
Can Middle-Schoolers use Storytelling Alice to Make
Games? Results of a Pilot Study

Linda Werner
Assoc. Researcher & Lecturer in CS

1156 High Street MS: SOE3

UCSC, Santa Cruz 95064

001 831 427 2076

linda@cs.ucsc.edu

Jill Denner, Michelle Bliesner,
& Pat Rex

ETR Associates

4 Carbonero Way

Scotts Valley, CA 95066

001 831 438 4060

jilld, michelleb, patr@etr.org

ABSTRACT
In this paper we share experiences from two 2-week summer
courses for middle-school students in game programming
using Storytelling Alice (SA). The students spent 20 hours
learning SA and creating their own ‘games’ alone and in pairs.
We discuss problems and preliminary findings regarding game
programming by middle-school students. Our findings
suggest that middle-school students can use SA to make
games, and that this activity can be used to build information
technology fluency.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education–computer science education, literacy

General Terms
Languages.

Keywords
Middle-school, pair programming, Storytelling Alice, IT
fluency.

1. INTRODUCTION
The ubiquitous use of computers and other electronic devices
by middle-school students builds many aspects of
information technology (IT) literacy. However, in order to
adapt to rapidly evolving information technologies, today’s
students need to be more than IT literate. Learning and
working in all disciplines now requires them to be IT fluent;
that is, they need to develop the capacity to think
systematically and creatively with technology. In 2007, the
International Society for Technology in Education released the
National Educational Technology Standards [11] about what
K-12 students should know and be able to do with technology.
They emphasize the importance of creative thinking and
innovation - using technology to learn rather than learning to

use technology. They also describe the importance of critical
thinking, problem solving, and decision-making using digital
tools. But the related concepts and skills (algorithmic
thinking, programming, modeling, and abstraction) are
generally taught only in computer science courses, which
attract a limited number and type of students, and are rare in K-
12 settings. We believe the creation of IT, not just the use of
IT, provides the opportunity for a range of students to make
invaluable IT fluency gains for these fundamental concepts,
and many other IT fluency aspects [18].

In 1999 the National Research Council (NRC) defined IT
fluency [16] by taking IT literacy and adding to it the ability
to independently learn and use new information technologies
as they develop. Their definition of IT fluency also states that
algorithmic thinking, programming, modeling, and
abstraction be used to solve problems because these concepts
provide the basis for students to build their understanding of
new information technologies. These four concepts are
fundamentals of any computer science curricula and are basic
to most introductory programming courses at the high school
and university level. The widely used NRC model of IT fluency
was developed for college students, so little is known about
what IT fluency looks like in middle-school.

The Computer Science Teachers Association in its Model
Curriculum report [4] makes suggestions about appropriate
topics and goals for the middle-school years. They state “(w)e
believe with teachers who believe that students at this age
ought to begin thinking algorithmically as a general problem-
solving strategy… Thus it makes sense to develop more
teaching strategies that encourage students to engage in the
process of visualizing an algorithm. Seymour Papert’s
pioneering experiments in the 1980s corroborate the belief …
of how K-8 students can be engaged in algorithmic thinking”
(page 9). However, the 6-8 grade level breakdown does not
specifically identify outcomes for engaging students with
algorithmic thinking, modeling, and abstraction and these
topics do not enter the grade level breakdowns until the high
school years.

Previous research suggests that making a game may engage
students in IT fluency by increasing motivation and engaging
students in critical thinking and problem solving. The
motivation comes from the popularity of gaming and the
excitement of making a unique game that others can play.
Others have found that students are motivated to problem
solve in order to make their games meet their design goals
[17]. According to Gee [10], in the modern age, we need ways
to help students “think like game designers.” Salen [19]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICFDG, April 26–30, 2009, Orlando, Florida, USA.
Copyright 2009 ACM 978-1-60558-437-9…$5.00.

