
CISC 372: INTRODUCTION TO PARALLEL PROGRAMMING

Fall 2003

Group Project 1

Due Dates:

Deliverable 1: start of class, Thursday, October 17, 2003
Deliverable 2: start of class, Tuesday, October 28, 2003

1 Objectives

The main objectives of this project are:

� to gain the experience of the project group environment common in the computer industry,

� to creatively solve a somewhat open-ended problem after investigating multiple solutions with varying
tradeo�s,

� to learn skills, apply knowledge, and seek new knowledge through a problem-based approach more
resembling the real-world situation,

� and to write code for which the speci�cation is being re�ned to �t the customer's changing requirements.

2 Problem Description

You are working on a big project for the National Security Agency (NSA). The NSA and the Department
of Defense want to design a computer system named ATTACK (Automated Threat Trouncer and Covert
Kruncher) that will be able to scan images acquired from satellite cameras, determine locations of military
stockades, and orchestrate an ATTACK.

This system is to be a very large and rather complex system, so the work has been broken up into
manageable pieces. Each unit of work will be assigned to a project group for completion. Your group has
been charged with the image processing phase to enable computer visualization and target recognition. Your
job is to implement a module which when given an image, returns an altered version of that image that
delineates all the edges within the original image. Such a system is called an edge detection processor.

To get a feel for what your project should do, try running the edge detection processor located at:
pollock/372 f03/public/edge.dir/edge on the cluster. In that same directory, there is a readme �le that
explains how to get this edge detector up and running (also where some initial test �les can be found). You
do not have access to the source code, just the executable and some test �les. The test �les are in the same
directory.

It is important that your code be fast and correct; lives depend on your work. The initial speci�cations
for your module are as follows:

3 Deliverable 1

A �rst prototype implementation. This prototype may be a correct sequential version of your system, or a
�rst correct version of a parallel system.

1. Your software will run on an 9 processor cluster of machines in a mobile command unit. The machines
will run MPICH (coincidentally the same con�guration available at University of Delaware!). Your
code will use the MPI library with the C or C++ programming language.

2. Images are stored in ascii PGM format (not raw or binary PGM format). Given a �lename at runtime,
your software must read the PGM �le, process the image, and then save the resulting version of the
image to a PGM �le with the �le name also speci�ed at runtime, in a command line like:
mpirun -np X edge -i infile.pgm -o outfile.pgm

1

3. Your program should accept any arbitrary size image, for which the matrix to store the image can be
of any size (not necessarily divisible evenly by the number of processes).

4. Your software must perform all computations as quickly as possible.

5. Your software must perform all computations correctly.

6. You must clearly and thoroughly document your code. You must also provide a well written user
manual that covers all aspects of use, explains algorithms used, describes any problems or shortcomings
and why they exist, describes possible approaches to eliminating any problems or bugs, and clearly
delineates all speci�cations of your software. You should include a section on how you tested your
software.

7. TURN IN: Tar up a directory of: (1) your prototype program, (2) sample input �les your program
works properly on, (3) README �le with external documentation (see item on user manual above),
how to run the program, and your group members' names. Send the tarred directory to the TA by the
deadline. ALSO, hand in a hardcopy of your program and scripted runs (see below). For help with
tar, "man tar".

In the design of your initial program, you should consider the following questions.

� What algorithms are available for edge detection? Look at some books or the web for possible algo-
rithms. Please cite any of your sources if you code their algorithms. Your actual code

should be your own group's creation, not from any other sources.

� What general approach(es) could be used to parallelize the edge detection process? In each approach,
where are the communication overheads?

� How does load balancing come into play in this task?

� What characteristics are desirable in a good suite of benchmarks for testing your code thoroughly for
both correctness and performance?

4 Deliverable 2

A �nal parallel implementation showing your best e�ort toward e�cient, e�ective parallelization. This
version should be able to run correctly with 1, 4, 8, and 16 processes. You should show test runs, using a
script �le, for 1, 4, 8, and 16 processes. The �nal draft of the documentation should also be included with
this deliverable.

The details of the code:

1. Your program needs to satisfy the same criteria as deliverable 1, except now be written general enough
to be able to run with 1, 4, 8 and 16 processes.

2. Your code should be e�cient in both time and space. For space, e�ciency means that process 0 is the
only one that should allocate space for the whole data set, and all other processes should only allocate
space adequate enough to hold the data they need to hold and any data involved in communications.
They should NOT all allocate a �xed size for the whole data set if they are not working on that size
data. You need to be careful with two-dimensional arrays in C, especially when dynamically allocating
them. See the notes at the end of this handout. You are allowed to store the image internally any way
you believe is the most space and time e�cient. Discuss your choice in the external documentation.

For time, e�ciency means using parallelism and performing communication e�ciently. So, you should
think about how best to distribute the data to minimize the amount of communication needed between
processes during computation as well as minimizing the amount of duplicate data distribution work. In
addition, when communication is needed, you should try to do it in an e�cient manner, that is, avoid
wait's if possible due to sequentialized communication schemes, and package up as much as possible in
a message before sending. You are welcome to use any MPI command you �nd to achieve these goals,
but it is perfectly �ne to use only those we have discussed in class so far.

2

3. You must clearly and thoroughly document your code. You must also provide a well written user
manual that covers all aspects of use, explains algorithms used, describes any problems or shortcomings
and why they exist, describes possible approaches to eliminating any problems or bugs, and clearly
delineates all speci�cations of your software. You should include a section on how you tested your
software.

4. TURN IN: Tar up a directory that contains: (1) your �nal parallel program, (2) sample input �les
your program works properly on, (3) README �le with external documentation (see user manual
speci�cs above), how to run the program, and your group members' names. Send the tarred directory
to the TA by the deadline. For help with tar, "man tar". ALSO, turn in a hard copy of your program,
script, and graph with discussion.

5 Criteria for Evaluation

Your project will be evaluated according to the following criteria:

1. (45 pts) Deliverable 1.
- (3) citations: adequate documentation of sources of information.
- (5) �le input/output
- (4) arbitrary size image
- (20) perform correct edge detection according to selected algorithm
- (4) internal documentation of the code
- (5) external documentation
- (4) script demonstrating compile and executions

2. (55 pts) Deliverable 2.
- (4) arbitrary size image
- (15) perform correct edge detection according to selected algorithm for any number of processors
- (5) a space-e�cient parallel version
- (9) a time-e�cient parallel version in data distribution, load balance, and communication e�ciency
- (2) internal documentation of the code
- (5) external documentation : choice of algorithm, issues, approaches to addressing time and space
e�ciency
- (5) script demonstrating compile and executions
- (8) single graph of timings from 3 runs (each) for 1,4,8,and 16 processes
- (2) discussion of timings

3. Individual grades will be assigned as a percentage of the grade of the group project, based on feedback
on how well the group worked together and fairly divided the work on the project. Each student will
complete a peer review that has the goal of determining how well the group worked together, and how
the workload was handled. (see course web site for review form example)

6 Notes on Dynamic Array Allocation in C

For a single dimension array:
I �rst declare the array as a pointer, because I don't want to have to give it a �xed size like int vector[100];

So, instead, I declare it as:

int *vector;

This create space for a single pointer called vector, in each process's address space. Now, if I want to
allocate space, say for size number of int's, I write:

vector = (int *) calloc(size, sizeof(int));

3

or

vector = (int *) malloc(size * sizeof(int));

You can do a man on malloc or calloc and �nd out more.
Now, to access vector, I can either use pointer notation and pointer arithmetic, or I can use array notation.
So, I can do:

for(i=0; i<size;i++)

printf("vector[%d]:%d\n", i, vector[i]);

to print out the values in the array. They should be all zero at this point, as malloc initializes the
locations allocated to 0.

For two-dimensional arrays, it is much trickier: Here are some portions of my code:
In C, two-dimensional arrays are really an array of arrays, such that a[i][j] accesses the jth element of the

ith array in the array of arrays. So, to declare a two-dimensional array that does not have space allocated
yet, I need to declare a pointer to a pointer as:

int **grid;

Then, to allocate space for the whole grid of size, I can do it in two steps:
I �rst allocate the array of pointers which will point to the arrays. This can be done by:

grid = (int **) malloc(size * sizeof(int *));

This create space for size number of addresses; an address can be stored in the space of a pointer to an
int.

Now, I have space as if I had size number of vector declarations. So, now I need to allocate the space for
the vectors (single dimension arrays themselves). So, I do the same as I did for allocating a single vector,
except I need size number of them, so I put it in a loop:

for (i=0;i<size;i++)

grid[i] = (int *) malloc(size * sizeof(int));

Note that I can now access grid by the grid[i][j] notation, because it is fully allocated now.

4

