
An Overview of the Natural Language Interaction Protocol

Sanjay Aiyagari1, Rithik Babu2, Elisa Bertino3, Jan Bieniek4, Yan-Ming Chiou5,
Raj Dodhiawala6, Erik Erlandson1, Sugih Jamin2, Ashish Kundu7, Jon Lenchner8,
Tejas Maire2, Matthew L. Mauriello9, Mohamed Rahouti4, Abhay Ratnaparkhi8,

Tom Sheffler6, Chien-Chung Shen9, Dinesh Verma8, Wenpeng Yin10,
Luyi Xing11, Jinjun Xiong12, Hasan B. Zengin2

1Red Hat, 2University of Michigan, 3Purdue University, 4Fordham University, 5SRI International, 6Independent, 7Cisco Sys-

tems, 8IBM, 9University of Delaware, 10Pennsylvania State University, 11Indiana University, 12University at Buffalo.

saiyagar@redhat.com, rithikb@umich.edu, bertino@purdue.edu, jbieniek@fordham.edu, yan-ming.chiou@sri.com,
raj.dodhiawala.work@gmail.com, eerlands@redhat.com, sugih@umich.edu, ashkundu@cisco.com, lenchner@us.ibm.com,

tmaire@umich.edu, mlm@udel.edu, mrahouti@fordham.edu, abhay.Ratnaparkhi1@ibm.com, tom.sheffler@gmail.com,
cshen@udel.edu, dverma@us.ibm.com, wenpeng@psu.edu, luyixing@iu.edu, jinjun@buffalo.edu, hbzengin@umich.edu

Abstract
The ability of generative AI to ingest a large corpus of data
and use that to perform tasks such as translation, sentence
transformation, and describe new content can give a tremen-
dous boost to the economic and social benefits to society. To
unlock the true potential of this technology, a commonly used
protocol that allows client machines with AI agents to talk to
server machines running their own AI agents, to create new
data and describe content, is critical. This protocol, which
needs to be both a de-jure and a de-facto standard, must be
defined and designed in an open community with participa-
tion from interested technical parties and similar stakehold-
ers. A group of researchers from various companies and uni-
versities has come together to define such a standard applica-
tion-level protocol–the Natural Language Interaction Proto-
col (NLIP), and implement open-source implementations of
the same. In this paper, we provide the motivation for NLIP,
its requirements, and outline its initial specification.

Code — https://github.com/nlip-project
Extended version — https://github.com/nlip-project/docu-

ments/blob/main/NLIP_Specification.pdf

 Introduction
The technology of Generative AI (GAI) (Bandi 2023) has
the potential to be truly transformative to society. Despite
some limitations such as “hallucinations,” the technology is
capable of many functions, including but not limited to an-
swering questions, translating, describing and summarizing

Copyright © 2024, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

content, and generating new content. This enables the crea-
tion of intelligent agents (Alonso 2002) that can use AI to
analyze data and provide new services.
 A much bigger boost to the social benefits of GAI tech-
nology can be obtained by interaction among different intel-
ligent agents, which may be under the control of different
organizations and users. The interaction among intelligent
agents can unlock new economic and social value, just like
the interactions among various Internet-based services was
enabled with the advent of the web browser.
 For the intelligent agents to interact with each other, we
need a standard common protocol that is used widely among
interacting agents. The potential of the Internet was un-
locked by the creation and adoption of the Hypertext Trans-
fer Protocol (HTTP) (Berners-Lee 1996). To unlock the po-
tential of GAI, we need an equivalent ubiquitous protocol
that intelligent agents can use to communicate with each
other.
 To address this need, researchers from multiple organiza-
tions have come together to define and implement this pro-
tocol. The protocol is called the Natural Language Interac-
tion Protocol (NLIP). In this paper, we provide an overview
of the requirements for the design of NLIP, the different
ways NLIP can be deployed among intelligent agents, and
an overview of its design.
 The wide adoption of such a protocol can deliver many
benefits to society. Just like a plethora of client-side appli-
cations were consolidated into a single web browser appli-
cation during the advent of the Internet, NLIP can reduce the
explosion of mobile applications that make current hand-

https://github.com/nlip-project/documents/blob/main/NLIP_Specification.pdf
https://github.com/nlip-project/documents/blob/main/NLIP_Specification.pdf

held systems confusing and complex to use. It can enable a
common mechanism for client applications to access vari-
ous business applications. It can simplify the effort required
to provide GAI enabled business services, and it can enable
the consumers of the application to use GAI to manage the
various services they access.
 We are defining this protocol and implementing proof of
concept endpoints supporting this protocol as an open-
source collaborative project. The specifications and code,
both of which are evolving are maintained at
https://github.com/nlip-project.
 The rest of this paper deals with the requirements, deploy-
ment models, and initial specification of the NLIP protocol.

Requirements
To be adopted and used widely, NLIP needs to satisfy sev-
eral requirements. In this section, we enumerate some of
these requirements, which have been categorized into the
three broad areas of adaptability, security, and performance.

Adaptability Requirements
The adaptability requirements cover the requirements
needed to support the protocol across many different plat-
forms and implementation choices that may be made.

Multi-Platform Support: Many different platforms are used
by various organizations. Among the hand-held devices
(Okediran 2014), iOS and Android are two (but not the only)
common platforms used across many devices. On laptops,
we have systems based on MacOS, Linux, and Windows as
some of the widely deployed platforms. On the server side,
Linux is the dominant platform, but there are several others,
such as Microsoft Windows IIS and z/OS on mainframes,
which are also important to consider. We need to design
NLIP so that it does not depend upon the characteristics of
a specific operating system (Silberschatz 1991).

Multi-Language Support: Software systems are written in
many different programming languages (Kumar and Dahiya
2017), which include but are not limited to Java, Javascript,
Python, Go, C/C++, C#, Kotlin and Swift. We need to de-
sign the protocol to be implemented efficiently in any pro-
gramming language. Similarly, the users of the computer
come from a variety of backgrounds and may prefer to use
their native natural language for communication. NLIP
should be designed so that it can work across many different
natural languages.

Multi-Transport Support: Distributed applications may
communicate over many different network protocols. Com-
mon choices used in application development include REST

over HTTPS, WebSockets, and QUIC. However, other pro-
tocols may emerge over time, and NLIP should be designed
to work over any underlying transport protocol.
 At the same time, NLIP design should not reinvent the
wheel. Many of the commonly prevalent protocols on the
Internet provide excellent solutions for performance and se-
curity considerations, and NLIP design should leverage and
build upon the capabilities of the underlying protocol.

Multi-Modal Content Support: NLIP should support content
transfer in many different modalities. Text or natural lan-
guage provides a common content modality that needs to be
supported, but there are other modalities that are needed.
Many business services may require image, audio or video
content, while others may need specialized content such as
location coordinates, sensor readings, and other field-col-
lected data. NLIP should support all modalities of the con-
tent that may be needed.

Security and Privacy Requirements
Security and Privacy (Li, Bertino and Yi 2014) requirements
deal with the critical task of allowing Internet-based systems
to provide their services to good actors efficiently while pre-
venting bad actors from harming, disrupting, or blocking ac-
cess to the system or other users. NLIP is designed to sup-
port the following security requirements:

Anonymous Mode: NLIP should allow an agent to interact
with another agent in an anonymous mode. The intention to
interact in an anonymous mode must be agreed upon by all
agents in the interaction, even if a party does not require an-
onymity itself.

Authentication and Authorization Support: While support-
ing anonymous mode of interactions, NLIP should also en-
able authentication and authorization among agents who re-
quire them. There are multiple viable authentication and au-
thorization mechanisms in use throughout the Internet.
NLIP will leverage existing mechanisms and enable seam-
less access to them.

Encryption of data in motion: NLIP should support com-
munication over an encrypted channel. As with existing ser-
vices, NLIP is designed to leverage existing secure proto-
cols such as TLS when applicable.

Prevention of Denial of Service: AI-based services, espe-
cially those that rely on large language models are suscepti-
ble to various denial-of-service attacks (Mahjabi et. al.
2017). These include but are not limited to malicious users
leaving large amounts of unnecessary context stored at serv-
ers or trying to overwhelm the server with multitudes of re-
quests. Mechanisms such as rate control or limits on context

storage must be adopted to prevent such attacks. The proto-
col must enable the enforcement of these constraints.

Regulatory Compliance: Many services may need to pro-
vide information about the policies they are operating under.
NLIP must enable the intelligent agents to easily define and
exchange their privacy, data retention, or other policies they
may be using

Performance Requirements
Performance requirements ensure that the protocol enables
efficient usage of resources and minimizes user-perceived
latency. To enable good performance, NLIP must satisfy the
following requirements:

Context Management: The context of an interaction among
agents is the prior history of interaction among those agents,
influencing how an intelligent agent may respond to a re-
quest. NLIP must support capabilities for dynamic context
management. These may include negotiating how much
context history may be supported in a session or switching
the responsibility of who stores the context among the dif-
ferent communicating agents.

Streaming Support: To maintain good performance, the pro-
tocol must enable streaming mode of communication in an
asynchronous mode as well as a synchronous mode of com-
munication.

Control and Data Separation: Some of the exchanges
among intelligent agents may deal with the issue of control-
ling the communication (e.g., examining the policies offered
by the other agent or negotiating context management). In
contrast, others may deal with the actual function the two
agents want to carry out. We refer to the former as control
and the latter as data. Agents may choose to handle the two
types of exchanges separately, and NLIP must provide a
clear demarcation between the two.

Deployment Models
A deployment model refers to the configuration of various
agents in which NLIP may be used. We envision NLIP sup-
porting a range of deployment models, some of which are
outlined in this section.

Client Server Model
The client-server deployment model is the traditional inter-
action model among two agents in which one agent acts as
a client of the other agent. The server agent waits for the
client agent to initiate communication. This traditional
model is shown in Figure 1.

 One, both, or none of these agents may be leveraging a
LLM for their operation. If they are leveraging a LLM, the
agent may or may not want to expose details about the LLM
they are using to the other agent. The typical model for an
end-point in the server (or the client configuration) would
be not exposing the LLM. In those cases, the configuration
would look like the NLIP-Proxy configuration described in
the next section.

Figure 1. The Client-Server model for NLIP

NLIP Proxy Configuration
In the NLIP Proxy Configuration, one of the agents uses
NLIP to enable a proxy interface for another service. The
service that is used may be an existing application that uses
its own proprietary protocol for communication.

Figure 2. The Proxy configuration for NLIP.

The NLIP Proxy configuration may be used to provide a
common interface to existing LLM-based conversation ser-
vices. Currently, each conversational service on the Internet
uses its own proprietary API to communicate with its cli-
ents. Replacing those APIs with a standard NLIP interface
can enable a single client application to interact with several
conversational services. A conversational service may opt to
adopt NLIP directly, leading to the configuration in Figure
1, or may choose to implement the proxy configuration to
achieve the same result.

NLIP
Client
Agent

Server
Agent

Network

NLIP

Client
Agent Proxy

Network

Service

Network

Private
Protocol

Federator Configuration
In the federator configuration, the NLIP Proxy enables a
common interface to many different backend services. As
an example, a common NLIP conversational agent may pro-
vide an interface to access many common conversation ser-
vices available on the Internet.

 The federator configuration may also provide its own
value-added services by combining the responses from
many different backend services into a single response to the
user. Some examples of such services in the conversational
context may include using one of the backend services to
provide guard-rails against hallucination by the other ser-
vice.

 The federator may also provide a way to integrate many
existing Internet services into a single intelligent service.
For example, a federator may search across several web-
based merchants to find the best price for a user interested
in shopping for a particular merchandise item.

Figure 3. A NLIP Server in a federator configuration,

where it is a front-end integrating many existing services.

 Note that the federator pattern may use NLIP between the
proxy and some of the back end services, and use proprie-
tary protocol with other back-end services.

Back-Level Configuration
One or more of the agents may not have sufficient compu-
ting resources to run AI models. This may be true for some
agents running on a mobile phone, a hand-held device, or
embedded Internet-of-Things systems which may not have
the ability to run a large language model. In those cases, the
client agent may choose to leverage a local service with the
ability to use the LLM. Alternatively, the client agent may
request the server agent to use a limited vocabulary which
can be interpreted easily by the agent. This configuration is
shown in Figure 4.

In the back-level configuration, the local LLM Service
shown may be another service running on the Internet and
need not be co-located with the client machine.

 One common use of the back-level configuration may be
for a weak hand-held device to provide voice modality and
convert that to text. Instead of using voice modality within
the NLIP communication with the server agent (which is a
modality supported by NLIP), the client may choose to use
a local LLM service to convert speech to text and interact
with the service agent using text modality.

Figure 4. Back-level Configuration of NLIP, where a client

uses a local LLM service for its functions.

A Future Scenario
We want to discuss NLIP's impact on today's computing
landscape by providing a scenario of how things are done
today, and how they might be done in the future.

The Current State
We consider the situation of an academic traveling to vari-
ous cities to attend scientific conferences of interest.

 At present, almost every major city has a public transpor-
tation system that publishes its own mobile application for
the benefit of its riders. The application provides many ca-
pabilities, including an easy view of train timetables and
status, buying ride tickets/passes, finding how to go from
point A to point B. Since every city provides its own appli-
cation, the academic needs to find and install this application
for every city being visited, which is relevant only for the
period of stay in the city. If the academic is not a frequent
visitor to the cities, the need to install the plethora of apps is
a significant burden.

 The academic is also encouraged by each conference to
download and install a conference application to make the
participation experience better. The lifetime of the confer-
ence application is that of a few days, and the experience
and interfaces of each application are very different. The ac-
ademic does not wish to install various applications but is
left with little choice.

NLIP

Client
Agent Proxy Service

Private
Protocol

Service

Service
Private
Protocol

NLIP

NLIP
Client
Agent

Server
Agent

Local
LLM

Service

NLIP
or Private Protocol

 The same is true of the applications being requested by
the hotels where the academic is staying, or the airlines that
the academic may be using for travel expenses.

 Not only are these applications superfluous and a nui-
sance for the academic, they also impose a significant bur-
den on the businesses that need to provide them. If the cities,
conferences, hotels and airlines can obtain all of their busi-
ness value with a single common application without need-
ing to develop their own, their IT expenses and support re-
quirements would decrease in a non-trivial manner.

The Future State
We envision a future with NLIP where the academic has a
single application which is enabled to communicate using
NLIP. The conference organizers, the hotel chains and the
city taxi operators do not need to provide their own private
applications. Instead, they provide their own NLIP server
using either a NLIP client-server configuration model or a
NLIP Proxy Server model.

 The application that the academic uses enables both text
based and multimodal content exchange with the server.
This allows the academic to manage all of the travel arrange-
ments using a single common application. There is no re-
duction in the functionality available, just the added conven-
ience of a single application for the academic. For the busi-
nesses that are providing services to the academic, their
costs for supporting the IT required for operation is reduced
significantly.

 The Current NLIP Specification
In this section we describe the current specification for
NLIP. Over time, the NLIP specification will evolve but
even the current draft can support a large number of inter-
agent communications.

 NLIP follows a request-response paradigm, as opposed to
a remote-procedure call paradigm, in which clients send re-
quests to servers and receive a response back. In NLIP, the
client is the entity that initiates the communication, and the
server is the entity that waits for requests from one or more
clients. The server must be willing to receive
communication requests from any client.

 Requests and responses are generally exchanged using
the JSON format. The JSON format is excellent for carrying
text information but can become inefficient and cumber-
some when carrying large binary data, or structured content
such as XML or HTML, which require masking of special
symbols such as quotations. Therefore, NLIP permits the
transfer of such information using underlying protocols such
as HTTP.

 NLIP supports enforcement of authentication and author-
ization information among clients and servers. There are

many underlying mechanisms that can be used for authenti-
cation and authorization. Some servers may choose to com-
municate with anyone without authentication or authoriza-
tion, while others may enforce that each message be authen-
ticated. Tokens for authentication and authorization are sup-
ported by NLIP, but they are considered opaque base64-en-
coded text strings which are used and interpreted by under-
lying security mechanisms.

NLIP JSON Messages
The majority of exchanges between client and servers hap-
pen using a JSON message with the following fields:
● control: An optional boolean value to indicate whether the

message is a control or data message. Example control
messages could be a query of server policy, to negotiate
parameter configurations, etc. In an end-point with a hu-
man user, the content of data messages is normally re-
layed to the human user, whereas control messages would
normally be handled by the end point software in a man-
ner transparent to the human user. When this optional
value is missing, the end-point needs to infer this value
from the content of the messages.

● format: This required field specifies the format of the con-
tent. It has to take one of the values specified in the “Al-
lowed values of the ‘format’ field” subsection below.

● subformat: This required field specifies a further refine-
ment of the format field. It can take a value that makes
sense for the type of format as described in the ensuing
“Allowed values of the ‘format’ field” subsection.

● content: This required field includes the actual content
that is being sent between the client and the server.

● submessages: an optional field whose value is a JSON ar-
ray containing one or more valid NLIP sub-messages. A
sub-message contains only the format, subformat and
content field as described above.

We anticipate that the bulk of messages will not include any
submessages. Submessages may be used when sending
multi-modal content such as a request from a client to de-
posit a check to a banking service, with images of the check
attached.

Allowed values of the “format” field
The following are the allowed values for the format fields in
an NLIP JSON message.
● text: The format field of ‘text’ indicates that the content

is natural language text in some language. The subformat
specifies the natural language used, e.g., ‘english’. Capi-
talization is not important in the subformat.

● token: The format field of ‘token’ can be used to carry
opaque tokens to serve a variety of purposes including
session identification, authentication verification, author-
ization enumeration, or any other operations to enable a
natural-language interaction session. The subformat field
indicates the type of the token. Subformats starting with

the prefix of ‘authentication’ or ‘conversation’ are to be
used for the purpose of carrying authentication tokens and
conversation identifiers, with latter part of the subformat
string containing any additional data an end-point may
want to introduce. The subformat can also be any string
which the end-point creating the token uses for its con-
venience. The content field of a token submessage is also
opaque to NLIP. A NLIP message may carry zero, one,
or more submessages with the ‘token’ format. An end-
point receiving a token submessage must include the
identical token submessage in the next message sent to
the peer end-point.

● structured: The format field of ’structured’ indicates that
the content contains structured information, i.e., the sub-
format is one of ‘json’, ‘uri’, ‘xml’, ‘html’. The content is
a URI if the subformat is ‘uri’, or an encoded string which
contains an embedded content in the specified subformat.
The uri subformat can be used to support many protocols
such as ’http’, ’https’, ‘websockets’, ‘WebRTC’, etc.

● binary: the subformat could be one of ‘audio/<encod-
ing>’, ‘image/<encoding>’, ‘sensor/<encoding>’, or ‘ge-
neric/<encoding>’, where the ‘<encoding>‘ is the origi-
nal encoding of the binary data, e.g., bmp, gif, jpeg, jpg,
png, tiff, etc. for images, mp3 for audio, or any other bi-
nary encoding applicable to the type of the binary data
recognized by both client and server. The content field
carries the binary data that has been base64 encoded. The
binary format is intended for small binary data: for exam-
ple, a few seconds of audio clips, or small icons or thumb-
nails, that can be efficiently transferred as base64-en-
coded text. Upload of large binary data is addressed in the
next subsection.

● location: the subformat can be one of ‘text’ or ‘gps’. If the
subformat is ‘text’, a textual description of the location,
e.g., “221B Baker St., London, UK”, must be included in
the content field. If the subformat is ‘gps’, GPS coordi-
nates must be included in the content field.

● generic: the subformat and content can be any generic en-
tries which the client and server mutually understand. The
generic format provides message format extensibility to
NLIP.

In all of the above keywords, capitalization is not important.
Both the client and server must accept the keywords regard-
less of the mixture of capitalization in the fields of format
and subformat.

Policy, Control and Management Support
The concept of control message and data messages in NLIP
is introduced so that the two type of messages can be han-
dled using the same natural language interaction mecha-
nism.

Current business services support control messages such
as a configuration or management interfaces using custom-
made APIs. When a client needs to inquire about the policies
supported by a service, e.g. their data retention policies or
privacy policies, a custom interface is usually provided by

the service. The privacy policies for different websites may
be present at different URIs at the site without a widely
adopted standard.

The query for privacy or other policies that guide the op-
eration of a business service are different than queries that
perform the actual function of the business services. Such
requests are marked as control requests. The control field
can be used by the NLIP-enabled service to handle these
messages differently and provide the desired policy guide-
lines to the client.

Similarly, management and configuration commands,
which are a control mechanism can be sent using the ‘con-
trol’ field. These commands may only be accepted by the
service from a limited set of clients.

Upload of Large Binary Files
While small binary data can be transferred as base64-en-
coded data in a JSON message, it may be more efficient to
transfer large binary data directly from capture device or
storage to the network, not as JSON messages. Similarly,
encoding of large HTML or XML files into a JSON string
may require significant complexity.

 When a NLIP server needs to send a large amount of data
to or from the client, it provides an NLIP message with for-
mat: structured and subformat: uri to tell the client which
URI endpoint(s) to retrieve or to upload the large data. The
large data may be binary, HTML, XML or another format
and encoding.

 When a client (i.e., an end-point that cannot export a URI
to download the content) needs to send a large binary file, it
can ask the server for an URI to upload the large content. In
those cases, the server can provide a URI for the large con-
tent to be uploaded. For example, in the HTTP(S) case, the
large data can be sent using HTTP Content-Type: multi-
part/form-data to a URI that expects multipart/form-data.

NLIP Binding to REST Interfaces
NLIP may be bound to a variety of communication proto-
cols. This section provides an exemplar binding to a REST
API running on top of HTTPS.

 The following considerations regarding HTTPS and
REST API handling inform our initial design of NLIP:

1. HTTP(S) server access cannot be routed/demulti-
plexed based on the content of the incoming message
due to use of (de)serialization libraries; if routing is
needed, it must be by URI endpoint (and/or its query
components) so that message routing can be done be-
fore message parsing, instead of requiring multi-pass
parsing.

2. HTTP(S) clients cannot route messages by URI. If
NLIP has different versions, any server’s response
must be of the same version the client used in its re-
quest. Consequently, information that can change
from one response message to the next, such as the
value of NLIP’s control field, cannot be specified as a
part of the URI, nor its query component, but must be
specified in the message itself.

Each HTTPS server implementing NLIP, for example a
server with address example.com and port 5550, must ex-
port a fixed, well-known nlip end point, in this case,
https://example.com:5550/nlip. On this primary end-point,
the NLIP server must accept a client request which contains
a NLIP message with the ’format’ field of ’text’, and re-
spond to it. The response must either indicate that the server
is refusing the connection, or the result of processing the re-
quest. The NLIP server may direct the client to additional
end points for upload of client data.

Example Application
As an example of an application enabled by NLIP, let us
consider the hypothetical exchange of a traveler in a new
city. The traveler wants to order a cab service and can initi-
ate a contact with the local taxicab service by placing this
particular command to the local cab NLIP server.

{ "format":"text",
 "subformat":"english",
 "content": "I need a car. My cell-phone
number is +19149454567"
}
 The NLIP server may already have a record with the infor-
mation about the customer with this cell-phone, or it may be
a new customer. If there is an existing record, the NLIP
server may respond with a message like:

{ "format":"text",
 "subformat":"english",
 "content":" "Found phone number in cus-
tomer record. Using credit card on file.
Send locations for pickup and drop-off",
 "submessages": [
 {"format":"token",
 "subformat":"conversation",
 "content":"FF012458789"
 }]
}

In another case, the can company may not have any infor-
mation about the end-user. In that case, it may ask explicitly
for the credit card information in the following manner.

{ "format":"text",
 "subformat":"english",
 "content":" "No record found. Please
send credit card information",
 "submessages": [
 {"format":"token",
 "subformat":"conversation",
 "content":"FF012458789"
 }] }
In this case, the customer may respond with a message like:
{ "format":"text",
 "subformat":"english",
 "content":" "My credit card number is
37456-1234-45. The expiration date is
03/27 and security code is 5678",
 "submessages": [
 {"format":"token",
 "subformat":"conversation",
 "content":"FF012458789"
 }] }