207

describes what this looks like when she says, “Knowing how
to put together a successful game involves system-based
thinking, iterative critical problem solving, art and aesthetics,
writing and storytelling, interactive design, game logic and
rules, and programming skills” (p. 305). Game programming
challenges students to think in certain ways: as opposed to
multimedia design, it offers opportunities to engage in a
representational form of computer literacy [9]. Making games
requires students to make explicit their assumptions about
what makes a good game [13] because they need to think about
how the player will interact with the game, the outcomes of
player action, and the goal of the game. By goal of the game we
refer to how the player can win or lose the game.

For six years we have been involved in teaching middle-
school girls and boys to create games using pair programming.
Our research on pair programming at the university level has
been recognized by the National Center for Women in
Information Technology as helpful for the retention of women
in university computer science programs [2]. Our findings
suggest that game design in pairs has real promise for
promoting IT fluency in middle-school, and we have
published the results of that work in several places [3, 5, 7, 8,
21, 22, 23, 24]. However, there were limitations to the
programming environments that were used. We found that
Flash with actionscripting was too difficult for this age group
to use independently and Stagecast Creator was not visually
appealing to the students because the animations, videos, and
games they created were only 2-dimensional.

We decided to extend our research on game creation by using
Storytelling Alice (SA) because it offers opportunities for
students to engage in key programming concepts while
creating very appealing 3-dimensional movies, stories, and
games.

Storytelling Alice (SA) is similar to Alice, but was designed to
engage younger children by offering higher level animations
[15]. There are additional characters (e.g., fairies and typical
school students) and additional pre-programmed behaviors
(e.g., dancing, kissing, and talking) that appeal to middle-
school students.

During the summer of 2008, we ran two courses that were not
part of a controlled study, but instead were part of an NSF-
funded feasibility study to determine if middle-school
children can use SA and pair programming to create computer
games. Specifically, we were looking for answers to the
following questions:

• Can SA be used by middle-school students to make
games?

• Does game programming with SA support the
development of IT fluency?

2. METHOD

2.1 Participants
During the summer of 2008, we conducted courses for middle-
school girls and boys in game programming using pair
programming and SA. These two 2-week courses ran
simultaneously for two hours each weekday; one was located
at a community center in a small city surrounded by a large
agricultural area, and the other was run at a Boys and Girls
Club in a small city. Participation was voluntary and free, and
students were recruited by club and center staff from existing
membership lists and nearby schools.

We started our courses with 43 student participants and two
seasoned middle school teachers. Of the 43 starting
participants, 33 participants completed the pre-course survey.
Twenty-eight participants completed the course, and 22
participants completed both the pre-course and post-course
surveys. Table 1 gives details of these 22 participants.

Table 1. Details of Participants

Boys 12

Girls 10

Mean age 11.5 years

Age range 10-13 years

Modes 11 and 12 (8 each)

Grades entering next year 6th 11

7th 9

8th 2

English spoken at home Only 6

Mostly 2

Half of the time 13

Infrequently 1

Most frequently spoken at
home other language

Spanish

Ethnicity Hispanic or Latino 15

White or Caucasian 6

African American 2

Didn’t answer 1

Ever written a program before
this course

Yes 2

Never 15

Didn’t know 3

Didn’t answer 2

Computer at home Yes 14

No 7

Didn’t answer 1

2.2 Procedure
One of the instructors is a regular classroom teacher with many
years of experience using technology instruction, but little
prior knowledge of SA. The other instructor had prior SA and
Alice knowledge and is a teacher of technology classes to
grades K-12, including animation, computer literacy, digital
storytelling, digital photography, electronics, and clay
animation. Their training for our program involved a two-hour
meeting in which they learned about the research goals and the
instructional approach, as well as four hours of self-directed
learning of SA by doing built-in tutorials and the first six of
the challenges (SA exercises we created for the students).

