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ABSTRACT 

Recent qualitative studies have begun using large amounts 

of Online Social Network (OSN) data to study how users 

interact with technologies. However, current approaches to 

dataset generation are manual, time-consuming, and can be 

difficult to reproduce. To address these issues, we introduce 

SMIDGen: a hybrid manual + computational approach for 

enhancing the replicability and scalability of data collection 

from OSNs to support qualitative research. We demonstrate 

how the SMIDGen approach integrates information 

retrieval (IR) and machine learning (ML) with human 

expertise through a case study focused on the collection of 

YouTube videos. Our findings show how SMIDGen 

surfaces data that manual searches might otherwise miss, 

increases the overall proportion of relevant data collected, 

and is robust against IR/ML algorithm selection. 
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INTRODUCTION 

Online Social Networks (OSNs) such as Twitter, YouTube, 

and reddit have emerged as valuable data sources for 

qualitative studies of everyday interactions with technology 

[2,3,6,14]. By studying user-generated content, researchers 

get access to naturalistic data about end-users and 

populations that are otherwise challenging to observe [16]. 

However, modern OSNs generate millions of content pieces 

and hundreds of hours of video every minute [22]. 

Researchers face challenges related to scale, noise filtering 

[20], rapidly evolving vocabularies that hinder 

comprehensive searches [11], and restricted access to 

proprietary platforms (e.g., rate limits on queries) [10,19]. 

Typically, these challenges are addressed through time-

intensive manual searches, often costing hundreds of 

researcher-hours [2,6], or focusing on small, downsampled 

datasets (e.g., 100 videos [3]) that risk missing insights or 

misrepresenting a domain or topic.  

To assist researchers in constructing OSN-based datasets 

for large-scale qualitative analysis, we introduce SMIDGen: 

A Scalable, Mixed-Initiative Dataset Generation approach. 

SMIDGen combines algorithms in information retrieval 

(IR) and machine learning (ML) along with a traditional 

qualitative coding process to assist with data collection and 

filtering. SMIDGen has four phases: (i) manually exploring 

an OSN and generating keywords to bootstrap data 

collection, (ii) computationally expanding these queries to 

increase domain/topic coverage, (iii) mixed-initiative data 

labeling and training to construct automated models, and 

(iv) applying these models at scale to generate a final 

dataset that is larger and more diverse as a result.  

After describing each of these phases, we demonstrate their 

application and utility through a detailed use case on 

YouTube: studying non-professional “everyday uses” of 

thermal cameras. Our findings suggest that the automated 

query expansion in Phase 2 contributes new data that we 

would have otherwise missed, and the classification models 

from Phases 3 and 4 accurately identified domain and topic 

relevance. We also show that the SMIDGen approach is 

robust against algorithm selection, which facilitates 

implementation, and that one need not manually label an 

entire dataset to achieve performance enhancements. We 

close with a discussion of SMIDGen and OSN data 

collection highlighting key strengths, limitations, and 

suggestions for improving performance. 

QUALITATIVE STUDIES OF OSN CONTENT  

Research involving data from OSNs generally derives 

insights from quantitative analyses of word frequencies, 

network structures, and other measurable artifacts [9,13]. 

However, recent studies have demonstrated the value of 

harnessing user-generated content (e.g., videos, images) as 

a source of naturalistic data for large-scale qualitative 

research on how end-users interact with technologies 

[2,3,6,14]. The topic areas and networks approached in 

these studies are diverse, ranging from studying assistive 

technologies on YouTube [2] and Thingiverse [6] to 
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political discourse on Twitter [7]. While differences exist in 

how data is queried and collected, each apply a similar 

high-level method: (i) a researcher explores an OSN, 

becoming familiar with the target domain, and how it is 

discussed, to generate an initial set of keywords; (ii) these 

keywords are used as search terms—either individually or 

in combination—on the OSN; (iii) researchers manually 

compile relevant artifacts from the first few hundred search 

results, potentially extracting new keywords; (iv) steps (ii) 

and (iii) repeat until enough artifacts are collected, search 

terms are exhausted, or saturation is reached. The resulting 

documents comprise the final dataset (Figure 1, top). 

These approaches have a high cost in researcher hours and 

are therefore difficult to scale. Furthermore, their reliance 

on proprietary browser-based search interfaces and their 

platform-specific nature (i.e., being derived for Twitter) 

make them difficult to reproduce or apply to other OSNs. 

