(P1) Ecuacioin de condición: $\pm_{2}^{m}-I_{1}^{m}=4$

$$
\text { Supermallu: }-2 i_{0}+2 I_{1}^{m}+4 I_{2}^{m}+4\left(I_{2}^{m}-I 4^{m}\right)-10+2\left(I_{1}^{m}-J_{3}^{m}\right)=0
$$

$$
\text { Con } i_{0}=I_{3}^{m}-I_{4}^{m}
$$

$$
\begin{equation*}
4 I_{1}^{m}+8 I_{2}^{m}-4 \dot{I}_{3}^{m}-2 I_{4}^{m}=10 \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& -2\left(I_{1}-I_{3}^{m}\right)+10+2\left(I_{3}^{m}-I_{4}^{m}\right)=0 \Rightarrow-2 I_{1}^{m}+0 I_{2}^{m}+4 I_{3}^{m}-2 I_{4}^{m}=-10 \\
& 4\left(I_{4}^{m}-I_{2}^{m}\right)+3 I_{4}^{m}+2\left(I_{4}^{m}-I_{3}^{m}\right)=0 \tag{4}
\end{align*}
$$

Resolviendo:

$$
\begin{aligned}
& I_{1}^{m}=-3,533 \mathrm{~A} \\
& I_{2}^{m}=0,467 \mathrm{~A} \\
& I_{3}^{m}=-4,683 \mathrm{~A} \\
& I_{4}^{m}=-0,833 \mathrm{~A}
\end{aligned}
$$

P1. (6 pts) Para el circuito de la figura, determine la potencia entregada y/o absorbida por cada elemento del circuito. Compruebe el balance energético.

Balance enerjético.

$$
\begin{aligned}
& \text { Potencia absorbida } \\
& \text { por las resistencuas } \\
& P_{2 \Omega}=2 \cdot\left(I_{1}^{m}\right)^{2}=24,968 \mathrm{~W} \\
& \left.P_{4_{n}}=4 \cdot\left(I_{2}^{m}\right)^{2}=0,871 \mathrm{~W}\right\} P_{\Delta}=\left(2 l_{0}\right) I_{1}^{m}=2\left(I_{3}^{m}-I_{4}^{m}\right) I_{1}^{m}=27,2067 \mathrm{w} \\
& \left.\begin{array}{rl}
P_{2 n}=2\left(I_{1}^{m}-I_{3}^{m}\right)^{2}=2,645 \mathrm{~W} \\
P_{4 n}=4\left(I_{2}^{m}-I_{4}^{m}\right)^{2}=6,760 \mathrm{~W} \\
P_{2 \Omega}=2\left(I_{3}^{m}-I_{n}^{m}\right)^{2}=29,645 \mathrm{~W}
\end{array}\right\} \begin{array}{r}
P_{4 A}=V_{I} \cdot 4=\left(4 I_{2}^{m}+4\left(I_{2}^{m}-I_{4}^{m}\right)-10\right) \cdot 4=-11,+33 \\
=66,9733
\end{array} \\
& P_{2 n}=2\left(I_{3}^{m}-I_{4}^{m}\right)^{2}=29,645 \mathrm{~mm} \\
& P_{32}=3\left(I_{4}^{m}\right)^{2}=\frac{2,083 \mathrm{kI}}{66,9733 \mathrm{WI}} \\
& \text { Potencia entrejada } \\
& \text { por las fuentes } \\
& P_{\text {iov }}=10 \times\left(I_{2}^{m}-I_{3}^{m}\right)=51,500 \mathrm{~W} \\
& \begin{array}{l}
P_{\hat{v}}=\left(2 l_{0}\right) I_{1}^{m}=2\left(I_{3}^{m}-I_{4}^{m}\right) I_{1}^{m}=27,2067 \mathrm{kr} \\
P_{4 A}=V_{I} \cdot 4=\left(4 I_{2}^{m}+4\left(I_{2}^{m}-I_{4}^{m}\right)-10\right) \cdot 4=-11,+33
\end{array} \\
& \text { se comprueba asi el } \\
& \text { bakance energétito } \\
& \text { P2. (3 pts) La fuente } \mathrm{V}_{\mathrm{g}} \text { genera } 144 \mathrm{~W}, \mathrm{y} \text { por } \mathrm{R}_{1} \\
& \text { circula una corriente de } 4 \mathrm{~A} \text {, disipando } \\
& 48 \mathrm{~W} \text {. dicha resistencia } \mathrm{R}_{1} \text {. Halle el valor } \\
& \text { de } \mathrm{V}_{\mathrm{g}} \text {, y el valor de } \mathrm{R}_{1} \text {. } \\
& P_{R_{1}}=48 \mathrm{~W}=4^{2} \cdot R_{1} \Rightarrow R_{1}=3 \Omega\left\{\begin{array}{l}
\text { Usando trans formación } \\
\text { de }
\end{array}\right. \\
& V_{A B}=4 A \times R_{1}=12 \mathrm{~V} \\
& R_{1} \|_{6}=\frac{3 \cdot 6}{9}=2 \Omega \\
& I=\frac{4-12}{2}=-4 \mathrm{~A} \\
& P_{V_{S}}=144=V_{g}(-I) \\
& V_{g}=144 / 4=36 \mathrm{~V}
\end{aligned}
$$

