Exercise on Refactoring and Documentation Generation Tools
Perform the following tasks, emailing the answers/cut and paste observations to Pollock@cis.udel.edu when completed (due by Saturday, noon, August 11). You should have something in your email for each bolded, italicized line below.
Refactoring within Eclipse: Perform the following refactoring actions to try out some of the different groups of refactorings. Take screenshots along the way as indicated.
Group 1 – Rename Refactoring with RenameMoveDemo.java
1. Choose A::a_method1 and rename to am3. Take screenshot of resulting window popup.
2. Choose A::a_method1 and rename to a_m1. Click preview and screenshot the preview window.
3. Now click Edit->undo which will have "Undo Rename."

Group2 with ExtractMethod_etal.java:
EXTRACT METHOD
4. Open ExtractMethod_etal.java

5. Select the user input part of CnvrtTemp and extract method to getUserInput.
6. Click preview and screenshot the preview window, then save.
EXTRACT VARIABLE AND CONSTANT

7. In the method ShowExtVarExtConst, select the common expression a*b and choose extract variable.

8. Similarly for 12, choose extract constant.
9. In both cases, save the change and screenshot the resulting method.
CHANGE METHOD SIGNATURE

10. Select MethodSignatureChange and change the signature.

11. Show that decreasing parameters is easy, but increasing parameters or changing return type is not. Take screenshots of decreasing the signature size and then changing the return type.
INLINE METHOD

12. Put ShowInlineMethod in the editor, select the add method, and choose inline. Click preview and screenshot the preview window showing changes/messages.
Group4 in Group4Demo.java

PULL UP

13. Select Professor::ComputeSalary and do PullUp. Perform the correct selections to pull the same method up from all subclasses of Instructor. Click preview and screenshot the preview window showing changes/messages.
PUSH DOWN
14. Select Instructor::ComputeSalary and do PushDown.

15. Change the salary in the different professor levels. Screenshot the window showing changes/messages.
REFACTORING HISTORY AND SCRIPTS
16. Click on Refactoring->history and Screenshot what you see there.
17. Invoke History dialog and select an entry to show what all has been done.
18. Open group1 RenameMoveDemo.java project.

19. Rename one of the methods.
20. Select Create Script and select the above refactoring and select APPLY SCRIPT, and export it.
21. Then, select apply Script to see how the script is shown as a potential script to apply. Screen shot the window showing the script to be applied.
22. Answer the following questions:
a. How is refactoring different in goals from compiler optimization?
b. For the following refactoring transformations, describe what you think the refactoring tool has to perform or tell the user to perform to change your code to make it correct.
i. Inline method
ii. Push up
iii. Rename a method
Using doxygen or Javadoc to document your program within Eclipse:

1. Set up an Eclipse-wide preference set for javadoc to include project name, package name, date, and author at the top of each file.
2. Check out the Metrics TEst project from our cvs repository if you don’t already have it checked out from the metrics demo. Bring up the Player.java.1.1 class from the realestate package in the editor.
3. Add either javadoc or doxygen comments to the beginning of the class, and methods Player, BuyProperty, checkProperty, and exchangeProperty to create clear, concise Javadoc/Doxygen documentation. Be sure to use several of the tags offered by the documentation generators to show you know how to use tags as well as general comments. Cut and paste or take a screen shot of your work in the editor and include in your email.

4. Generate the documentation based on these comments, in html format. Take a screenshot or cut and paste the resulting documentation and include in your email..

5. Answer the following questions:

a. Other than a nicely formatted documentation of your comment, what else is included in the generated documentation and how do think this extra information could be used?

b. How do you think the documentation generator works to take your comments in the files and create the html output of documentation?

c. What is the ultimate limitation of generating documentation in this way?
