
An Algebraic Approach to IP Traceback

DREW DEAN
SRI International
MATT FRANKLIN
U.C. Davis
and
ADAM STUBBLEFIELD
Rice University

We present a new solution to the problem of determining the path a packet traversed over the
Internet (called the traceback problem) during a denial-of-service attack. This article reframes the
traceback problem as a polynomial reconstruction problem and uses algebraic techniques from
coding theory and learning theory to provide robust methods of transmission and reconstruction.

Categories and Subject Descriptors: C.2.5 [Computer-Communication Networks]: Local
and Wide-Area Networks—internet; C.2.0 [Computer-Communication Networks]: General—
security and protection

General Terms: Algorithms, Design, Security

Additional Key Words and Phrases: Internet protocol, traceback

1. INTRODUCTION

A denial-of-service attack is designed to prevent legitimate access to a re-
source. In the context of the Internet, an attacker can “flood” a victim’s
connection with random packets to prevent legitimate packets from getting
through. These Internet denial-of-service attacks have become more preva-
lent recently due to their near untraceability and relative ease of execution
[Computer Emergency Response Team 1999]. Also, the availability of tools such
as Stacheldraht [Dittrich 1999a] and TFN [Dittrich 1999b] greatly simplifies
the task of coordinating hundreds or even thousands of compromised hosts to
attack a single target.

An earlier version of this paper appeared in Proceedings 2001 Network & Distributed System
Security Symposium, February 8–9, 2001, San Diego, pp. 3–12. This work is partially supported by
DARPA under Grant Number N66001-00-1-8921.
Authors’ addresses: D. Dean, SRI International, 333 Ravenswood Ave., Mento Park, CA 94025;
M. Franklin, University of California at Davis, Dept. of Computer Science, One Shields Ave., Davis,
CA 95616; A. Stubblefield, 6330 Main Street, Houston, TX 77005; email: astubble@rice.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1094-9224/02/0500–0119 $5.00

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002, Pages 119–137.

120 • D. Dean et al.

These attacks are so difficult to trace because the only hint a victim has as to
the source of a given packet is the source address, which can be easily forged.
Although ingress filtering can help by preventing a packet from leaving a bor-
der network without a source address from the border network [Ferguson and
Senie 1998], attackers have countered by choosing legitimate border network
addresses at random. The traceback problem is also difficult because many
attacks are launched from compromised systems, so finding the source of the
attacker’s packets may not lead to the attacker. Disregarding the problem of
finding the person responsible for the attack, if a victim were able to determine
the path of the attacking packets in near real-time, it would be much easier
to quickly stop the attack. Even finding out partial path information would be
useful because attacks could be throttled at distant routers.

This article presents a new scheme for providing these traceback data by
having routers embed information randomly into packets. This is similar to the
technique used by Savage et al. [2000], with the major difference being that our
schemes are based on algebraic techniques. This has the advantage of providing
a scheme that offers more flexibility in design and more powerful techniques
that can be used to filter out attacker-generated noise and separate multiple
paths. Our schemes share similar backwards compatibility and incremental
deployment properties with the previous work.

More specifically, our scheme encodes path information as points on polyno-
mials. We then use algebraic methods from coding theory to reconstruct these
polynomials at the victim. This appears to be a powerful new approach to the
IP traceback problem.

We note that although the study of traceback mechanisms was motivated by
denial-of-service attacks, there are other applications as well. These methods
might be useful for the analysis of legitimate traffic in a network. For example,
congestion control, robust routing algorithms, or dynamic network reconfigu-
ration might benefit from real-time traceback mechanisms.

The rest of the article is organized as follows. Section 2 discusses related
work, Section 3 contains an overview of the problem and our assumptions,
Section 4 presents our approach for algebraically coding paths, Section 5 gives
detailed specifications for some of our schemes, Section 6 provides a mathemat-
ical analysis of the victim’s reconstruction task, Section 7 discusses the issue
of encoding marking data in IP packets, and Section 8 gives conclusions and
future work.

2. RELATED WORK

The idea of randomly encoding traceback data in IP packets was first presented
by Savage et al. [2000]. They proposed a scheme in which adjacent routers would
randomly insert adjacent edge information into the ID field of packets. Their
key insight was that traceback data could be spread across multiple packets
because a large number of packets were expected. They also include a distance
field which allows a victim to determine the distance that a particular edge
is from the host. This prevents spoofing of edges from closer than the nearest
attacker. The biggest disadvantage of this scheme is the combinatorial explosion

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 121

during the edge identification step and the few feasible parameterizations. The
work of Song and Perrig [2000] provides a more in-depth analysis of this scheme.

There have been many other notable proposals for IP traceback since the
original proposal. Bellovin [2000b] has proposed having routers create addi-
tional ICMP packets with traceback information at random and a public key
infrastructure to verify the source of these packets. This scheme can also be
used in a nonauthenticated mode, although the attackers can easily forge parts
of routes that are farther from the victim than the closest of the attackers.