While many tools such as NVivo™ and Atlas.ti™ exist to 

support the analysis of collected data, resources for data 

collection—including tools and guidance on approaches 

[12]—are far scarcer. To address this gap, in this work we 

outline an approach that applies hybrid manual + 

computational techniques to assist with data collection and 

relevance filtering. 

AN OVERVIEW OF THE SMIDGEN METHOD 

SMIDGen is a mixed-initiative dataset generation approach 

that combines algorithms in IR and ML along with 

traditional qualitative coding processes to semi-

automatically expand study datasets, ensure high relevance, 

and reduce manual labeling efforts. While SMIDGen is 

intended to be OSN and research domain agnostic, the 

method makes two assumptions: (i) the researcher has a 

specific, observable domain or topic of interest and (ii) the 

researcher is using a specific OSN with a query-able API. 

Below, we provide a high-level description of the four-

phase approach before providing a specific use case that 

illustrates SMIDGen’s utility in practice. 

Phase 1: Data Exploration and Initial Keyword Creation 

Phase 1 begins similarly to the large-scale qualitative 

studies found in recent literature [2,6,14]. The research 

team performs an informal investigation of a target OSN to 

gain familiarity with the platform and research target. The 

goal is, first, to understand the platform-specific features 

(e.g., hashtags) and restrictions (e.g., rate limits) of the 

target OSN. The second goal is to identify search keywords 

based on relevant web domains, acronyms, phrases, or 

hashtags that appear often within the target domain area and 

can be used to gather relevant data. These initials keywords 

should emphasize breadth—covering as much information 

pertaining to the domain of interest as possible. The 

researcher should then construct a small, preliminary 

dataset of relevant documents.  

 

Phase 2: Computational Query and Dataset Expansion 

The varied and evolving vocabularies in OSNs [8] and the 

constrained (or rate-limited) access to their raw data 

suggests this preliminary dataset is likely incomplete. The 

approach used in prior work had researchers manually 

analyze this preliminary data to construct an exhaustive set 

of all (known) relevant keywords. SMIDGen’s Phase 2 

accelerates and expands this step by applying IR algorithms 

on the initial data from Phase 1 to generate new, relevant, 

unanticipated search queries automatically. This query 

expansion process may leverage thesauruses to identify 

synonymous keywords [9], data-driven approaches like 

word embeddings [18], or relevance feedback that identify 

common keywords in relevant search results [5]. In 

choosing an expansion technique, researchers must consider 

whether they have unrestricted access to the underlying 

OSN data (rarely the case in OSNs) and search term 

semantics (e.g., thesauruses are less useful for finding 

synonyms for proper nouns). Common approaches are 

based on co-occurring frequencies or statistical language 

models—both of which we evaluate in our use case. Once 

the query expansion algorithm is selected and executed, 

each term from the expanded set of keywords is queried to 

generate a larger, more exhaustive dataset. Since this phase 

prioritizes comprehensiveness this intermediate dataset is 

likely noisy, which is addressed next. 

Phase 3: Mixed-Initiative Analysis and Modeling 

Depending on the OSN and domain of interest, Phase 2’s 

resulting dataset may contain thousands to millions of 

results, some of which are likely irrelevant. In prior work 

datasets were filtered manually, which is time intensive. For 

example, in [6], Buehler et al. spent hundreds of researcher-

hours generating a dataset of only a few thousand artifacts. 

SMIDGen accelerates this coding in Phase 3 via a mixed-

initiative process in which researchers code small, tractable 

samples (e.g., a few hundred) to train ML models, which 

then apply these codes automatically. Researchers then 

manually validate samples of these machine labels (by 

applying their own labels to the samples and comparing) to 

ensure the model’s output is reasonable. If human-machine 

agreement is satisfactory then the machine labeled data is 

passed to the final phase of SMIDGen. If human-machine 

agreement is below a researcher-established threshold, the 

new human labels are fed back into the models for 

retraining and researchers manually validate new samples 

of data. Researchers should perform this feedback loop over 

until they are confident in the ML models.  

 

Figure 1. A diagrammatic overview of the SMIDGen method compared to 

traditional approaches to support large-scale analyses of OSN-based 
datasets. SMIDGen combines manual search with computational methods 

to semi-automatically expand research datasets and ensure high relevance. 



Phase 4: Classifier Application and Dataset Assembly 

Following Phase 3, the researcher is left with a selection of 

manually analyzed artifacts, manually validated ML 

models, and a dataset of artifacts with machine labels. In 

this final stage, the researcher can save these models for 

initializing future data collection tasks and constructs the 

final, relevant dataset for subsequent qualitative analysis by 

combining the human-labeled and machine-inferred data. 

APPLYING SMIDGEN IN PRACTICE 

To more deeply illustrate SMIDGen, we offer a specific use 

case: searching for and qualitatively analyzing an emergent 

technology on YouTube—specifically, non-professional 

“everyday” uses of thermal cameras (see [In Review]).  

Phase 1: Data Exploration and Initial Keyword Creation 

Recall that the goals of Phase 1 are to familiarize oneself 

with the OSN and the domain of interest, generate a list of 

initial keywords, and query these keywords to construct an 

initial dataset. To begin, we queried the quoted string 

“thermal camera” on YouTube’s website both alone and in 

combination with other common thermography-related 

terms (e.g., “surveillance”, “medical”). We manually 

assessed these search results to identify relevant videos and 

generate an initial list of seven keywords (Table 1, top 

row). Using a custom Python script, we then queried these 

terms via the YouTube Data API (v3) to create a 

preliminary study dataset. Following recommendations of 

Anthony et al. [2], we extracted the first 200 YouTube 

results for each term and stored the resulting video URL 

and metadata (title, description, author, view counts, etc.). 

In total, we collected 1,400 videos, which was reduced to 

1,092 after removing duplicates. This preliminary dataset 

provided input to the query expansion algorithms in Phase 2 

and constituted a subset of the final dataset in Phase 4. 

Phase 2: Computational Query and Dataset Expansion 

The goal of Phase 2 is to automatically increase the set of 

relevant data beyond what could easily be found with 

manual search. To do this, Phase 2 leveraged the initial 

dataset from Phase 1 to automatically identify additional 

query terms—a process known as query expansion [9]. In 

our case, we used video titles and descriptions from our 

Phase 1 dataset as input to our query expansion algorithms. 

Typically, a researcher would employ only a single 

expansion technique; however, as an early exploration of 

SMIDGen we compared three different approaches (see 

Evaluation). Applying all three approaches resulted in a 

fourfold increase in dataset size (> 4,000 videos); however, 

expanded datasets are typically noisy—a known side effect 

of query expansion—necessitating a scalable method to 

remove irrelevant data.   

Phase 3: Mixed-Initiative Analysis and Modeling 

Phase 3 provided computational methods to support video 

classification in the Phase 2 dataset, which contained videos 

unrelated to thermography and thermographic videos not 

relevant to our specific research interest (e.g., marketing). 

This classification required an initial labeled dataset for 

classifier training so that the classifier could then apply 

those labels to the remaining data automatically. To create 

our training set, we qualitatively coded the Phase 1 dataset 

using a traditional iterative coding process [5,15]. Informed 

by Blythe and Cairn’s study [3] of iPhone use on YouTube, 

we generated an initial codebook with 7 codes. Two 

research assistants independently coded 200 randomly 

selected Phase 1 videos using titles, descriptions, and video 

content as input. Each video with a single category, and we 

used Cohen’s kappa to calculate inter-rater reliability (IRR). 

After three rounds of coding, IRR was 0.69, rated good 

agreement [24]. The remaining Phase 1 data (N=492) was 

then divided equally and coded individually, resulting in 

codes for all 1,092 Phase 1 videos.  

To utilize this labeled dataset for training an ML classifier, 

we featurized the textual and authorship aspects of each 

YouTube video in our dataset. Text featurization converted 

video titles and descriptions into a bag-of-words model and 

weighting terms using term-frequency, inverse-document-

frequency (TF-IDF). Authorship featurization converted a 

video’s author into a categorical feature—an ML ensemble 

process called stacking [23]—which we included to capture 

information like whether a video was posted by a 

company’s marketing account. While the image and audio 

data in the videos themselves could also be used an input 

vectors, we did not explore this in our work. For the 

classifier itself, we experimented with three approaches 

using Python’s Scikit-Learn library [21]: logistic 

regression, random forests, and a support vector machine 

(see Evaluation). We also modeled video classification as 

two binary tasks: relevant-versus-non-relevant and 

“everyday use”-versus-other. 

Regardless of classifier type, one would expect a classifier 

trained on Phase 1 data to classify some videos in the Phase 

2 dataset incorrectly given the new features introduced by 

query expansion (e.g., new authors or words in titles and 

descriptions). To account for this possibility, after applying 

the Phase 1-trained classifier to Phase 2 data, we manually 

labeled a subset of data in the Phase 2 dataset—which 

served as ground truth. Our two research assistants 

separately annotated four batches of 250 videos in this 

Phase 2 sample, using the same process as with the Phase 1 

data. After each batch, we validated our classifiers against 

this labeled data and evaluated feature performance. In 

total, we randomly sampled and qualitatively coded 2,0901 

videos from the Phase 2 dataset; however, this large amount 

would ordinarily be unnecessary and was chosen to study 

the effect of training set size on classifier performance. 

Finally, we trained our classifiers on all of our labeled data 

and performed a final spot check on results to validate our 

metrics: We randomly sampled videos from the set of 

                                                           
1 Some videos were separated from those labeled by our (high school) 

research assistants and labeled by other (adult) researchers because they 
potentially contained graphic content based on keywords. They were 

included in training to maintain topic diversity in the training dataset. 



automatically labeled data, 100 videos each from both 

classes and binary classification tasks, for a total of 400 

videos. Researchers manually labeled 200 videos from each 

task without knowing the classifier’s inferred labels, which 

we checked then checked against classifier metrics. 

Phase 4: Classifier Application and Dataset Assembly 

Finally, in Phase 4 we applied the validated ML classifier to 

the remaining unlabeled videos in our Phase 2 dataset. Our 

final dataset of thermographic relevant videos (N=4,380) 

included both human-labeled (N=2,082) and machine-

labeled (N=2,298 videos) data combined from Phases 1-3, 

and our final dataset of “everyday use” videos (N=1,686) 

also included human-labeled (N=772) and machine-labeled 

(N=914) data. This “everyday use” dataset was then used to 

study end-user experiences with everyday uses of 

commodity thermographic technology (see [In Review]). 

EVALUATING SMIDGEN 

To ensure the SMIDGen approach expanded datasets and 

accelerated researchers’ domain relevance and subtopic 

classification, we conducted an extended evaluation using 

the above use case. While future researchers may not need 

to conduct such thorough investigations themselves, this 

validation was critical in establishing confidence in the 

SMIDGen approach and conducting similar evaluations 

would is an important error-analysis step for understanding 

systematic issues and when collecting data on different 

topics or from different platforms. These assessments relied 

on the precision and recall metrics common in IR and ML. 

In this context, precision was defined as the ratio of 

retrieved, relevant videos to all retrieved videos. Recall 

would typically be the ratio of all retrieved, relevant videos 

to all possible relevant videos that exist on YouTube; 

however, we used a modified recall metric described below. 

Specifically, we evaluated the following research questions: 

RQ1. How well did query expansion work to expand the initial 

dataset and find additional relevant videos? 

RQ2. How accurately did Phase 3’s classification models identify 

domain-relevant videos (i.e., videos about thermal cameras)? 

RQ3. Within the domain relevant dataset, how accurately did 

classification models identify the subtopic of “everyday use”? 

RQ4. How much manual labeling was required for accurate 

automatic domain relevance and topic identification? 

RQ1: How Well Did Query Expansion Work? 

The perfect query expansion algorithm would capture all 

remaining relevant data on the target OSN (recall) and all 

data returned would be relevant (precision). For most 

OSNs, however, calculating recall is difficult or impossible 

given restricted OSN database access and large data 

volumes, where manually labeling millions of documents is 

infeasible [4]. We therefore introduce a new metric, called 

an expansion coefficient (Eq. 1), where te is the number of 

relevant items that exist in the expanded dataset but not in 

the initial dataset, and to is the intersection of relevant items 

in both datasets. This metric ranges from [0,1], with a 

perfect expansion score of 1 indicating every relevant item 

captured by the expansion would not have been captured in 

the original dataset.  

Expansion Coefficient = te / ( te + to ) (Eq. 1) 

As multiple standard query expansion approaches exist in 

IR, we tested three: a frequency-based algorithm using 

word co-occurrence (COO), a statistical language model 

using Kullback-Leibler divergence (KLD) [17], and a 

human-in-the-loop method (HITL) in which a researcher 

manually selected search terms from a list of suggestions 

from COO and KLD. Moving from COO to KLD to HITL 

represented an increase in complexity, with COO requiring 

only the Phase 1 dataset, KLD requiring additional data on 

YouTube’s general language, and HITL requiring human 

expertise to select the most salient search terms.  

As input, both COO and KLD used the Phase 1 video titles 

and descriptions (N=1,092 videos) as well as the original 

seven search terms. As output, COO and KLD generated 

rankings of two-word phrases by scoring their frequencies 

(the more common phrases were ranked higher). While 

COO used this raw frequency as its score, KLD modulated 

scores for frequent-but-generic phrases common in a 

random sample of 51,889 YouTube videos, acquired from 

YouTube’s 8m dataset [1]. We then removed keywords 

already present in the initial Phase 1 keyword set and used 

the remaining top-ten2 ranked two-word phrases as 

expansion terms. For the HITL method, we presented the 

union of these top terms to the research team, who then 

selected terms they thought to be the most salient. The top 

ten suggested search terms for each approach are shown in 

Table 1. Notably, COO and KLD had high overlap in their 

suggestions with only 13 search terms being unique. 

To build the expanded dataset, we constructed a query set 

composed of the expanded search terms and all pairwise 

combinations with Phase 1’s initial terms (e.g., we searched 

for “thermal imager” and “infrared AND ‘thermal 

imager’”), as per Anthony et al. [2], and queried YouTube’s 

API for each new query. Similar to [2], we stored the first 

200 videos for each query. After removing intra-set 

                                                           
2 Selected to minimize researcher effort in this phase. 

 Search Terms Videos 

Seed infrared, lepton, thermal, thermal camera, thermal image, thermal 
imaging, thermography 

1,092 

COO flir lepton, flir one, flir thermal, follow u, imaging camera, infrared 
camera, infrared thermography, night vision, thermal imager, u 
facebook 

4,264 

KLD breast thermography, flir lepton, flir one, flir thermal, imaging 
camera, infrared thermography, night vision, seek thermal, thermal 
imager, thermal paste 

5,075 

HITL breast thermography, flir lepton, flir one, flir thermal, imaging 
camera, infrared camera, infrared thermography, night vision, seek 
thermal, thermal imager 

4,670 

Table 1. The initial search term list from Phase 1, which was manually created 
(Seed) along with the expanded keyword set for each query expansion technique. 

The Videos column represents the total number of videos returned by querying the 

search terms on YouTube; while duplicates were removed within each set, duplicates 
exist across sets. 



duplicates, COO, KLD, and HITL expanded queries 

resulted in 4,264, 5,075, and 4,670 videos respectively 

(Table 1), though all expanded sets had many videos in 

common. The two key questions remain: how many new 

videos were found not in the original dataset (as measured 

by the expansion coefficient) and how many were relevant. 

To address both questions, we used the 1,092 labeled 

videos from Phase 1’s initial dataset and manually labeled a 

random subset of Phase 2’s expanded dataset. Given the 

large query term intersection among the three expansion 

methods, intersection among search result was 

consequently large. Since the likelihood of selecting 

duplicate videos across the expansion datasets was 

therefore high, we pooled these expansion results together 

and randomly selected and labeled videos from this dataset 

(2,090 videos exclusively from the expanded set, 3,182 

videos in total). The results are shown in Table 2. Notably, 

all three approaches achieved similar expansion scores—

between 0.72 and 0.74—with HITL performing best. That 

is, approximately three of every four relevant videos 

captured by our expansion approach were new and would 

otherwise have been missed in the initial dataset. But were 

these new videos relevant? If not, then the query expansion 

process will increase researcher burden as they filter 

through noisy data. Fortunately, in terms of precision, again 

all three approaches performed well—increasing precision 

by over 34% compared to Phase 1’s initial dataset with 

HITL again performing best at 0.88. 

The key implication here is that, regardless of algorithm 

used, query expansion substantially increased dataset sizes 

for both raw count and relevant videos. Volume of relevant 

videos more than doubled, with expansion coefficients 

showing the majority of relevant videos captured in each 

expansion was omitted from the initial dataset. The HITL 

query expansion process further increased these sizes as 

well, demonstrating the value of integrating human 

selection into the expansion process.  

RQ2: How Well Did Phase 3 Classify Domain-Relevant Videos? 

