
V Examen Parcial Circuitos Eléctricos I 11-02-2015

Problema 1. (8 pts)

En el circuito trifásico de la figura si $V_{\text{faseB}} = 600 \angle 140 \text{ V}$, encuentre:

- a) La potencia entregada por el generador
- b) La potencia absorbida por la carga Nro. 2.
- c) Cuanto mide un vatímetro conectado entre las líneas 3 y 2 y otro entre la 1 y 2.
- d) Explique si existe alguna diferencia entre el valor encontrado en (a) y el dado por la suma algebraica de las medidas de los vatímetros del apartado (c).

Problema 2. (8 pts)

Una fuente trifásica equilibrada presenta $Z_{linea} = 1+2j$, con voltaje de línea en la carga de V_{23} de valor $600\angle -30$ V alimenta tres cargas:

Carga 1: Motor trifásico de 12 kW, f.p. = 0.80 en atraso

Carga 2: Carga en triángulo con $Z_{\Lambda} = 12 - 24j$

Carga 3: A partir de las dos cargas anteriores inicia otra línea de impedancia Z_{L2} = 2 Ω hasta la tercera carga en triángulo con Z_{Δ} = 6 +12j.

Halle:

- a) Las corrientes de línea
- b) Potencia entregada por el generador
- c) Voltaje de línea en los extremos del generador
- d) La medida de dos vatímetros conectados, el primero entre las líneas 1 y 2, y el segundo entre las líneas 2 y 3
- e) Las corriente de fase en la tercera carga
- f) Determine el banco de capacitores que conectados en triángulo corrige el factor de potencia a 0.96 en atraso

factor de potencia. Para transformar la capacitancia en conexión en triángulo, a su equivalente capacitancia en conexión en estrella, multiplicamos por:
a) $\sqrt{3}$; b) 3; c) 0,333; d) ninguna anterior
<u>02</u> En un circuito trifásico con carga desequilibrada en triángulo, ¿el voltaje de línea en la carga adelanta 30º a su correspondiente voltaje de rama (fase) de la carga? a) Falso ; b) Cierto ; c) atrasa 30º ; d) ninguna anterior
O3 En un circuito trifásico equilibrado de secuencia negativa y de cuatro conductores, el valor de la impedancia en el conductor entre neutros, afectará a las corrientes de línea, de forma tal que : a) aumenta su valor ; b) reduce su valor ; c) no las afecta ; d) ninguna anterior
 <u>04</u> En un circuito trifásico de secuencia negativa, desequilibrado de cuatro conductores, con carga en estrella, debemos medir la potencia en la carga, conectando: a) tres vatímetros; b) dos vatímetros; c) un vatímetro; d) ninguna anterior
O5 En un circuito trifásico equilibrado están conectados dos vatímetros. Uno de los vatímetros mide 10 Kw (positivo), y el segundo vatímetro mide - 10 Kw (negativo). La naturaleza de la carga es: a) resistiva pura; b) reactiva pura; c) es una impedancia con factor de potencia 0,5; d) ninguna anterior
<u>06</u> En una carga equilibrada conectada en triángulo, de un circuito de secuencia negativa la corriente de rama (fase) de la carga, desfasa a la corriente de línea, en : a) 30º en adelanto; b) 30º en atraso; c) no hay desfase; d) ninguna anterior
<u>07</u> La potencia total suministrada a una carga equilibrada en triángulo , se determina de la misma manera que en una carga equilibrada en estrella : _ a) Falso ; b) Cierto c) se conocen dos métodos ; d) ninguna anterior
<u>O8</u> Se tienen tres impedancias iguales de valor fijo Z cada una. Hay la posibilidad de conectarlas, primero en estrella y luego en triángulo, en el mismo circuito trifásico equilibrado. La relación entre la potencia en las Z (carga) en estrella, respecto a la potencia de las Z (carga) en triángulo, es: a) 0,333; b) 3; c) 1; d) ninguno
09. Para cambiar el sentido de giro de un motor trifásico, debemos a) Variar la conexión de las tres fases del trifásico b) Conectar las impedancias de las cargas en estrella c) Cambiar la conexión de dos de las fases del trifásico d) Ninguna de las anteriores
10. Una carga trifásica equilibrada con f.p. de 0.8 en adelanto presenta conectado dos vatímetros. Un vatímetro entre las líneas 3 y 2 mide 20 kW, y el segundo entre la línea 1 y 2 mide 10 kW. La magnitud de la potencia reactiva de la carga es:

c) 10 kVAR

d) Ninguna de las anteriores

b) 22.5 kVAR

a) 30 kVAR

01.- En un circuito trifásico equilibrado de secuencia negativa, se realiza corrección de su