Song and Perrig [2000] have an improved packet marking scheme that copes
with multiple attackers. Unfortunately, this scheme requires that all victims
have a current map of all upstream routers to all attackers (although Song and
Perrig describe how such maps can be maintained). In addition, it is not incre-
mentally deployable as it requires all routers on the attack path to participate
(although Song and Perrig note that it also suffices for the upstream map to
indicate which routers are participating).

Doeppner et al. [2000] proposed adding traceback information to an IP op-
tion. In addition to the large space overhead, this solution would cause serious
problems with current routers, as they are unable to process IP packets with
options in hardware. It also causes other issues, for example, adding the option
may require the packet to be fragmented.

Burch and Cheswick [2000] have a scheme that uses UDP packets and does
not require the participation of intermediate ISPs. This scheme, however, as-
sumes that the denial-of-service attack is coming from a single source network.
This differs from us as we aim to distinguish multiple attacking hosts.

Lee and Park [2001] have analyzed packet marking schemes in general.
Their paper contains general tradeoffs among marking probability, recovered
path length, and packets received, that can be applied to any of the probabilistic
marking schemes, including the one in this article.

We refer the reader to Savage’s paper for a discussion of other methods to
detect and prevent IP spoofing and denial-of-service attacks.

The algebraic techniques we apply were originally developed for the fields
of coding theory [Guruswami and Sudan 1999] and machine learning [Ar et al.
1992]. For an overview of algebraic coding theory, we refer the reader to the
survey by Sudan [1997a] or the book by Berlekamp [1984].

3. OVERVIEW

This article addresses what Savage et al. call the approximate traceback prob-
lem. That is, we would like to recover all paths from attacker to victim, but we
will allow for paths to have invalid prefixes. For example, for the network shown
in Figure 1, the true path from the attacker A1 to the victim V is R4 R2 R1. We
will allow our technique to also produce paths of the form R2 R6 R4 R2 R1 because
the true path is a suffix of the recovered path.

Our family of algebraic schemes was motivated by the same assumptions as
used in previous work.

1. Attackers are able to send any packet.
2. Multiple attackers can act together.

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

122 • D. Dean et al.

Fig. 1. Our example network.

3. Attackers are aware of the traceback scheme.
4. Attackers must send at least thousands of packets.
5. Routes between hosts are generally stable, but packets can be reordered

or lost.
6. Routers cannot do much per-packet computation.
7. Routers are not compromised, but not all routers have to participate.

4. ALGEBRAIC CODING OF PATHS

We now present a series of schemes that use an algebraic approach for encoding
traceback information. All of these schemes are based on the principle of recon-
structing a polynomial in a prime field. The basic idea is that for any polynomial
f (x) of degree d in the prime field GF(p), we can recover f (x) given f (x) eval-
uated at (d + 1) unique points. Let A1, A2, . . . , An be the 32-bit IP addresses of
the routers on path P . Let f P (x) = A1xn−1 + A2xn−2 + · · · + An−1x + An. We
associate a packet id x j with the j th packet. We then somehow evaluate f P (x j)
as the packet travels along the path, accumulating the result of the compu-
tation in a running total along the way. When enough packets from the same
path reach the destination, then f P can be reconstructed by interpolation. The
interpolation calculation might be a simple set of linear equations, if all of the
packets received at the destination traveled the same path. Otherwise, we will
need to employ more sophisticated interpolation strategies that succeed even
in the presence of incorrect data or data from multiple paths [Berlekamp and
Welch 1986; Sudan 1997b; Guruswami and Sudan 1999; Bleichenbacher and
Nguyen 2000]. These methods were originally developed for use in coding the-
ory and learning theory.

A naive way to evaluate f P (w) would be to have the j th router add Aj wn− j

into an accumulator that kept the running total. Unfortunately, this would

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 123

require that each router know its position on the path and the total length of
the path. We could eliminate the need for each router to know the total length
of the path (while still requiring each router to know its position on the path)
by reordering the coefficients of f P : A1+ A2w+ A3w2+ · · ·+ Anwn−1. However,
we can do even better by sticking with our original ordering, and using an
alternative means of computing the polynomial. Specifically, to compute f P (w),
each router R j multiplies the amount in the accumulator by w, adds R j , returns
the result to the accumulator, and passes the packet on to the next router in
the path (Horner’s rule [Knuth 1997]). For example, ((((0 ·w)+ R1)w+ R2)w+
R3)w+ R4 = R1w3+ R2w2+ R3w+ R4. Notice that the router does not need to
know the total length of the path or its position on the path for this computation
of f P .

4.1 Deterministic Path Encoding

The simplest scheme that uses this algebraic technique encodes an entire path.
At the beginning of a path, let FullPath0, j = 0. Each router i on the path
calculates:

FullPathi, j = (FullPathi−1, j · x j + Ri) mod p,

where x j is a random value passed in each packet, Ri is the router’s IP address,
and p is the smallest prime larger than 232 − 1. The value FullPathi, j is then
passed in the packet, along with x j , to the next router. At the packet’s destina-
tion FullPath will equal (Rnxn−1 + Rn−1xn−2 + · · · + R2x + R1) mod p, which
can be reconstructed by solving the following matrix equation over GF(p).

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n




R1

R2
...