P3. (3 pts) Para el circuito de la figura, se conoce que la corriente por la inductancia es $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=5 \operatorname{sen}(2 \mathrm{t})$. Determine la expresión para $\mathrm{V}_{\mathrm{T}}(\mathrm{t})$.

$$
\begin{aligned}
& V_{T}=V_{L_{2 H}}+V_{L 4 H}=2 H \frac{d i_{T}}{d t}+4 H \frac{d i_{L}}{d t} \\
& i_{L}(t)=5 \operatorname{sen}(2 t) \\
& V_{L}(t)=\frac{L \frac{d i_{L}(t)}{d t}}{}=4 \frac{d}{d t}(\operatorname{sen}(2 t) \cdot 5)=40 \cos (2 t) \\
& i_{R}(t)=\frac{V_{L}(t)}{10}=4 \cos (2 t) \\
& i_{C}(t)=c \frac{d V_{C}(t)}{d t}=c \cdot \frac{d(40 \cos 2 t)}{d t}=\frac{1}{4}[40 \cdot \operatorname{sen}(2 t) t-2]=-20 \operatorname{sen}(2 t) \\
& V_{L_{2 H}}=2 H \frac{d i_{T}}{d t}=2 H\left[\frac{d}{d t}(4 \cos (2 t)-15 \operatorname{sen}(2 t))\right]=-16 \operatorname{sen}(2 t)-60 \cos (2 t) \\
& V_{T}(t)=40 \cos (2 t)-16 \operatorname{sen} 2 t-60 \cos (2 t)=-16 \operatorname{sen}(2 t)-20 \cos
\end{aligned}
$$

P4. (4 pts) La corriente en un capacitor inicialmente descargado se muestra en la figura.
a. Determine y grafique la forma de onda para el voltaje, la potencia, y la energía, si la capacitancia es de $4 \mu \mathrm{~F}$.
b. Cúal es la energía almacenada en el campo eléctrico del capacitor, en $\mathrm{t}=2 \mathrm{~ms}$.
c. Determine la carga $q(t)$, para $t=1 \mathrm{~ms}, \mathrm{y} \mathrm{t}=3 \mathrm{~ms}$.

Observe gue:

$$
\begin{aligned}
& i_{c}(t)=\left\{\begin{array}{cc}
8 \times 10^{-3} t & 0 \leq t \leq 2 \mathrm{~ms} \\
-8 \times 10^{-6} & 2 \mathrm{~ms}<t \leq 4 \mathrm{~ms} \\
0 & t>4 \mathrm{~ms}
\end{array} \quad v_{c}(t)=\frac{1}{c} \int_{0}^{t} i_{c}(x) d x+v_{c}\left(0^{0}\right)\right. \\
& 0 \leqslant t \leqslant 2 \mathrm{~ms} \\
& V_{c}(t)=\frac{1}{c} \int_{0}^{t} 8 \times 10^{-3} t+0=\frac{8 \times 10^{-3}}{4 \times 10^{-6}} \frac{t^{2}}{2} \Rightarrow v_{c}(t)=10^{3} t^{2} \quad 0 \text { ins } t t \leq 2 \mathrm{~ms} \\
& \begin{array}{l}
2 \leqslant t \leq 4 m s \\
v_{c}(t)=\frac{1}{c} \int_{0}^{2 m s} i_{c}(x) d x+\frac{1}{c} \int_{2 m s}^{t} i_{c}(x) d x=\frac{1}{4 \times 10^{-6}}\left[\int_{0}^{2 m s} 8 \times 10^{-3} x d x+\int_{2 m s}^{t}-8 x 10^{-6} d x\right]=-2 t+8 \times 10^{-3}
\end{array} \\
& V_{c}(t)=\left\{\begin{array}{cr}
10^{3} t^{2} & 0<t \leq 2 \mathrm{~ms} \\
-2 t+8 \times 10^{-3} & 2<t \leq 4 \mathrm{~ms} \\
0 & t>4 \mathrm{~ms}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& p(t)=v_{c}(t) \cdot i_{c}(t) \\
& P(t)=\left\{\begin{array}{cc}
8 t^{3} \quad \text { si } \quad 0 \leqslant t \leqslant 2 \mathrm{~ms} \\
16 \times 10^{-6} t-64 \times 10^{-9} & 2<t \leqslant 4 \mathrm{~ms}
\end{array}\right.
\end{aligned}
$$

