The Front End:
Scanning and Parsing

Source Front IR Back Machine

code o End g End code

» Errors

How they work together...

Source

Get next token

file

IR

scanner

parser

—»

N

string table

errors

What is a token? A lexeme?

English?
Programming Languages?

Lexeme
Token
Examples?
lexemes tokens

Designing a Scanner

Step 1: define a finite set of tokens
How?

Step 2: describe the strings (lexemes)
for each token

How?

So, a simple scanner design?

Then, why did they invent lex?

Poor language design can complicate scanning
* Reserved words are important

IT then then then = else; else else = then (PL/L)
* TInsignificant blanks (Fortran & Algol68)
do101=1:25
do 101 =1.25
* 5String constants with special characters (C, C++, Java, ..)

newline, tab, quote, comment delimiters, .

* Finite closures (Fortran 66 & Basic)

— Limited identifier length
— Adds states to count length
Even, simple examples: ivsif; = vs==

It is not so straightforward...

Specifying lexemes with
Regular Expressions

Let > be an alphabet.
Rules for Defining regular expressions over . :

- ¢ Denotes the set containing the empty string.
- For eachain X , ais the reg expr denoting {a}

- If r and s are reg expr's, then
rs = set of strings consisting of strings
from r followed by strings from s

rl|s = set of strings for either rors

r* = O or more strings from r (closure)

(r) used to indicate precedence

Examples of Regular
Expressions for Lexemes

Tdentifiers:

Letter — (alble| .. [z|AIBIC] . |Z)
Lo — (Ql1i2] .. 19) shorthand
v Identifier — Letter(Letter | Digit)" for

i - S o
(alklc] - [zIAIBIE] - I1£) L(alblc] .. [zIALBIE] - I£)] (D - 193]

Numbers:

Integer — (xl-l€) (O (LIZ2I3] .. |9)(Digit™))

Decimal — Integer . Digit”
,f’f' Real — (Integer | Decimal) E (£|-|g) Digit~
/ Complex — (Real | Real)

\\\Numbers can get much more complicated! underlining indicates

Using symboelic names fflf;rfﬂr in the input
does not imply recursion .

What strings/lexemes are represented by these regular expressions?

Practice with writing regular
expressions

- Binary numbers of at least one digit

- Capitalized words

-Legal identifiers that must start with a letter, can
contain either upper or lower case letters, digits, or _.
-white space including tabs, newlines, spaces

Shorthand for regular expressions?

What strings are accepted here?

* Numerical literals in Pascal may be
generated by the following:

digt. — 0| 1]2]|3]|4]|5]|6|7]8]29
unsigned_integer — digit digit *

unsigned_number — unsigned_integer ((. unsigned_integer) | €)
(((e | E) (+ | -] €) unsigned_integer) | €)

From Specification to
Scanning...

Consider the problem of recognizing ILOC register names

Register —r (Q[1]2] . | 2) (@]1]2] .. | 2)°
« Allows registers of arbitrary number
* Requires at least one digit

RE corresponds o a recognizer (or DFA)

. r jUI_IJ _]F.i |

Recogmzer for Register

1] ... 8)

accepting state

Transitions on other inputs go fo an error state, s,

From Reg Expr to NFA

How do we build an NFA for:
a?

Concatenation? ab
Alternation? a|b

Closure? a*

RE —INFA using Thompson's Construction

Key idea
* MNFA pattern for each symbol & each operator

« Join them with € moves in precedence order

a £ b i

NFA for a A ToT. 2
) a ,E b _E
“@ X)k
! 5 E a E f”"““a-
4 5 5, 8, 3, ﬁ
£ [+] =B N -
Sy
MFAfora
MFAfora|b

Ken Thompson, CACM, 1968

Scanning as a Finite Automaton

space, tab, newline, return

Start

ROT-) or *

Tan- *

lbrac rbrac CoOmma
dotdot
O
letter, digit, _
digit identifier or key word
B

realconst

degit e, E

realconst

The Whole Scanner Generator
Process

« (Qverview:
— Diurect construction of a nondeterministic finite automaton
(NFA) To recognize a given RE
— Easy to build in an algorithmic way
— Requires s-transitions to combine regular subexpressions

— Construct a deterministic finite automaton (DFA) to simulate
the NFA

— UUse a set-of-states construction Optional, but

— Minimize the number of states in the DFA worthwhile
— Hoperott state minimization algorithm

— Generate the scanner code
— Additional specifications needed for the actions

Automating Scanner Construction

To convert a specification into code:

T e L Mg =

Write down the RE for the input language

Build a big NFA
Build the DFA that simulates the INFA

Systematically shrink the DFA
Turn it into code

Scanner gene rators

Lex and Flex work along these lines

Algorithms are well-known and well-understood

Key issue is interface to parser (define all parts of speech)
You could build one in a weekend

However, 3 Major Ways to Build
Scanners

— ad-hoc

— semi-mechanical pure DFA
(usually realized as nested case statements)

— table-driven DFA

 Ad-hoc generally yields the fastest, most
compact code by doing lots of special-
purpose things, though good automatically-
generated scanners come very close

A Semi-mechanical DFA Way

* Lexical Analysis Strategy: Simulation of Finite Automaton
— States, characters, actions
— State transition &(state,charclass) determines next state
* |lext character function
— Reads next character into buffer
— Computes character class by fast table lookup
* Transitions from state to state