Rn

 =


FullPathn,1

FullPathn,2
...

FullPathn,3

 .

As long as all of the xis are distinct, the matrix is a Vandermonde matrix (and
thus has full rank) and is solvable in O(n2) field operations [Press et al. 1992].

Assuming that we get a unique x j in each packet, we can recover a path
of length d with only d packets. The downside, however, is that this scheme
would require log2(p)+2dlog2(d)e bits per packet (the first term is the encoding
of the running FullPath and the second term is the encoding of the x j and
y j values). Even for modest maximum path lengths of 16, the space required
(68 bits, counting 4 bits for recording the number of routers in the path, and
32 bits each for the x and y coordinates of the point on the polynomial) far
exceeds the number of bits available to us in an IP header.

We could split a router’s IP address into c chunks and add dlog2(c)e bits
to indicate which chunk was represented in a given packet. Another approach
would be to have each router add all of its chunks into each packet. That is, each
router would update FullPath c times, substituting each chunk of its IP address
in order. The destination could then trivially reconstruct the IP addresses by

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

124 • D. Dean et al.

interpolating to recover f̃ P (x) = R1,1 + R1,2x + · · · + R1,cxc−1 + R2,1xc + · · ·+
Rn,cxnc−1, where R j ,1, R j ,2, . . . , R j ,c are the successive chunks of R j . This would
increase the degree of f by a factor of c, which would have an impact on the
performance of the reconstruction algorithm.

4.2 Randomized Path Encoding

In the above schemes, we require FullPath0, j = 0. This implies that there is
some way for a router to know that it is the “first” participating router on a
particular path. In the current Internet architecture there is no reliable way
for a router to have this information. We must therefore extend our scheme to
mitigate this problem.

In our revised scheme a router first flips a weighted coin. If it comes up tails
the router assumes it is not the first router and simply follows the FullPath
algorithm presented above, adding its IP address (or IP address chunk) data.
On the other hand, if the coin comes up heads, the router assumes it is the first
router and randomly chooses an x j to use for the path. We refer to this state
as “marking mode.” This overall approach—which might be called the “reset
paradigm”—was also used by Savage et al. for their traceback solutions.

At the destination, we would receive a number of different polynomials, all
representing suffixes of the full path. In our example network, packets from A1
could contain R4 R2 R1, R2 R1, or R1.

We could change our marking strategy slightly. Whenever a router receives
a packet, it still flips a weighted coin. But now, instead of simply going into
marking mode for one packet when the coin comes up heads, the router could
stay in marking mode for the next τ packets it receives. More generally, the
reset behavior could follow any Markov Process.

One problem is that attackers can cause more false paths than true paths
to be received at the victim. This is because our choice of a small p cre-
ates a large number of packets in which no router on the packet’s path is
in marking mode. The attacker can thus insert any path information he
wishes into such packets. Because the attacker can generally find out the
path to his victim (using traceroute, for example) he can compute FullPath0, j =
(FakePath j /xn

j − Rnxn−1
j − · · · − R0) mod p. This choice will cause the victim to

receive FullPath j = FakePath j . When trying to reconstruct paths, the victim
will have no indication as to which paths are real and which are faked. Two
solutions to this problem are to increase p or to store a hop count (distance
field) in the packet that each participating router would increment. Increas-
ing the probability makes it even harder to receive long paths. Adding a hop
count would prevent an attacker from forging paths (or suffixes of paths) that
are closer than its actual distance from the victim but would require dlog2(d)e
more bits in the packet.

Our schemes could also make use of the HMAC techniques discussed by Song
and Perrig [2000] to ensure that edges are not faked, but this would require
us to either use additional space in the packets to store the hash or lose our
incremental deployment properties. If we decided to make one of these tradeoffs,
our scheme would be comparably secure against multiple attackers.

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 125

4.3 Edge Encoding

We could add another parameter, `, that represents the maximum length of
an encoded path. The value of ` is set by the marking router and decremented
by each participating router who adds in its IP information. When the value
reaches 0, no more routers add in their information. For example, in the full
path encoding scheme ` = ∞, whereas ` = 1 would represent encoding of edges
between routers. When ` = 1, we call this an “algebraic edge encoding” scheme.

The benefit of this change would be to decrease the maximum degree d of
the polynomials in order to reduce the number of packets needed out of a given
set of packets to recover a route. The cost of this change is that it would add
dlog2(`+ 1)e bits to the packets.

Of course, if ` is less than the true path length, then reconstruction finds
arbitrary subsequences of the path (not just suffixes as in Full Path encoding).
The victim still has some work to do to combine these subsequences properly
(as described in Savage et al. [2000]). Thus reconstruction in this scheme has
an algebraic step followed by a combinatorial step.

5. PSEUDOCODE FOR SAMPLE ALGEBRAIC SCHEMES

In this section, we present pseudocode for some sample algebraic marking
schemes that are based on the principles described in the previous section.
Recall that each router has a unique 32-bit ID.

5.1 Algebraic Edge Encoding

Here is the router’s pseudocode for Edge1, an algebraic edge encoding scheme.
Each packet is marked with 32 + dlog ne + 1 bits, where n is the number of x
values. The degree of the polynomial is one.

