PROBLEMA: En el circuito de la figura, conocemos al modulo del voltaie $|V_T| = 10 V$. y la corriente l2 retrasa 30º al voltaje VT. Calcule los elementos que conforman a Y2, si: a) I_T se encuentra en fase con V_T. b) I_T adelanta 15º a V_T. c) Calcule en los dos casos la corriente total IT. $\dot{\omega} = 1000 \text{ rad/seg}$. PROBLEMA: En el circuito de la figura, calcule la corriente I_b y la impedancia Z, conociendo el valor de la fuente V_g = 60/0º volts, y la corriente $I_a = 5/-90^{\circ}$ amp. PROBLEMA: En el circuito de la figura, la fuente tiene la expresión $V_g(t) = 100 \text{ sen } (100t) \text{ V}$. Se desea conocer el valor de las corrientes i1 (t) e i2 (t) en el dominio del tiempo. 2:8 80 m H PROBLEMA: En el circuito de la figura, se desea conocer el equivalente de Thevenin existente entre los nudos "a" y "b". Luego, conectamos en estos nudos "a" y "b" una impedancia de carga Z_L de valor $(4 + 14j) \Omega$, calcular la corriente que recibe esta carga Z_L . 10 s 20 j A ₹10₁ r Z_{L} 50 900

20 r

Pregunta: Encuentre el valor del desfase existente entre cada una de las señales

que el voltaje total retrase 69,79º a la corriente total del circuito paralelo.

siguientes: $g_1(t) = 4 \cos(10t - 40^\circ)$; $g_2(t) = -12 \sin(10t + 160^\circ)$; $g_3(t) = 6 \sin(10t - 315^\circ)$

Pregunta: Se tienen dos ramas en paralelo. Una rama contiene una resistencia de $4\,\Omega$. La segunda rama contiene una resistencia R desconocida en serie con una capacitancia de

valor 10 µF. Siendo la frecuencia de trabajo 100 rad/seg, encuentre el valor de la R para

(3

(: