 MPI_Gather

Gathers together values from a group of processes

#include <mpi.h>

int MPI_Gather(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,

 MPI_Comm comm);

Parameters

sendbuf

is the starting address of the send buffer

sendcount

is the number of elements in the send buffer

sendtype

is the datatype of the send buffer elements

recvbuf

is the address of the receive buffer

recvcount

is the number of elements for any single receive

recvtype

is the datatype of the receive buffer elements

root

is the rank of the receiving task

comm

is the communicator

Description

This subroutine collects individual messages from each task in comm at the root task and stores them in rank order.

The type signature of sendcount, sendtype on task i must be equal to the type signature of recvcount, recvtype at the root. This means the amount of data sent must be equal to the amount of data received, pairwise between each task and the root. Distinct type maps between sender and receiver are allowed.

The following is information regarding MPI_GATHER arguments and tasks:

· On the task root, all arguments to the function are significant.

· On other tasks, only the arguments sendbuf, sendcount, sendtype, root, and comm are significant.

· The argument root must be the same on all tasks.

Note that the argument revcount at the root indicates the number of items it receives from each task. It is not the total number of items received.

A call where the specification of counts and types causes any location on the root to be written more than once is erroneous.

Example

Gather 100 ints from every process in group to root.

only the root allocates memory for the receive buffer.

 MPI_Comm comm;

 int gsize,sendarray[100];

 int root, myrank, *rbuf;

 ...

 MPI_Comm_rank(comm, myrank);

 if (myrank == root) {

 MPI_Comm_size(comm, &gsize);

 rbuf = (int *)malloc(gsize*100*sizeof(int));

 }

 MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

[image: image2.png]100 100 100
I I
100 100 100

at root

[image: image1]