After query expansion, we are left with several thousand 

unlabeled videos. To determine whether ML algorithms 

could accurately classify these videos as relevant 

(thermographic) or irrelevant (non-thermographic), we 

evaluated three text-based classification algorithms: logistic 

regression (LR) from probabilistic models, random forests 

(RF) from tree-based models, and support vector machines 

(SVMs) for geometric models. By choosing one model 

from each of the main families of classifiers, we could 

further examine the effect of classifier type on performance. 

We trained each classifier on titles, descriptions, and video 

authors using all our manually labeled data, consisting of 

3,182 videos (2,082 marked as relevant, 1,100 irrelevant). 

To evaluate each classifier, we used 10-fold cross-

validation where a fold was a random 10% of the 3,182 

labeled videos. Our primary measure was the area under the 

precision-recall curve (AUPRC), selected because of its 

robustness against class imbalance. While an ideal classifier 

would achieve an AUPRC of 1.0, we expected the three 

classifiers would perform well classifying domain relevance 

given prior work [8].  

Our results are shown in Figure 2a. We found that each ML 

model exhibited high performance, with RFs performing 

marginally better than other models. Feature analysis 

compared text-only classifiers (i.e., using title and 

description) to author-only and text-and-author classifiers, 

with textual features alone outperforming author-based 

classification by 10% and performing marginally better 

than text-and-author versions. Regardless of the ML 

model—SVMs, LR, or RFs—all classifiers performed well, 

achieving AUPRC scores above 0.97 and a mean accuracy 

of 91.3%. These high AUPRC scores suggest the decision 

boundary between relevant and irrelevant videos was not 

complex, which one might expect given sufficiently clear 

queries. Table 3 shows proportions of both manually and 

automatically labels videos, demonstrating consistency 

between proportions of manual and automated labels. 

To ensure that our models’ AUPRC metrics aligned with 

researcher assessments, we performed a final external 

validation step by having two researchers manually inspect 

a random sample of the automatically labeled data. Ideally, 

these researchers’ labels would agree with the inferred 

labels. Since the RF classifier was the highest performing 

domain-relevance classifier, we applied it to the remaining 

unlabeled videos, resulting in automatic labels of 808 

irrelevant videos and 2,298 as relevant to thermographic 

use. As described in the Phase 3 use case above, we 

randomly sampled 100 videos from the set of classified-

relevant videos and 100 from the classified-irrelevant 

videos. Two research assistants manually labeled these 

videos and resolved conflicts, as shown in Table 4. We 

 Manually Labeled Automatically Labeled 
 Seed Expanded  Expanded 

Relevant 647 1913 4134 
4626 

0.8936 
Total 1092 2164 
Ratio 0.5925 0.884 

Table 3. Relevant videos using both manual and automated labeling methods. 

Ratios of relevant videos are consistent across manual and automated methods. 

 Relevant 
Accuracy 

Irrelevant 
Accuracy 

Everyday-Use 
Accuracy 

Other-Use 
Accuracy 

Rater 1 79/100 97/100 70/100 88/100 
Rater 2 92/100 93/100 70/100 89/100 
Resolved 94/100 91/100 70/100 89/100 

TABLE 4. Results from final manual classifier validation. Accuracy 

estimates predicted during classifier training were consistent with accuracy 

in manual validation for both domain- and topic-relevance. 

 Seed COO KLD HITL 

# of Manually Labeled Videos 1,092 2,010 2,352 2,164 
Precision 0.59 0.81 0.79 0.88 
Expansion Coefficient — 0.72 0.73 0.74 

Table 2. The amount of manually labeled data used in our experiments and the 
results from our query expansion evaluation with our proxy recall metric. 



found this classifier achieved 92.5% accuracy, consistent 

with but slightly higher than our accuracy estimates. 

There are two key implications here: first, for automatically 

identifying relevant videos, SMIDGen was robust against 

classification algorithm selection, performing well despite 

the family of algorithm used, with textual features being 

sufficient for classifying relevance. Second, automatically 

classified labels were consistent with manual labels in both 

distribution and manual validation, so cross-validation and 

optimizing AUPRC were valid training strategies here. 

RQ3: How Well Did Phase 3 Automate Subtopic Classification? 