Classes met daily for two weeks, two hours each weekday.
During the first five hours of class time, students were
assigned temporary partners. Together, they played sample
games and used other SA programs, participated in a
discussion about the qualities of the games they played, and
worked through four tutorials that come with SA. For pair

208

programming instruction, the teachers acted out examples of
successful and unsuccessful pair programming.

On the third day of classes, most of the students were assigned
to their permanent partners. We paired them based on a list of
names of at most three others they’d prefer to work with. In
most instances we were able to pair a student with one person
from their list. Once paired, the students started working on
exercises we call ‘challenges.’ We based our challenges on
those designed primarily for use by high school and college
students learning Alice by Shelley, Cashman, and Herbert [20].
We adapted existing challenges so they could be used in SA
by a younger audience and created additional challenges that
focus on game elements. These challenges were formatted as
check lists and organized so that students gradually moved
from following directions to making their own design
decisions as they mastered each new programming skill.
During hour seven we discussed the concepts of storytelling
and demonstrated storyboarding. The participants then worked
additional challenges covering aspects of events and event
handlers. During hour 11, the students sketched their own
stories on a single sheet of paper and started programming
them. They then turned their own stories into ‘games’ based on
group discussions of ‘gameness’ qualities including aspects
of user interfaces (gameness is defined in more detail below).
The students spent the rest of the class time (8 hours) creating
their own games and working on challenges for concepts the
students identified they needed for their games such as
subtleties with event handling, if/else, looping, counters, and
timers.

We found students preferred to have as much hands-on
computer time as possible. Consequently, we modified our
plans for the course to accommodate this, creating more
challenges and removing teacher-led instruction. Comments
from students include,
• “The challenges were fun. They helped me do most of my

game and do questions.” (male student)

• “(What I like best about SA) are the challenges. We had to

figure it out. I like doing that.” (student)

2.3 Measures

We used both quantitative and qualitative data collection
methods to learn about the participants and the results of our
courses. We administered pre- and post-course surveys to
obtain information about the participants, such as
demographics, experience using computers, career plans, and
understanding of SA. Some statistics from those survey
questions are given in the ‘Participants’ subsection of this
section. Qualitative data were collected through several means
both on a daily basis and at the end of the two-week period.
Each day of the program, one project team member at each of
the two sites recorded observations made during class using
an observation protocol. In addition, teachers recorded
activities, objectives met, and emerging issues using a daily
log template. At the end of the program, project team members
and teachers discussed the project’s research questions during
a team interview; one of the PIs conducted one-on-one
interviews with both teachers; a project team member
interviewed a teaching assistant from one of the sites; and
three project team members conducted individual interviews
with a total of 11 students from five pairs and one solo (six

interviews at the community center and five interviews at the
Boys and Girls Club); five of the students interviewed were
girls, and six were boys. In addition, computer-logging data
were used to capture students’ actions while using SA. These
data were collected every day and were automatically saved in
files on their computers. In addition, the 23 programs
identified by the students as their best creations were coded
for qualities of ‘gameness’ and aspects of IT fluency.

3. CAN STORYTELLING ALICE BE USED

BY MIDDLE-SCHOOL STUDENTS TO

MAKE GAMES?

We chose SA because we believe this age group can easily
learn it, it is fun to use, and it can be used to create ‘games.’
However, we found that several factors need to be in place to
optimize game production. In particular, teachers need enough
time before the course starts to learn SA, ‘work through’ all the
challenges, and hone the skills that the students will be
learning so they can show the students (especially the ones
who advance quickly) how to troubleshoot. Students with a
range of skill levels thought of creative ideas for games, but
not all could be implemented due to limitations in teacher
knowledge, as well as time limits in the class. Since it was not
possible to anticipate students’ interests before the class
began, several new ‘challenges’ were created mid-course by
project staff in order to guide students on how to carry out
certain ideas about their games.

In general, the teachers felt that the challenges were a good
strategy for students to learn the elements of SA they would
need for their games. In a post-course interview of the teachers,
one teacher described the course’s game development process
in the following way,

“…we structured the class so that they would, first,
do the challenges and then make a game. So that’s
exactly what the game was. [It] was taking what they
learned and the challenges and using it, changing it.
One of the choices that we gave them was to make
their game from an existing challenge, I guess
altering the challenge. I only saw one person, … who
used the setup of the… amusement park to make his
game. Everybody else… did their games from
scratch. So they didn’t actually change the
challenges, they were more like taking everything
they learned and using it to… build their game.”

The teachers also thought that SA was challenging, but the
class provided the right level of resources to allow students to
problem solve on their own. For example, when asked what
students did if their program did not work as they expected,
one teacher responded:

“They usually changed it to work as they wanted.
They would usually troubleshoot it and… talk it…
with each other and try to figure it out. Sometimes
they would ask other students, sometimes they
would ask me or sometimes they would go back to a
challenge and some of them actually went back to
tutorials to learn them. But generally, yes, they
wanted to always make it do what they wanted...”

Although the teachers believed that SA was a good platform to
use for game programming, we wanted to measure the extent to
which the students’ projects meet outside criteria for games.
To this end, we developed a ‘gameness’ coding scheme based

209

on Juul’s six defining qualities for games: existence of rules,
different outcomes that can be quantified, the presence of a
goal, the player uses effort to effect the outcome, the player i s
attached to the outcome (i.e., happy with positive outcome,
unhappy with negative outcome), and the rules can be played
with or without real-life consequences [12]. We also drew on
Costikyan’s definition of games, which says, “without a goal,
it is a ‘toy.’” A game is “a set of player-defined objectives
overlaid on the toy.” Costikyan also says that games are forms
of art with emotional appeal [6].

None of the students’ programs have real-life consequences, so
we ignore that quality. Below we describe the remaining five
defining qualities and give statistics for each of them for the
23 programs identified by the students as their best creations.
The two PIs each coded the programs separately, discussed
their results, and then came to an agreement to reach 100%
inter-rater reliability.

• A game has rules, meaning the game requires user
input, correct input is described, and player actions
result in the state of the game changing. We found
that 100% of the programs have rules; however,
seven programs (30%), have faulty mechanisms used
for explaining the rules to the player. For example,
rules may exist in the SA program code and may
serve as instructions to the player, but are not given
in their entirety to the player or the rules are
inconsistent with the instructions given to the
player. For one of the programs a very sophisticated
mechanism is used for instructions: the player needs
to discover and click on a ‘spell book’ for the
instructions to be displayed. A screen shot from this
program called ‘Invisiboy’ is shown in figure 1. In
‘Invisiboy’, the fairies carry the boy away because he
has not listened to his mother. The rules for his
movement are displayed only if the player can find
and click the ‘spell book’. Figure 2 is another
example of game rules. The pair of students who
created the program called ‘Hurry’ provide
instructions to the player in a display that sits below
the 3-dimensional world: “Click on the fish so you
can catch them but if your time runs out you loose
(sic).” The player is not told how many seconds the
play can continue. The students were experimenting
with using different values for the timer and did not
have sufficient class time to include that information
in their program. When the time runs out, the player
is told how many fish are caught and whether he or
she has lost the game.

• A game has a goal, meaning the game has a clear
beginning, middle, and end; and the objective i s
clear to the player. Thirteen programs, 56%, have
goals. In one of these, the pair of students could not
figure out how to create their program to allow
players to meet their goal; however, 12 programs
contain the code to allow the player to meet the
defined goal. As mentioned earlier, the students
clearly described the goal for the player in the
‘Hurry’ program, shown in figure 2. The goal is to
catch all the fish before the time runs out. If the time
runs out before all the fish are caught, the player
loses the game. The player is told with the display of
“LOSER” in large letters if fish remain to be caught
(see figure 3).

