
CISC 372: INTRODUCTION TO PARALLEL PROGRAMMING

Fall 2003

Individual Programming Assignment 2

Due Date: start of class, Thursday, October 9, 2003

1 Objectives

The objective of this assignment is to write some simple MPI programs to learn how to accomplish commu-
nicaton between processes, and to time MPI programs. The side e�ect of this assignment is that you will be
implementing several versions of a global sum reduction operation.

2 Procedure

1. Centralized Summation: Write an MPI program that computes the global sum of results from
computations on the data local to each process in the following way. First, for ease of creating local
data, use the rank of each process as its local data. To have some computation at each node, have
each node locally compute the summation 1 to 10000 of the local rank (myrank+myrank+...myrank),
performing the additions explicitly, not by multiplying 10000 times myrank! We're just creating some
fair amount of local computation! The overall centralized summation is the sum of these local sums.
Assuming that there are N processes, the global sum should be computed by having processes 1 through
N-1 send their local result to process 0, and having process 0 receive their local results and compute
the global sum of the local results. The processes should not have to send their local results in any
particular order, and process 0 should not have to receive them in any particular order. That is,
process 0 should not explicitly try to receive the results in order 1 through N-1. This causes undue
synchronization. Your centralized summation program should be written in a general manner in order
to work for any number of processes N > 1, without recompilation of the program code.

Take 3 timings each for 4 processes, 8 processes, and 16 processes. The goal of the timings are to
compare the three algorithms. So, in order to compare them, we need to time all of each algorithms
starting after the initial MPI init, comm rank and comm size commands, and before the printing of the
results. The printing takes up too much time. So, you want to place your timing statements such that
process 0 does the calls, and does the �rst call before it does any work (including its own computation of
its local sum), and after it gets all the results from everyone and does the global summation. Tyipcally,
process 0 starts on the machine you are logged into and submitting the mpirun command, so it will
get started before anyone else, so this will include the complete computation time of all local sums and
the global sum and all communication.

2. Circular Shifting Summation: Write an MPI program that computes the global sum of the local
results of each process in the following way. Again, assume that the rank of the process is the local
data and that the same local summation is computed as above. Assuming that there are N processes,
process N-1 should send its result to the next lower numbered process N-2, which adds its local results
to the running sum (i.e., we call this a partial sum), and sends the current partial sum to the next
lower ranked process. This continues until process 0 receives the partial sum from process 1. Process 0
then adds its local sum (I know, it is zero, but we are mimicking summation of local data), and prints
out the �nal global sum. You need to time from the start of process N-1 sending its data, until just
before process 0 prints. Take 3 timings for 4 processes, 8 processes, and then for 16 processes. Again,
your code should be written in a general manner, able to work for any N > 1 number of processes
without recompilation.

3. Tree Summation: Write an MPI program that computes the global sum of the local results of each
process in the following way. Again, assume that the local data is the rank of the process and that
the local result is computed as above. Assume that there is a number of processes, N > 1, that is a
power of 2 (i.e., 2, 4, 8, 16). The communication and summation should be performed in a tree-like
pattern. The following diagram shows the communication for 8 processes, where the numbers indicate

1



the process that is doing the summation at that point in the tree computation. So, process 1 sends its
local result to process 0, which computes a partial sum, and waits for process 2 to send its partial sum
of 2 and 3. Then, process 0 computes the partial sum of its current sum with the partial sum from
process 2. Then, process 0 waits for the partial sum from process 4, and computes the �nal global sum.
Each interior node in this logical tree is a partial sum computation. The original local results are at
each process at the bottom of this tree of computation. You should time from the start of computing
local sums at the bottom of the tree computation until just before process 0 prints the �nal result.
Take 3 timings for 4, 8, and 16 processes.

0

/\

0 4

/\ /\

0 2 4 6

/\ /\ /\ /\

0 1 2 3 4 5 6 7

4. Create a single graph that displays the averages of your timings for 4, 8, and 16 processes, for each
method. The horizontal axis should be the number of processes involved in the summation. The
vertical axis should be the timings. The graph should include only your average timings from 3 runs,
so there should be 9 points on the graph. A bar graph might be a nice depiction of this data. A
di�erent bar could be used for each of the three methods, for a given number of processes. You should
use a tool that automatically creates the graph based on the data inputs.

5. Modi�ed Versions of Summation Programs: Now, copy each of your 3 summation programs,
and modify each copied version such that a given node does not start to compute its local sum until it
has received data from all processes who are supposed to be sending to it. So, some nodes can begin
summing immediately (have no expected received data), while others need to wait until they receive
all expected data before they perform their local summation for their partial sum.

Perform the same timings as before for these three modi�ed programs. Create a single graph as before
for the original versions of these programs.

3 Hints for Getting Good Timing Data

In order to get reliable timing data, you need to make sure that no one else is using the cluster. To do this,
you should run the spyall command just prior to making a performance run. Also, from past experience,
leaving the timings until last evenings before the assignment due date makes getting reliable timing runs
very di�cult to obtain due to the many other folks trying to get access to the cluster for timings.

4 Experimental Report

Your experimental report should consist of the following sections in this order. It is strongly recommended
that you type your report using a word processor rather than handing in a hand-written report.

1. Cover Page: Title, author, course number and semester, date.

2. Project Summary: In one paragraph, summarize the activities of the lab.

3. Hypothesis: First, state and justify your hypothesis. Which method for summation do you believe
should take the longest time and which should take the shortest time? Why? Explain your hypothesis
in the context of a large number of processes and a small number of processes, and a large amount of
computation at each node versus a small amount of computation at each node.

4. Analysis:

2



(a) Collected Timing Data. This section includes both a chart of the raw collected timings, and
the graph depicting the averages pictorially.

(b) Analysis. In English, explain your timing results. Describe your observations concerning the
di�erent methods, and how it compares to your hypothesis. Explain why you believe the timings
are di�erent or similar between the methods. How does it compare to your hypothesis?

5. Conclusions: This section consists of a discussion of what you learned from the various aspects
of the lab. Discuss possible reasons for inconsistencies or discrepancies in your data versus what you
would have expected to happen.

6. General Remarks: Any comments on the lab itself that you would like to make in terms of
suggestions for improvement or problems you experienced.

7. Appendix: Your code for the three versions of summation.

Please staple all parts of your lab together, and label each piece. Be prepared to discuss your results in class.

5 Criteria for Evaluation

Your lab will be evaluated according to the following criteria:

1. 10 pts: Centralized summation

2. 3 pts: Timings of centralized summation

3. 10 pts: Shifting summation

4. 3 pts: Timings of shifting summation

5. 25 pts: Tree summation

6. 3 pts: Timings for tree summation

7. 10 pts: Modi�ed versions of each program above

8. 6 pts: Timings for the modi�ed versions

9. 5 pts: Graph of averages

10. 25 pts: Experimental report

(a) 2 pts: cover page

(b) 5 pts: project summary

(c) 3 pts: hypothesis

(d) 10 pts: analysis of timing results (includes points for code in appendix)

(e) 5 pts: conclusions

6 Extra Credit

5 pts: Develop a di�erent communication pattern that you believe might work di�erently than these three
patterns, perform the same timings as above, and report and justify your �ndings.

3