Having established models for automatically inferring 

relevance, we moved to determining whether similar ML 

models could identify specific subtopical content within the 

set of relevant videos. To investigate this, we focused on 

classifying videos as “everyday use of thermal cameras” or 

not (a binary classification). Using the manually labeled 

dataset from Phase 2 of 2,298 relevant videos (772 

everyday-use videos, 1,130 non-everyday-use 

thermographic videos) as ground truth data, we repeated the 

above ML pipeline. In comparison to domain classification, 

we expected this task to be more difficult as the decision 

boundary between subtopics is typically more complex. 

Given that “everyday use” videos were underrepresented in 

this training data, we weighted “everyday use” videos at a 

rate of 3:1 (an estimate of the expected underrepresentation) 

during training, such that a false negative in the “everyday 

use” class was penalized three times more than a false 

positive. After training and again using 10-fold cross-

validation, the average model score was 0.73 AUPRC 

(Figure 2b), with LR performing the best (0.76 AUCPR and 

79.39% accuracy). Unlike relevance prediction, we also 

found that including video authorship features increased 

performance. We then applied the LR model to the 2,298 

unlabeled-but-classified-as thermographic videos, which 

classified 902 of these videos as “everyday use.” 

As in the relevance evaluation, we manually validated this 

topical model by randomly sampling an additional 100 

“everyday use” videos and 100 “non-everyday use” videos 

(e.g., professional marketing videos). Table 4 shows 

researcher assistant-labeling results, which were consistent 

with automatic classification (79.5% vs. predicted 79.4%) 

and our expectations of a more difficult ML task. 

Furthermore, the higher accuracy in non-everyday-use is 

consistent with our class weighting, which would prefer 

these type-II errors over type-I errors. The main result here 

is that subtopical classification is more difficult but still 

feasible. We also note algorithm and feature engineering 

had higher impact on model performance in this context.  

RQ4: How Much Manual Labeling Effort is Necessary? 

Finally, while the above tasks used approximately 3,000 

videos for training, we wanted to investigate how much 

manual annotation was necessary to achieve the above 

results. We therefore performed two experiments on 

training data size: one on classifying domain-relevance and 

one on classifying subtopics. An expectation here might be 

that fewer manual labels would be necessary for classifying 

relevance, but more everyday-use labels would increase 

subtopic classifier performance. For both experiments, we 

retrained the highest-performing classifier configurations 

from RQ2 and RQ3 on three datasets of increasing size: a 

subset of Phase 1’s initial seed dataset that we used for 

evaluating IRR (N=571), the full Phase 1 dataset 

(N=1,092), and the full labeled data from Phase 1 and 

Phase 2 (N=3,182). In the ideal case, models trained on the 

571 data points would perform as well as the models trained 

on the full dataset substantially reducing researcher effort.  

Figure 2c shows these results for the RF-text-only classifier 

for domain relevance, in which increasing dataset size had 

little impact. Figure 2d shows results for the LR-text-and-

author classifier for subtopics, and we see here that topic 

identification (i.e., “everyday use”) did benefit from 

additional training. Moving from the IRR (N=340) dataset 

to the Phase 1 dataset (N=647) and from the Phase 1 dataset 

to the Phase 2 dataset (N=2,298) resulted in ~5% and ~10% 

increases in performance, respectively. 

The key result here is that, researchers can achieve high 

performance in automated relevance filtering using a small 

dataset that they would likely already have developed for 

IRR (using traditional qualitative coding methods). For 

subtopics classification, however, more manual effort 

translates to better classifiers. This additional effort would 

be offset by the reduction in domain-irrelevant videos. 

    
(a) Effect of classifier on domain 

classification performance  

(b) Effect of classifier on subtopic 

classification performance 
(c) Effect of label set size on performance of 

RF classifier for domain classification 
 (d) Effect of label set size on performance 

of LR classifier for subtopic classification 

Figure 2. Results for RQ2 (a), RQ3 (b), and RQ4 (c and d). In sum, the RF classifier performed best in domain classification, while the LR 

classifier performed best at subtopical; label size had negligible impact on domain classification, but improved subtopical classification. 



DISCUSSION, LIMITATIONS, AND FUTURE WORK 

In this paper, we presented SMIDGen, a hybrid manual + 

computational approach for generating OSN-based data for 

qualitative research. Where possible, SMIDGen leverages 

research steps that would be performed in a more traditional 

qualitative study (e.g., keyword generation, codebook 

validation, inter-rater reliability), and much of the 

remaining overhead can be automated to minimize 

researcher effort. An additional key benefit of SMIDGen is 

its replicability. Not only does SMIDGen allow for the 

collection of single snapshots of data available on OSNs at 

a given time, but artifacts from this process (e.g., machine 

learning models and labeled data) can then be stored for 

future use to iterate upon or bootstrap future data collection. 