Figure 1. Invisiboy Screen Shot

• A game’s outcome is uncertain, meaning there are
different possible endings, and there is a clear way to
reach the player’s goal. Fourteen programs or 61%
allow for different endings. Examples of these are:
characters are eaten or not, a dog is reconnected with
its tail or it isn’t, and robots are discovered or remain
hidden, as seen in the program ‘Find the Robots’ in
figure 4. In this program, the only rules that are
displayed are spelled out by the small green letters
that give the name of the program. The robots are
initially hidden behind the larger letters with only a
small part of each of the robots visible. If the player
sees and clicks on the visible part of a robot or
moves the letters, that robot is discovered and
‘dances’ into view.

Figure 2. Hurry Screen Shot

210

Figure 3. Hurry (Loser) Screen Shot

• The player is invested in the outcome, meaning
storyline techniques are used to engage the player so he
or she is involved in the resolution of the SA program.
Ten or 43.5% of the programs use storyline techniques
to involve the player in the outcome resolution and,
therefore, have narrative tension. For example, the
‘Hurry’ program (see figure 2) clearly demonstrates an
example of narrative tension. The player wants to click
on as many fish as possible so that a message stating
“WINNER” is displayed when the time runs out. The
’Trouble Maker’ program, shown in figure 5, doesn’t
demonstrate narrative tension. The instructions say, “So
who is the trouble maker? If you click on one of the
students it will give you the answer!” When the player
clicks on a program character, that character runs, or
does a cheer, or falls over on the floor. The player may
be motivated to click on each character to see what
happens with that character; however, there is no time
limit or repercussions for not clicking.

• The game has emotional appeal. Because of SA’s rich 3-
dimensional world of colorful objects and built-in
methods, 100% of the programs have emotional appeal.
All of the backgrounds and characters that were used in
our students’ program were ‘standard equipment’
within SA. In addition to what you see in the figures in
this paper, our students used Egyptian, outer space,
amusement park, neighborhood, fairy tale, skate park,
and boat racing themes.

In summary, 100% of the 23 programs have rules, 56% have
goals, 61% have uncertain outcomes, 43% invest the player in
the program outcome, and 100% have emotional appeal.
According to these defining qualities, many of the students’
programs would not be considered games. Given that most
students believed they produced games, our quantitative and

qualitative results point to the need for work to derive
defining qualities for middle school students’ games.

Figure 4. Find the Robots Screen Shot

Figure 5. Trouble Maker Screen Shot

Although the programs created with SA by these middle-
school students are not production quality games, as Joel
Adams says, “(t)he result is a 3D animated movie (or game)
that, while not as polished as a PIXAR production, motivates
students by letting them exercise nearly unrestricted
creativity” [1]. We found this to be true as well: each program
was a unique and creative expression of the students’ interests,
and all students were extremely proud of their products and
the fact that their programs were posted on the Internet. For the
purposes of this paper, we consider them games.

211

From our post-course survey, 90% of the student responders
said using the computer was fun and 62% said it is easy to
make a game in SA. Some quotes from interviewed students
and teachers about the use of SA, making games, and our
courses include:

• “SA is an easy program to use—it has drag and drop
instead of coding.” (male student)

• “(I would use it again) because it’s easy, it wasn’t overly
complicated.” (male student)

• “(I would use SA again) because it was fun. I might make
games my little sister can play and teach her how to make
her own games.” (female student)

• “At break time most of the students wanted to continue
instead of taking a break.” (teacher)

• “I really like using computers a little more and I can
make my own games.” (female student)

4. DOES GAME PROGRAMMING WITH SA

SUPPORT THE DEVELOPMENT OF IT

FLUENCY?

