convenient order (at design time) & use it

Take another look at example

. : Inherited attributes?

neg: V\ZQ C:f 0 Synthesized attributes?
/. —
/4 pos: ™\ pos: Attributed dependency
| List) I | Blt/ val- 5
/*s \I ' graph:
isp) POS: |. B't\' pos: 1
/ val: _ _/ val
¢ Note: can only evaluate
it | PO 0 oncircular dependency
J val:

graphs. General circularity
problem is exponential.

For “-101”

Where is the circularity?

A Circular Attribute Grammar

Productions Attribution Rules
Number — List Lista— 0
List, — List; Bit List,a= Listpa+1

Listy.b — List.b
List;.c = List.b+ Bit.val

| Bit List,b — List,a+ List,c+ Bit.val
Bit — 0 Bit.val — O
| 1 Bit.val — 1

Circular Grammar Example

/ Productions Attribution Rules
Number — List | List.a=— 0 |
List, — List, Listp,a= Listsa+1

Bit Listob— List.b
List.c = List.b+
Bit.val

| Bit List,b— Listya+
Listy.c + Bit.val

Bit —- 0 Bit.val — QO

| 1 Bit.val — 1
0 |
val:
v
1

For “=101”

val:

An Extended Attribute Grammar Example

Grammar for a basic block

Assigng
Expr,

Term,

00 N O O A W N =

9
10 Factor
11
12

—
|
—_—
—_—
|
|
—_
|
|
SN
|
|

Block; Assign
Assign

Ident = Expr;
Expr;+ Term
Expr;- Term
Term

Term;* Factor
Term;/ Factor
Factor

(Expr)
Number

Ident

(§ 4.3.3)

Let's estimate cycle counts

* Each operation has a COST
* Add them, bottom up

* Assume a load per value

* Assume no reuse

Simple problem for an A6

Hey, this looks useful |

An Extended Example

1 B/OCko —>

3 Assign, —

4 Expr, —

7 Term, —
8 |

9 |
10 Factor —
11 |
12 |

(Comn 412 Fall 20007

Block; Assign

Assign
Ident = Expr;

Expr;+ Term
Expr; - Term

Term
Term,* Factor

Term,/ Factor

Factor

(Expr)
Number
Ident

(continued)

Block,.cost <— Block,.cost +
Assign.cost

Block,.cost < Assign.cost

Assign.cost < COST(store) +
Expr.cost

Expry.cost < Expr,cost+
COST(add) + Term.cost

Expry.cost < Expr,.cost+
COST(sub) + Term.cost

Expr,.cost < Term.cost

Termg,.cost <— Term,.cost +
COST(mult) + Factor.cost

Termg,.cost <— Term,.cost+
COST(div) + Factor.cost

Term,.cost < Factor.cost
Factor.cost < Expr.cost
Factor.cost < COST(loadI)
Factor.cost < COST(load)

An Extended Example (continued)

Properties of the example grammar
e All attributes are synthesized = S-atfributed grammar

* Rules can be evaluated bottom-up in a single pass
— Good fit to bottom-up, shift/reduce parser

e Easily understood solution
* Seems to fit the problem well