Note that the messages will be sent encrypted using the
lower level protocol, so the transmission of the information
is secure. The service would then respond with a message
like:
{ "format":"text",
 "subformat":"english",
 "content":" "Send locations for pickup
and drop-off",
 "submessages": [
 {"format":"token",
 "subformat":"conversation",
 "content":"FF012458789"
 }]
}
Now the customer can respond with a location for pickup
and drop off in this manner:
{
 "format":"text",
 "subformat":"english",
 "content":" "Pickup location listed
first in submessages.".
 "submessages": [{
 "format":"token",
 "subformat":"conversation",
 "content":"FF012458789"}
 { "format":"location",
 "subformat":"text",
 "content":"Holiday Inn, Mount
Kisco, NY" }
 {"format":"location",
 "subformat":"text",
 "content":"Metro North Train Sta-
tion, Mount Kisco, NY" }] }

In response, the service may respond with
{
 "format":"text",
 "subformat":"english",
 "content":" "Fare will be $15.00. Ex-
pected cab arrival in 15 minutes. Please
confirm acceptance of terms.".
 "submessages": [{
 "format":"token",
 "subformat":"conversation",
 "content":"FF012458789"
}]}

The customer could accept the terms with the message:
{ "format":"text",
 "subformat":"english",
 "content":" "Terms Accepted."
 "submessages": [{
 “format":"token",
 "subformat":"conversation",
 "content":"FF012458789"
}]}

The service would find a suitable car and dispatch it with the
following information update to the traveller:
{
 "format":"text",
 "subformat":"english",
 "content":" "Driver arriving in Car Li-
cense plate NY ABA3456. Car is white
Toyota Prius. Drive name is Jared."
 "submessages": [{
 "format":"token",
 "subformat":"conversation",
 "content":"FF012458789"
}]}

Note that this mechanism works with both services which
have information about the user, as well as those for which
the user is new.

While the interaction shown is only a simplified version of
the real-world exchanges, they illustrate how complex inter-
actions can be supported using a single natural language pro-
tocol.

Current Status
Until December 2024, NLIP protocol was being developed
as part of the open source group - Enterprise Neurosystem

Group. (Verma et. al. 2022) by the authors of this article.
In December 2025, European Computer Manufacturers As-
sociation (ECMA) agreed to create a technical working grup
which would standardize NLIP as an official standard. De-
velopment of NLIP would continue in the future as a ECMA
standard.

Currently, an initial implementation of the protocol with
some exemplar clients and server implementations are avail-
able publicly in github. The development of the protocol and
endpoint implementations are being done collaboratively in
open source so that the protocol is available publicly to all
interested parties.

References
(Bandi 2023) Bandi, A., Adapa, P.V.S.R. and Kuchi,
Y.E.V.P.K., 2023. The power of generative AI: A review of
requirements, models, input–output formats, evaluation
metrics, and challenges. Future Internet, 15(8), p.260.
(Berners-Lee 1996) Berners-Lee, T., Fielding, R. and
Frystyk, H., 1996. RFC1945: Hypertext Transfer Protocol--
HTTP/1.0
(Alonso 2002) Alonso, E., 2002. AI and Agents: State of the
Art. AI Magazine, 23(3), pp.25-25
(Okediran 2014) Okediran, O.O., Arulogun, O.T., Ganiyu,
R.A. and Oyeleye, C.A., 2014. Mobile operating systems
and application development platforms: A survey. Interna-
tional journal of advanced networking and applications,
6(1), p.2195.
(Silberschatz 1991) Silberschatz, A., Peterson, J.L. and Gal-
vin, P.B., 1991. Operating system concepts. Addison-Wes-
ley Longman Publishing Co., Inc.
(Kumar and Dahiya 2017) Kumar, K. and Dahiya, S., 2017.
Programming languages: A survey. International Journal on
Recent and Innovation Trends in Computing and Commu-
nication, 5(5), pp.307-313.
(Li, Bertino and Yi 2014) Li, X., Bertino, E. and Yi, M.,
2014. Security of new generation computing systems. Con-
curr. Comput., 26(8), pp.1475-1476.
(Mahjabi et. al. 2017) Mahjabin, T., Xiao, Y., Sun, G. and
Jiang, W., 2017. A survey of distributed denial-of-service
attack, prevention, and mitigation techniques. International
Journal of Distributed Sensor Networks, 13(12).
(Verma et. al. 2022) Verma, D., Wright, B., Overton, J., &
Sinha, R. (2022, May). Open source collaborative AI devel-
opment in the enterprise neurosystem group. In International
Conference on Empowering Smart Future through Scientific
Development and Technology. MDPI.