Game programming with SA appeared to have the most
potential to build IT fluency in the area of the NRC’s
fundamental concepts [15], so that is where we focused our
initial analyses. We were specifically interested in building IT
fluency in the concepts of modeling and abstraction, and
algorithmic thinking and programming. Each game was coded
for seven aspects of these fundamental concepts. For example,
the concept of algorithmic thinking and programming was
measured by how students used the five possible ways to
control program execution in SA. Games that contain only
sequentially executed statements are less sophisticated and
can accomplish less than those that contain alternation (if-
then-else), iteration (loops), parallelism (do together in SA)
and events to control execution. With SA, understanding the
concept of modeling and abstraction is shown with the use of
programmer-defined methods and by the creation and use of
parameters and local and global variables. We analyzed the 23
games and identified those containing student-added
instances of these fundamental concepts. Since there are many
predefined objects and methods in SA and Alice, we only
counted instances of these fundamental concepts when
students used them in student-created parts of their games.

The generic SA program consists of a starting object called
‘World’ and an event that tells SA to send the ‘World’ object a
message to run the starting method called ‘my first method.’
Therefore, every SA program starts with one event and one
object. Additional events can be added and we found that all
23 games have additional student-defined events. Games that
contain new methods for built-in objects or new objects show
student understanding in modeling and abstraction. For
example, a student can combine three existing behaviors of
one of their fairy characters (e.g., flap wings, move up, and
hum) into a new method called fly. If the student also designs
the fly method to be passed a parameter stating the length of
time to fly, this represents a more sophisticated understanding
(use of parameters and variables) of modeling and abstraction.
The percentages of games containing these fundamental
concept aspects are: events – 100%, alternation – 26%,

iteration – 17%, parallelism – 52%, additional methods – 48%,
and parameters, local and global variables – 39%.

The following comments about IT fluency gains are from
student post-course interviews and a teacher log.

• “…(it) feels good to know how to program” (male
student)

• “(What I like best about SA) is that I get to learn new
things like how to make a game and how to program stuff.”
(female student)

• “SA teaches the use of logic and sequencing skills
through the development of story and game. Moving from
the story level to the game level really helped encourage
students to learn the more advanced techniques (variables,

when/while, creating new events, etc.)” (teacher)

We used computer-logging data as part of an effort to
understand the process through which programming a game
can promote IT fluency. Similar to what Kelleher [14] did, we
determined the proportion of instructions of three different
types: housekeeping (save and test), programming, and screen
layout. For each pair or solo, we identified two dates on which
there were sufficient data to analyze: one at the beginning of
the course, and one at the end. These data were parsed to reveal
frequency of programming, scene layout, and housekeeping
instructions. For example, during analysis we found variation
in the extent to which students worked on programming
compared to working on scene layout. On average, pairs spent
more time on programming and housekeeping and solos spent
more time on layout. These numbers combine the two dates of
logging data for each solo/pair. When we compare the earlier
date with the later date, for both pairs and solos, there was an
increase in layout tasks and a decrease in programming tasks
over time. However, we do not know if that change is due to
students doing games as opposed to challenges. In addition,
we did not have enough data to investigate whether students
who did more programming compared to scene layout had
greater increases in IT fluency.

5. DISCUSSION AND FUTURE WORK

Although previous research by Kelleher using a 3-day
workshop format found that SA kept middle-school students
engaged [15], the benefits of greater exposure were unclear.
The results of our pilot study suggest that SA can be used by
middle-school students to make games, and that this activity
has the potential to promote aspects of IT fluency.

 A total of 28 students made 23 games (14 games were made by
pairs of students) in just 20 hours even though most of the
students did not have programming experience prior to
starting the course. Although the vast majority of other classes
that teach Alice or SA focus on 3-D stories, we found that SA i s
very conducive to building programs the students considered
games. We used existing literature on game design to identify
five aspects of ‘gameness:’ rules are present, the goal i s
present and described, the outcome is uncertain, there i s
narrative tension which invests the player in the game
outcome, and there is emotional appeal. In our pilot study, 13
games had at least four of these aspects. These results point to
the need for work to derive defining qualities for middle
school students’ games. Feedback on using SA was very
positive, students reported low levels of frustration and
confusion, and students rated SA as fun and interesting. There

212

were, however, some limitations to the software, such as the
number and type of characters and backgrounds, and the
difficulty of making some objects move together (e.g., a boy
and his skateboard or boats and their passengers). Despite
these limitations, the students expressed a great deal of pride
in their games and in having their peers and family members
play them.