Edge1 Marking procedure at router R:
for each packet w

with probability p
w.xval := random;
w.yval := R;
w.flag := 1;

otherwise if w.flag = 1 then
w.yval := w.yval * w.xval + R
w.flag := 0

Here is Edge2, algebraic edge encoding with c chunks per hop. Each packet
is marked with d32/ce+ dlog ne+ 1 bits. The degree of the polynomial is 2c− 1.

Edge2 Marking procedure at router R:
for each packet w

with probability p
w.xval := random;
w.yval := R[c] w.xval^{c-1} + R[c - 1] w.xval^{c-2}

+ .. + R[1];

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

126 • D. Dean et al.

w.flag := 1;
otherwise if w.flag = 1 then

w.yval := w.yval * w.xval^c + R[c] w.xval^{c-1} +
R[c - 1] w.xval^{c-2} + ... + R[1];

w.flag := 0

Here is Edge3, which is identical to Edge2 except that each packet also has
a distance field (hop count). Following Savage et al. [2000], we reserve five bits
for the distance field. Each packet is marked with d32/ce+ dlog ne+ 6 bits. The
degree of the polynomial is 2c − 1.

Edge3 Marking procedure at router R:
for each packet w

with probability p
w.xval := random;
w.yval := R[c] w.xval^{c-1} + R[c - 1] w.xval^{c-2}

+ .. + R[1];
w.flag := 1;
w.dist := 0;

otherwise if w.flag = 1 then
w.yval := w.yval * w.xval^c + R[c] w.xval^{c-1} +

R[c - 1] w.xval^{c-2} + ... + R[1];
w.flag := 0;

w.dist := w.dist + 1

Here is Edge4, which is identical to Edge3 except that the second router
only contributes half of the bits of its router ID. This lowers the degree of the
polynomial, and introduces a little uncertainty into the reconstruction process
(if two routers at the same distance from the victim had router IDs that agreed
on all of the contributed bits). Each packet is marked with d32/ce + dlog ne + 6
bits. The degree of the polynomial is 1.5c − 1.

Edge4 Marking procedure at router R:
for each packet w

with probability p
w.xval := random;
w.yval := R[c] w.xval^{c-1} + R[c - 1] w.xval^{c-2}

+ .. + R[1];
w.flag := 1;
w.dist := 0;

otherwise if w.flag = 1 then
w.yval := w.yval * w.xval^{c/2} +

R[c/2] w.xval^{c/2-1} +
R[c/2 - 1] w.xval^{c/2-2} + ... + R[1];

w.flag := 0;
w.dist := w.dist + 1

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 127

5.2 Algebraic Full Path Encoding

Here is the router’s pseudocode for Full1, the full path encoding scheme. Each
packet is marked with 32 + dlog ne bits, where n is the number of possible x
values. The degree of the path polynomial is at most L, the length of the path.

Full1 Marking procedure at router R:
for each packet w

with probability p
w.xval := random;
w.yval := 0;

w.yval := w.yval * w.xval + R

Here is the router’s pseudocode for Full2, the full path encoding scheme
with a distance field (hop count). Following Savage, we reserve five bits for the
distance field, so each packet is marked with 37+ dlog ne bits.

Full2 Marking procedure at router R:
for each packet w

with probability p
w.xval := random;
w.yval := 0;
w.dist := 0;

w.yval := w.yval * w.xval + R;
w.dist := w.dist + 1

6. PATH RECONSTRUCTION BY THE VICTIM

In this section, we look more closely at the problem of path reconstruction by
the victim. Let k denote the number of attack paths. Let L denote the expected
length of an attack path. For simplicity, we assume that all attack paths are
very close to L in length.

For the main scheme of Savage et al. [2000] (which uses a total of 16 bits),
the complexity of path reconstruction by the victim is O(Lk8). The exponent
of eight reflects a combinatorial task that the victim must try by brute force.
Of course, if there were more room to work with in the marking scheme, then
the reconstruction complexity would go down. For example, if 23 bits were used
for the marking scheme (and the “padded” router ID divided into four 16-bit
chunks), then the victim’s reconstruction task reduces to O(Lk4).

Our goal is to design algebraic schemes that improve on the reconstruction
complexity of Savage et al. There are two main algebraic reconstruction ap-
proaches that we consider.

Reed–Solomon List Decoding. Given (x1, y1), . . . , (xN , yN) distinct points,
find all polynomials of degree at most d that pass through at least m of these
points. Guruswami and Sudan [1999] give an algorithm to solve this problem in
time O(N 3) when N <m2/d . An improvement by Olshevsky and Shokrollahi
[1999] reduces the time to O(N 2.5).

More precisely, the reconstruction algorithm due to Guruswami and Sudan
[1999] can be implemented in a number of ways. The most straightforward

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

128 • D. Dean et al.

implementation would take time O(n3d) to recover all edges for which we re-
ceived at least

√
dn out of n packets. However, this drops to O(n3) time by requir-

ing only slightly more packets:
√

dn(1+ δ) out of n, for any δ ≥ 1. By scaling δ
appropriately, this allows us to trade off computation time (and memory) for ac-
curacy. A recent algorithmic breakthrough by Olshevsky and Shokrollahi [1999]
would reduce our reconstruction time even further, to O(n2.5). Moreover, this
new algorithm is highly parallelizable (to up to O(n) processors), which suggests
that distributing the reconstruction task might speed things up even more.

Noisy Polynomial Interpolation. Given (x1, S1), . . . , (xn, Sn), where each Si
has size at most m, find all polynomials f of degree at most d such that f (xi) ∈
Si for all i. Bleichenbacher and Nguyen [2000] give an algorithm to solve this
problem whenever m < n/d , with running time identical to the Reed–Solomon
list decoding problem. They give other algorithms that work even when the
bound m < n/d is not met.

Types of Packets. Let us assume that each packet that the victim receives is
one of three possible types. A “true packet” contains a point on a polynomial that
corresponds to a real attack path. A “bogus packet” contains a point created by
an attacker outside the periphery, and never reset by any honest router along an
attack path. A “stray packet” contains a point on a polynomial that corresponds
to normal nonattack traffic. When a denial-of-service attack is underway, we
assume that the fraction of stray packets is very small compared to true and
bogus packets.

False Positives. A “false positive” is a polynomial that is recovered by the
reconstruction algorithm, but does not correspond to part of an actual attack
path. For Reed–Solomon list decoding, the expected number of false positives in
a random sample is about (N !/(m!(N −m)!)) ∗ (1/q)m−d−1. For noisy polynomial
interpolation, the expected number of false positives in a random sample is
about mn/qn−d−1. For the main scheme of Savage et al., the expected number
of false positives is about m8/232.

When the marking scheme has no distance field, then we must also be con-
cerned with “bogus edges” or “bogus paths” that the attacker can cause to appear
in our sample. We consider this separately from the issue of false positives that
arise at random.

A moderate number of false positives is not a serious problem. Consider
our marking scheme Edge3. The victim reconstructs a set of candidate edges
for each distance. Each set of candidate edges includes true edges and false
positive (but no bogus edges from the attacker assuming that no attacker is
within this distance from the victim). Now the victim attempts to assemble
paths by connecting edges from distance `with edges from distance `+1. There
is certainly no problem unless the first endpoint of a false positive edge from
some distance ` matches the second endpoint of a false positive or true edge
from distance `+ 1.

Let f be the expected number of false positives at each distance, and let k
be the number of true edges at each distance. Then there are f expected false
positives at distance `, and f + k expected false positives and true edges at

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 129

distance `+1. Let M be the number of distinct router IDs or partial router IDs
that are possible (e.g., 232 for Edge3). The probability of an accidental match
is less than 1 − ((M − f)/M) f +k which is very close to 1 − e− f (f +k)/M . (When
f is close to

√
M , this probability is unacceptably high.) The probability of an

accidental match at any distance is less than 1 − Le− f (f +k)/M , where L is the
length of the longest path.

We now analyze the effectiveness of these approaches to path reconstruc-
tion. For each approach, the best-known algorithms impose constraints on the
design parameters for our marking schemes. It is convenient for us to consider
separately marking schemes that have a distance field and marking schemes
that do not.

6.1 Reconstruction with a Distance Field

When the marking scheme has a distance field, the task of the victim is sim-
plified. The victim can select a sample of packets for which w.dist = `, for any
given `. As long as no attacker is within distance ` from the victim, this sample
will contain only true packets with points on polynomials that were last reset
by routers at distance `.

6.1.1 Guruswami–Sudan Reconstruction with a Distance Field. The path
reconstruction problem faced by the victim can be viewed as a Reed–Solomon
list decoding problem. The distinct points are chosen from a random sample of
the distinct points in packets that reach the victim.

The victim can filter out packets that were last reset at distance `, for every `.
This simplifies the Reed–Solomon list decoding problem, by creating a smaller
problem instance for each distance. We need N = nk packets from distance ` to
have n distinct points from each of k polynomials. The victim collects the largest
possible sample of distinct points from packets with w.dist = ` for every `. We
need N <n2/d to reconstruct the polynomials using the Guruswami–Sudan al-
gorithm. Lastly, we need N 2.5< k8 for the efficiency of reconstruction to improve
on Savage et al.

This has at least a few solutions, but the improvements are not so compelling.
For example, using Edge3 with three 11-bit chunks can be competitive with
Savage et al. for certain values of k.

6.1.2 Bleichenbacher–Nguyen Reconstruction with a Distance Field. The
problem faced by the victim can be viewed as a noisy polynomial interpolation
problem. The values x1, . . . , xn are all of the possible x values. Each set Si
contains all of the distinct y values such that (xi, y) occurs in some packet
within a random sample of all received packets. The polynomial f could be any
of the polynomials that corresponds to a true attack path or a stray path.

The victim could proceed as follows. She looks at a sample of N packets (for
suitably large N), and for each xi chooses a set Si of size m from all of the (xi, y)
points in the sample. If the number of distinct y values for which (xi, y) occurs
in the sample is greater than m, then the victim chooses which m values to
include in Si at random.