For future collection tasks, the researcher need only update 

the initial search queries to reflect new developments in the 

research domain. These new queries are integrated into 

Phase 2’s query expansion and prior models are then 

retrained on updated labels from the more recent dataset.  

One challenge to OSN-based research in general is that 

target platforms can limit insights and research strategies. 

In our use case, YouTube’s API criteria to determine which 

videos are returned for a given query is unknown. It is 

therefore unclear whether relevance searches are biased 

towards recent videos, videos from users with many likes or 

subscribers, or some paid promotional scheme. The use of 

SMIDGen partially addresses this concern by running many 

queries with limited overlap to develop a more 

comprehensive dataset despite these unknown ranking 

schemes. These challenges are not specific to YouTube; 

most OSNs have similar result set constraints and opaque 

sampling methods [4]. While one could mitigate these 

issues with different query techniques, requirements are 

likely to change across platforms, so this dependence on 

platform capabilities is likely to continue unless one pays 

for partnerships with data providers.  

Another challenge common to qualitative research, and 

which applies to SMIDGen, is dependence on human expert 

queries. It may be tempting to rely on query expansion to 

ensure comprehensive data collection, but a fundamental 

requirement is that query expansion assumes some overlap 

exists between the expert query and other related queries. If 

this overlap does not exist (e.g., because of linguistic 

barriers or disjoint communities), SMIDGen may miss 

important subsets of data. As such, it is important for 

researchers to cover as many communities of discussion as 

possible with their initial queries (in Phase 1). These 

queries need not be complete, but should have good 

coverage of the domain as SMIDGen uses query expansion 

to enhance comprehensiveness but does not guarantee it.  

As SMIDGen relies on ML models for scaling up analysis, 

an additional challenge is the way these models may bias 

results based on training data and feature selection. For 

example, in our use case, classifiers were trained with video 

title, description, and author, while human evaluators also 

assessed the video content itself. For identifying videos 

relevant to thermal camera use, this limitation seemed to 

have little effect but multimedia omission may explain the 

increased difficulty classifying the “everyday use” topic 

(RQ3). Such a limitation applies equally to other platforms 

as well: if one wanted to study Twitter or Instagram data for 

instance, textual models will ignore image data. One of 

SMIDGen’s strengths, however, is the flexibility to extend 

the machine learning models. One can integrate additional 

features into the models as new features become available 

or new technology is developed (e.g., computer vision or 

speech recognition approaches to analyze video/audio data). 

Finally, this study presented a single, initial use case that 

leveraged only one OSN platform. Thus, future work 

should explore expansions to new domains/topics and 

platforms. While the query expansion and ML classifiers 

may be adequate for YouTube’s API and our research focus 

(studying thermal camera use), more research is necessary 

to evaluate these methods and SMIDGen as a general 

approach particularly in light of recent advances (e.g., [18]). 

To aid other researchers in applying the SMIDGen 

approach, we are actively working on developing a 

SMIDGen web application that should work across popular 

OSNs including YouTube, Instagram, and Twitter as well 

as performing additional evaluations that look at the 

tradeoffs in human/researcher effort and quality of results. 

CONCLUSION 

In this paper, we have presented SMIDGen: a scalable, 

mixed-initiative approach for generating large-scale, 

comprehensive datasets for qualitative research. We 

provided both a high- and low-level description of this 

approach and evaluated it on a single use case on non-

professional, everyday use of thermographic cameras. Our 

results provide guidance to researchers on applying 

SMIDGen to their own research including how to use: (i) 

query expansion methods to increase recall and reduce bias 

and (ii) ML models to assist with both relevance filtering 

and topic selection. However, this approach is preliminary, 

and its presentation here aims to showcase an interesting 

use case for IR and ML techniques in qualitative research. 

Additionally, throughout this work we have discussed key 

challenges associated with extracting data from OSNs and 

highlighted potential areas for improving the performance 

of this approach (through crowdsourcing, automated video 

analysis, etc.), which researchers and application designers 

may be interested in exploring further. 
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