The findings from our pilot study also suggest that creating
games with SA does engage middle-school students in some
aspects of IT fluency. We coded the 23 games for six different
aspects of algorithmic thinking, programming, modeling, and
abstraction: events, alternation, iteration, parallelism,
methods, and variables/parameters. We found that 30% of the
games had four or more aspects and 74% had two or more. A
surprising number (52%) included parallelism, a concept that
is difficult for novice programmers to learn but is clearly more
accessible when using a 3-D animation tool such as SA.
Though our sample size was small, the findings from this pilot
study suggest that SA can be used by middle-school students
with limited computer experience to build games, and that this
process can engage students in some critical aspects of IT
fluency: algorithmic thinking, programming, modeling, and
abstraction. It is just these aspects of IT fluency that are now
referred to as computational thinking. Wing states that
computational thinking is a fundamental skill for survival in a
digital age [25].

We must point out two limitations to these results. First, the
high attrition rate limits the generalizability of the findings
reported in this paper. Students dropped out for a number of
reasons, including the class being too easy or too hard,
interest in other activities taking place at the same time (like
basketball), and family vacations. As a result, we can say little
about what students who dropped out thought about SA.
Second, the small sample size means we can say little about the
difference between students who worked in a pair, and those
who ended up working alone for part of the class. The small
sample size also prevented us from looking at differences
across demographic groups, and students varied a great deal in
English proficiency and access to computers. Finally, we rely
on game coding and logging data to determine whether SA
engages students in some aspects of IT fluency, but additional
individual performance assessments are needed to determine
the extent to which students mastered those concepts.

In conclusion, we developed processes and course materials
and used them to test the feasibility of Storytelling Alice’s use
by middle-students to create games. We plan to use these
processes and course materials in a larger controlled study of
middle-school students using pair programming and
Storytelling Alice to create games to determine if this
combination can engage youth with little or no programming
experience and promote computational thinking.

6. ACKNOWLEDGMENTS

We want to thank the two teachers, Don Jacobs and Shelly
Laschkewitsch, for their help. This work was funded by a
National Science Foundation grant DRL-0755381. Any
opinions, findings, and conclusions or recommendations
expressed in the paper are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

7. REFERENCES

[1] Adams, J.C. 2007. Alice, Middle Schoolers & The
Imaginary Worlds Camps, ACM Special Interest Group on
Computer Science Education Conference, (SIGCSE), ACM
Press.

[2] Barker, L. and Cohoon, J. 2006. Promising practices:
Collaborative learning environments and pair
programming.
http://www.ncwit.org/pdf/COLLABORATIVE_ED_practice
.pdf.

[3] Campe, S., Werner, L., and Denner, J. 2005. Information
technology fluency for middle school girls. Published in
8th Annual Computers and Advanced Technology in
Education Conference. Internal Association of Science
and Technology for Development.

[4] Computer Science Teachers Association. 2003. A model
curriculum for K-12 computer science.
DOI=http://csta.acm.org/Curriculum/sub/CurrFiles/K-
12ModelCurr2ndEd.pdf.

[5] Computer Science Teachers Association Highlighted
Resources. Computer Science Teachers Association.
Retrieved from
http://csta.acm.org/Resources/sub/DownloadableResourc
es.html on December 7, 2008.

[6] Costikyan, G. 1994. I have no words and I must design.
Interactive Fantasy #2. Retrieved from
http://costik.com/nowords.html on September 2, 2008.