Energia del capacitor.

$$
\begin{aligned}
& w(t)=\int_{0}^{t} P(x) d x+w(0) \quad \sigma \quad w(t)=\frac{c}{2}\left(v_{c}(t)\right)^{2} \\
& w(t)= \begin{cases}2 t^{4} & 0<t \leq 2 m s \\
\left(-2 t+8 \times 10^{-3}\right)^{2} \cdot \frac{4 t}{2} & 2 m s<t \leq 4 m s\end{cases}
\end{aligned}
$$

(b) $W(2 \mathrm{~ms})=2 \cdot(2 \mathrm{~ms})^{4}=32 \times 10^{-12} \mathrm{~J}$
©

$$
\begin{aligned}
& q(t)=c v_{c}(t) \Rightarrow q(t)=4 \times\left. 10^{-6} \cdot v_{c}(t)\right|_{t=1 \mathrm{~ms}} \begin{array}{l}
q(1 \mathrm{~ms})=4 \times 10^{-6} \cdot 10^{3}\left(10^{-3}\right)^{2} \\
q(1 \mathrm{~ms})=4 \times 10^{-9} \mathrm{C}
\end{array} \\
& q(t)=4 \times 10^{-6} \times\left. v_{c}(t)\right|_{t=3 \mathrm{~ms}} \Rightarrow q(\mathrm{~ms})=4 \times 10^{-6}\left(-6 \times 10^{-3}+8 \times 10^{-3}\right)=8 \times 10^{-9} \mathrm{C}
\end{aligned}
$$

P5. (6 pts) Conociendo, que $\mathrm{Vo}=8 \mathrm{~V}$., y que la corriente $\mathrm{i}_{\mathrm{o}}=2 \mathrm{~A}$. Determinar:
a. El valor de la resistencia R.
b. El valor y las unidades de la constante α.
c. La resistencia vista desde los terminales "a-b", hacia su derecha.

obsevve que

$$
\begin{aligned}
& V_{0}=\frac{V_{0}^{\prime} \cdot 4}{6+4} \\
& V_{0}^{\prime}=20 \mathrm{~V} \\
& V_{R}=V_{0}^{\prime}-V_{1} \\
& V_{R}=20-16=4 \mathrm{~V}
\end{aligned}
$$

$$
I_{e}=\frac{8 \cdot i_{0}}{2}+i_{0}=10 \mathrm{~A} \quad R=4 / 10=0,4 \Omega
$$

Usando transformación $\Delta-y$ y reduccioin de
resistenca serie pavalelo

$$
\begin{aligned}
& \text { obsevve que: } \\
& V_{0}^{\prime}=\frac{V_{0}^{\prime \prime} \cdot s / 3}{5 / 3+1 / 3} \Rightarrow V_{0}^{\prime \prime}=24 \mathrm{~V}
\end{aligned}
$$

iveso $i x=\frac{v_{0}{ }^{\prime \prime}}{2}=12 \mathrm{~A}$

$$
\begin{aligned}
& R_{a b}=2 / 3+1 / 3+2 / 1(1 / 3+5 / 3)=2 \Omega \\
& V_{0}^{\prime \prime}=\frac{V_{0}^{\prime \prime \prime}+1}{1+1} \Rightarrow V_{0}^{\prime \prime \prime}=48 \mathrm{~V} .
\end{aligned}
$$

observe gue $I=\frac{54-V_{0}^{\prime \prime \prime}}{1}=6 \mathrm{~A}$

$$
\begin{aligned}
\text { observe gue } I=\frac{54-V_{0}}{1}=6 \mathrm{~A} \\
\left.V_{0}^{\prime \prime \prime}=-\alpha i_{x}+2 x\left(I-\frac{48}{2}\right)=-\alpha \right\rvert\, 2-2 \times 18=4 \\
\alpha=-7 \text { en ohm. }
\end{aligned}
$$