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

130 • D. Dean et al.

The victim can filter out packets that were last reset at distance `, for every
`. This creates a smaller problem instance for each distance. For each problem
instance, the number of Si sets is equal to n, the number of possible x values. The
size of each Si is k, the number of attack paths. The degree of each polynomial
is at most d , which depends on the particular algebraic encoding method we
are using.

False Positives. There are kn ways of taking one x value from each set. Each
of these will actually be a polynomial of degree d or less with probability at
most 1/qn−d−1. Here q is the size of the finite field, which is essentially the
number of distinct y values. We need the expected number of false positives
kn/qn−d−1 to be reasonably small.

For the basic reconstruction algorithm of Bleichenbacher–Nguyen, we need
k<n/d . Three other algorithms by Bleichenbacher–Nguyen work for many
k, n, d even if they do not satisfy k<n/d .

—A “meet-in-the-middle” algorithm has running time (n − d)mn/2 with pre-
computation that uses memory which is O(mn/4 log q). Note that this is
independent of k.

—A “Grobner basis reduction” algorithm computes a Grobner basis reduction
on a system of k polynomial equations in d + 1 unknowns. The best known
Grobner basis algorithms are superexponential in d , but reasonably efficient
for small d (e.g., d < 20).

—A “lattice basis reduction” algorithm performs a lattice basis reduction on an
(nk−n+1)-dimensional lattice in Z nk over a finite field of size about n. This
method is ineffective for our application because the size of the finite field is
too small.

For efficiency over Savage et al., we need (nk)2.5 < k8. Here are some interesting
instantiations of our schemes with respect to this method of reconstruction.

Example 1. Edge3 encoding with 12 distinct x values (represented in a
4-bit xval field) and an 8-bit yval field. Then the noisy polynomial problem has
12 Si sets, where the size of each Si is k, the number of attack paths. The degree
of each polynomial is at most 7. The size of the finite field is 256. The meet-
in-the-middle algorithm takes time 8k6, which compares favorably to the k8

required by Savage et al. The Grobner basis reduction algorithm should also
be reasonably efficient here. The total size of this marking scheme is 18 bits.
However, the number of false positives is unacceptably high here: k12/232.

Example 2. Edge4 encoding with 12 distinct x values (in a 4-bit xval field)
and an 8-bit yval field. Then the degree of each polynomial is at most 5. The
running time for the meet-in-the-middle algorithm is about 8k6. The running
time for the Grobner basis reduction algorithm is faster than in the previous
example. The expected number of false positives is lower than in the previous
example: k12/248. If k = 16, then we expect about one false positive at each
distance. (Of course, the risk from false positives is slightly greater than in the
previous case, because the number of possible partial router IDs is only 222.
Thus there will be slightly more accidental matches of endpoints involving a

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 131

bogus edge, but it is not significantly worse.) The total size of this marking
scheme is 18 bits.

Example 3. Edge4 encoding with n= 10 (4-bit xval) and an 11-bit yval field
(q = 211). Then the degree of each polynomial is at most 4 (using 22 bits of
second router ID). Running time for meet-in-the-middle is about 6k5, versus
k8 for Savage et al. Number of false positives is about k10/255 versus k8/232

for Savage. For example, this is the expected 2−5 false positives for k = 32, or
32 false positives for k = 64, which are quite manageable. The total size of this
marking scheme is 21 bits.

Example 4. Edge4 encoding with n= 8 (3-bit xval) and an 11-bit yval
(q= 211). Degree of each polynomial is at most 4. Running time for meet-in-the-
middle is about 4k4. Number of false positives is about k8/233 (e.g., 1/2 when
k= 16, or 128 when k= 32). The total size of this marking scheme is 20 bits.

Example 5. Edge4 encoding with n= 12 (4-bit xval) and an 11-bit yval
(q= 211). Degree of each polynomial is at most 4. Running time for meet-in-
the-middle is about 8k6. Number of false positives is about k12/277 (e.g., 2−5

when k= 64, or 128 when k= 128, both of which are quite manageable). The
total size of this marking scheme is 21 bits.

6.2 Reconstruction Without a Distance Field

For reconstruction when the marking scheme does not have a distance field, we
do not achieve schemes that are competitive with Savage et al. [2000]. Our anal-
ysis begins with some facts and simplifying assumptions about the distribution
of received packets by the victim.

6.2.1 Distribution of Received Packets. Let Bi be the fraction of packets
arriving on the ith attack path that reach the victim as bogus packets. Let Ti
be the fraction of packets on the ith attack path that reach the victim as true
packets. Let Fi be the fraction of packets on the ith attack path that reach the
victim as true packets that were only reset by the farthest router on that path.
By Assumption 1, Bi + Ti = 1.

For all of the encoding schemes (unless marking mode is used), we have
Fi = p(1− p)L−1. Viewed as a function of p over [0, . . . , 1], this fraction takes on
its maximum value at p= 1/L. When p= 1/L, this implies that Fi = 1/(e(L−1)).