[7] Denner, J. and Werner, L. 2007. Computer programming in
middle school: How pairs respond to challenges. Journal
of education computing research, 37(2), 131-150.

[8] Denner, J., Werner, L., Bean, S., and Campe, S. 2005. The
Girls Creating Games Program: Strategies for engaging
middle school girls in information technology. Frontiers:
A journal of women studies. Special issue on gender and
IT, 26(1), 90-98.

[9] diSessa, A. 2008. Can students re-invent fundamental
scientific principles?: Evaluating the promise of new
literacies. In T. Willoughby and E. Wood (Eds.),
Children’s learning in a digital world. Oxford, UK:
Blackwell Publishing.

[10] Gee, J.P. 2007. Getting young people to think like game
designers. Retrieved from
DOI=http://spotlight.macfound.org/main/entry/gee_thin
k_like_game_designers on December 5, 2008.

[11] International Society for Technology in Education 2007.
National Educational Technology Standards, 2nd edition.
DOI=http://www.iste.org/nets.

[12] Juul, J. 2003. The Game, the Player, the World: Looking
for a Heart of Gameness. Level Up: Digital Games Research
Conference Proceedings, edited by Marinka Copier and
Joost Raessens, 30-45 Utrecht: Utrecht University.

[13] Kafai, Y.B. 2006. Playing and making games for learning:
Instructionist and constructionist perspectives for game
studies. Game and Culture, 1(1), 36-40.

[14] Kelleher, C. 2006. Motivating Programming: Using
storytelling to make computer programming attractive to
middle school girls. PhD Dissertation, Carnegie Mellon
University, School of Computer Science Technical Report
CMU-CS-06-171.

213

[15] Kelleher, C. and Pausch, R. 2006. Lessons Learned from
Designing a Programming System to Support Middle
School Girls Creating Animated Stories. In Proceedings of
the Visual Languages and Human-Centric Computing
(September 04 - 08, 2006). VLHCC. IEEE Computer
Society, Washington, DC, 165-172. DOI=
http://dx.doi.org/10.1109/VLHCC.2006.30

[16] National Research Council Committee on Information
Technology Literacy. 1999. Being fluent with information
technology. Washington, D.C.: National Academy Press.

[17] Repenning, A. and Ioannidou, A. 2008. Broadening
participation through scalable game design. ACM Special
Interest Group on Computer Science Education
Conference, (SIGCSE), ACM Press.

[18] Resnick, M., Bruckman, A., and Martin, F. 1996. Pianos
not stereos: creating computational construction kits.
Interactions 3, 5, 40-50.
DOI=http://doi.acm.org/10.1145/234757.234762

[19] Salen, K. 2007. Gaming literacies: A game design study in
action. Journal of Educational Multimedia and
Hypermedia, 16(3), 301-322.

[20] Shelley, G. B., Cashman, T. J., and Herbert, C. W. 2006
Alice 2.0: Introductory Concepts and Techniques. Course
Technology Press.

[21] Werner, L., Campe, S., and Denner, J. 2005. Middle school
girls + games programming = information technology
fluency. Conference on information technology
education. Proceedings of the 6th conference on
information technology education. Newark, NJ, USA, 301-
305.

[22] Werner, L. and Denner, J. (under review). Pair
programming in middle school: Can we describe problem-
solving techniques in order to promote them? Journal of
Research on Technology in Education.

[23] Werner, L., Denner, J., and Bean, S. 2004. Pair
programming strategies for middle school girls.
Published in 7th annual computing and advanced
technology in education conference. International
association of science and technology for development.

[24] Werner, L., Denner, J., and Campe, S. 2006. IT fluency from
a project-based program for middle school students.
Journal of Computer Science Education Online 2, 205-6.

[25] Wing, J. M. 2006. Computational thinking. Commun.
ACM 49, 3 (Mar. 2006), 33-35. DOI=
http://doi.acm.org/10.1145/1118178.1118215

214