— Current state and next character determine (via &)
— Mext state and action to be performed
— Some actions preload next character
* Tdentifiers distinguished from keywords by hashed lookup
— This differs from EAC advice (discussion later)

— Permits translation of identifiers into <type, symbol_index:
— Keywords each get their own type

A Lexical Analysis Example

Blank/ Skip™ Alpha|Num/Add*®

Alpha/ Add*
51 | » Al

Mum/Add* Mum/Add®

~{Alpha|Mum}s
Mame

}/ Skip*

~Cuotes Quote/

Co Add* Lite* E!}L'\
N /

f’{}r'ﬂkip* MNote: [action]* — advance input stream
Camp 412, Fall 2007 20

Manually written scanner code

current = START_STATE;

token = "";

(assurme next character has been preloaded into a buffer
wihile (current 1= EX)

{

imt charClass = inputsiream->thisClassi);
switch [current->action{charClass)]
{
case SKIP:
npuistream-=advance{};break;
case ADD:
char® t = token; int n = 2strient);
token = new char[m + 2], ;strepy(token, 1);
taken[n] = inputstream-=>thisChar(); token[n+1] = 0;
deleiz [t; inpuistream-=advancel(); break:
case MAME:
Eniry * & = symTable->lockup{icken);
tokenType = (e->lype==NULL_TYFE ? NAME_TYFE : e->iype]:
oreak;

}

current = current-=nextSiate(charClass);

t

Comp £12, Fall 2007

The Scanner Generator Way

compile
time

design
time

source code

specifications

parts of speech & words

» Scanner
. Scanner
Senerator

tables
or code

Specifications written as
‘regular expressions”

2

Represent
words as
indices into a
global table

More on the Scanner Generator
on Thursday...

Since the scanner is the only phase to
touch the input source file, what else
does it need to do?

Form of a Lex/Flex Spec File

Definitions/declarations used for re clarity
%%

Reg exp0 {action0} // translation rules to be
Reg exp1 {action1} // converted to scanner

%%
Auxiliary functions to be copied directly

Lex Spec Example

delim [\t\n]

WS {delim}+

letter [A-Aa-Z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%

{ws} {/*no action and no return*?}

if {return(IF);}

then {return(THEN);}

{id} {yylval=(int) installlD(); return(ID);}
{number} {yylval=(int) installNum(); return(NUMBER);}
%%

Int installlD() {/* code to put id lexeme into string table*/}

Int installNum() {/* code to put number constants into constant table*/}

Some Notes on Lex

e yylval — global integer variable to pass
additional information about the

lexeme

e yyleng - length of lexeme matched
o yytext — points to start of lexeme

-

Lex/flex scanner
generator

Bt

» Scanner

Testa'

_

A Makefile for the scanner

eins.out: eins.tlt scanner
scanner < eins.tlt > eins.out

lex.yy.o: lex.yy.c token.h symtab.h
gcc -c lex.yy.c

lex.yy.c: turtle.l
flex turtle.l

scanner: lex.yy.o symtab.c
gcc lex.yy.o symtab.c -Ifl -o scanner

A typical token.h file

#define SEMICOLON 274
#define PLUS 275
#define MINUS 276
#define TIMES 277
#define DIV 278

#define OPEN 279
#define CLOSE 280
#define ASSIGN 281

... I*for all tokens™/

typedef union YYSTYPE

{inti; node *n; double d;}
YYSTYPE;

YYSTYPE yylval;

A typical driver for testing the
scanner without a parser

%%

main(){
int token;

while ((token = yylex()) != 0) {

switch (token) {
case JUMP : printf("JUMP\n"); break;

I*need a case here for every token possible, printing yylval as needed
for those with more than one lexeme per token™/

default:
printf("ILLEGAL CHARACTER\n"); break;

) e

In summary, Scanner is the only
phase to see the input file, so...

The scanner is responsible for:
— tokenizing source
— removing comments
— (often) dealing with pragmas (i.e.,
significant comments)
— saving text of identifiers, numbers, strings

— saving source locations (file, line, column)
for error messages

stream of

Why separate phases?

characters

Scanner
ﬂi|'|$|"-55_:r’."+331

stream of

tokens

¥

Parser
Sy o

IR +
annotations

* Errors

Why separate the scanner and the parser?
Scanner classifies words
Parser constructs grammatical derivations
Parsing is harder and slower
Separation simplifies implementation

— smaller grammar for parser

— faster front end

Scanner is only pass
that touches every
character of the input.

token is a pair
<part of speech, lexeme>»

Slide From Keith Cooper, Rice

	The Front End:�Scanning and Parsing�
	How they work together…
	What is a token? A lexeme?
	Designing a Scanner
	Then, why did they invent lex?
	Specifying lexemes with Regular Expressions
	Examples of Regular Expressions for Lexemes
	Practice with writing regular expressions
	What strings are accepted here?
	From Specification to Scanning…
	From Reg Expr to NFA
	Scanning as a Finite Automaton
	The Whole Scanner Generator Process
	However, 3 Major Ways to Build Scanners
	A Semi-mechanical DFA Way
	Manually written scanner code
	The Scanner Generator Way
	More on the Scanner Generator on Thursday…
	Form of a Lex/Flex Spec File
	Lex Spec Example
	Some Notes on Lex
	A Makefile for the scanner
	A typical token.h file
	A typical driver for testing the scanner without a parser
	In summary, Scanner is the only phase to see the input file, so…
	Why separate phases?