For all of the encoding schemes, we have Bi = (1− p)L. Then Bi = Fi(1− p)/p.
When p= 1/L, this implies that Bi = 1/e and Bi = (L−1)Fi. The fact that there
can be such a large fraction of bogus packets arriving on each path has serious
consequences for our marking schemes without a distance field.

Let B, T, F be the fractions of bogus packets, true packets, and farthest
packets for all paths to the victim. If we assume that the arrival rate of packets
on all attack paths is approximately the same, then Bi = B, Ti =T , and Fi = F
for all i.

When marking mode is used, the probability that a router is not in reset
mode is q= (1− p)τ . Then Fi = (1− q)qL−1, and Bi = (1− q)L.

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

132 • D. Dean et al.

Coupon Collector’s Bound: A sample of λC log C elements, drawn with replace-
ment from [1, . . . , C] according to the uniform distribution, is very likely to
contain all C possible values, for some small constant λ.

6.2.2 Guruswami–Sudan Reconstruction Without a Distance Field. The
victim can choose a random sample of distinct points in the packets that reach
him. Without a distance field, he cannot partition the packets into smaller
samples by last reset distance.

Assume that the routers are using an edge encoding scheme, and assume
that we succeed if we can reconstruct all of the farthest edge polynomials. Let
us also assume that we will search for polynomials that pass through n distinct
points, where n is the number of distinct x values.

There are actually several distinct levels of reconstruction success that can
be considered: (1) the sample of N points contains at least n points on every
farthest edge polynomial with overwhelming probability; (2) the sample of N
points contains at least n points on some farthest edge polynomial with over-
whelming probability; (3) the sample of N points contains at least n points on
some farthest edge polynomial with nonnegligible probability q.

For case (1), the Guruswami–Sudan algorithm needs to be applied only once
to a random sample of N points. For case (2), the algorithm needs to be applied
λk log k times to independent random samples of N points (coupon collector’s
problem on the set of k farthest edge polynomials). For case (3), the algorithm
needs to be applied λk log k/q times to independent random samples of N points.

For case (1), it suffices to have N ≥ (λnk log(nk))/(p(1−p)L−1). That is because
we are very likely to get a complete set of all n possible x values for all k
edge polynomials. This implies that λnk log(nk) “samples” are sufficient. By the
analysis of the preceding subsection, a “sample” from a farthest edge polynomial
is expected in 1/(p(1 − p)L−1) fraction of all of the packets. When combined
with the Guruswami–Sudan bound, we get n2/d > (λnk log(nk))/(p(1− p)L−1).
Assuming that p = 1/L, we have

n/λ log(nk) > λdk(L − 1)e.

For case (2), it suffices to have N ≥Mn,k/(p(1 − p)L−1), where Mn,k is the
answer to the following “occupancy problem.” Throw Mn,k balls into k bins, and
expect to find λn log n balls in the bin with the most balls. By the Pigeonhole
Principle, it is certainly true that Mn,k < λnk log n. In fact, the actual value for
Mn,k is quite close to this. Combined with the Guruswami–Sudan bound, we
get n2/d > λnk log n/(p(1− p)L−1). Assuming that p = 1/L, we have

λn/ log n > dk(L − 1)e.

For case (3), we can reduce the value of Mn,k a little, but it does not appear
to be significant for our purposes.

Of course, for any of (1) to (3), we can reduce N by eliminating from the
sample any duplicate points. Since as many as 1/e of all packets in the sam-
ple could be bogus packets from the attacker, removing duplicate points will
have limited benefit. We can find no solution that yields a marking scheme
that is more efficient than that of Savage et al. Moreover, for any plausible

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 133

instantiation, the number of false positives and bogus edges (or bogus paths) is
unacceptably high.

6.2.3 Bleichenbacher–Nguyen Reconstruction Without a Distance Field.
The victim can proceed as described at the start of Section 6.1.2, although with-
out a distance field the packets cannot be partitioned by last reset distance.

Suppose that N is chosen to be large enough that all of the points on some
farthest polynomial are included with high probability. The probability that a
given Si includes a point from f is at least m/n. The probability that recon-
struction succeeds is at least (m/n)n. The basic algorithm of Bleichenbacher and
Nguyen solves the noisy polynomial interpolation problem whenever m < n/k.

This approach does not seem too promising when k > 1. In this case, (m/n)n <

2−n. Thus reconstruction is unlikely to succeed.
When k = 1, the victim can choose m = n− c for some positive integer c. The

probability that reconstruction succeeds is at least (1 − c/n)n which is about
e−c. Unfortunately, either the number of false positives is unacceptably large,
or the success probability is unacceptably small.

Another approach would be to have the victim bias his sample with respect
to how frequently different points occurred in the packets that reached him.
Unfortunately, this does not appear to work well either. Since Bi = (L − 1)Fi,
the victim will not be able to recognize the true packets that contain points
from the farthest polynomials.

We conclude that when the marking scheme does not have a distance field,
we do not see how to use the Bleichenbacher–Nguyen method of polynomial
reconstruction, at least using their simplest algorithm. It is possible that their
other algorithms, for example, based on Grobner basis reduction, might be more
effective.

7. ENCODING PATH DATA

We now need a way to store our traceback data in IP packets. We try to max-
imize the number of bits available to us while preserving (for the most part)
backwards compatibility.

7.1 IP Options

An IP option seems like the most reasonable alternative for storing our path
information. Unfortunately, most current routers are unable to handle packets
with options in hardware [Bellovin 2000a]. Even if future routers had this abil-
ity, there are a number of problems associated with this approach as presented
by Savage et al. [2000]. For all these reasons we have concluded that storing
data in an IP option is not feasible.

7.2 Additional Packets

Instead of trying to add our path data to the existing IP packets, we could
instead send the data out of band using a new protocol that would encapsulate
our data. Although this may have limited uses for special cases (such as dealing
with IP fragments), a general solution based on inserting additional packets

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

134 • D. Dean et al.

Fig. 2. The IP Header. Darkened areas represent underutilized bits.

requires a means of authenticating these packets. This is because, presumably,
the number of inserted packets is many orders of magnitude less than the
number of packets inserted by the attacker. Thus, because we assume that an
attacker can insert any packet into the network, the victim can be deluged
with fake traceback packets, preventing any information to be gained from the
legitimate packets.

7.3 The IP Header

Our last source of bits is the IP header. There are several fields in the header
that may be exploited for bits, with varying tradeoffs. As shown in Figure 2, we
have found 25 bits that might possibly be used.

7.3.1 The TOS Field. The type of service field is an 8-bit field in the IP
header that is currently used to allow hosts a way to give hints to routers as to
what kind of route is important for particular packets (maximized throughput
or minimized delay, for example) [Almquist 1992]. This field has been little
used in the past, and, in some limited experiments, we have found that setting
this field arbitrarily makes no measurable difference in packet delivery. There
is a proposed Internet standard [Nichols et al. 1998] that would change the
TOS field to a “differentiated services field.” Even the proposed DS field has
unused bits, however, there are already other proposed uses for these bits (e.g.,
Ramakrishnan and Floyd [1999]).

7.3.2 The ID Field. The ID field is a 16-bit field used by IP to permit re-
construction of fragments. Naive tampering with this field breaks fragment
reassembly. Since less than 0.25% of all Internet traffic are fragments [Stoica
and Zhang 1999], we think that overloading this field is appropriate. A more in-
depth discussion of the issues related to its overloading can be found in Savage’s
work [Savage et al. 2000].

7.3.3 The Unused Fragment Flag. There is an unused bit in the fragment
flags field that current Internet standards requires to be zero. We have found
that setting this bit to one has no effect on current implementations, with the
exception that when receiving the packet, some systems will think it is a frag-
ment. The packet is still successfully delivered, however, because it looks to
those systems as though it were fragment 1 of 1.

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 135

Our Selection. We could choose to use up to 25 bits out of the ID, flag, and
TOS fields. This would suffice for all of the examples given in Section 6.1.2. The
implications of using multiple fields in the IP header simultaneously are mod-
est, since the lost functionality appears to be the union of what would break due
to overwriting each field separately. The impact on header checksum calculation
is modest, as this can be done in hardware using the standard algorithm.

Of course, the algebraic marking scheme is independent of the choice of bits.
The decision of where to put the marking data must be seen as conditional,
subject to change as new standards arise.

7.4 IPsec

The interoperability of a traceback scheme with IPsec should be considered.
The encapsulated security payload (ESP) [Kent and Atkinson 1998b], which
encrypts a datagram for confidentiality, provides no problem for a traceback
scheme, as it does not assume anything about the surrounding datagram’s
headers. The authentication header (AH) [Kent and Atkinson 1998a], does
present an issue for IPv4. Using the AH, the contents of the surrounding
datagram’s headers are hashed. Certain header fields are considered mutable
(e.g., Fragment Offset), and not included in the hash computation. Unfortu-
nately, the mutable fields in the IPv4 header are unusable for traceback: they
either are necessary for basic IP functionality, or reusing them breaks backward
compatibility with current IP implementations.

7.5 IPv6

Since IPv6 does not have nearly as many backwards compatibility issues as
IPv4, the logical place to put traceback information is a hop-by-hop option in
the IPv6 header [Deering and Hinden 1998]. However, schemes such as those
presented here are still valuable because they use a fixed number of bits per
packet thereby avoiding the generation of fragments. Unlike the case in IPv4,
we can set the appropriate bit in the Option Type field to indicate that the data
in the option are mutable, and should be treated as zero for the purposes of the
authentication header.

We have not worked out the best way to accommodate IPv6’s 128-bit ad-
dresses, but note that due to alignment issues, one is likely to select an option
length of 8n+ 6 bytes, n ≥ 0. It would likely be the case that 0 ≤ n ≤ 4.

8. CONCLUSION AND FUTURE WORK

We have presented a new algebraic approach for providing traceback infor-
mation in IP packets. Our approach is based on mathematical techniques that
were first developed for problems related to error-correcting codes and machine
learning. Although we have proposed it in the context of a probabilistic packet
marking scheme, our algebraic approach could also be applied to an out-of-
packet scheme. The resulting scheme would have the desirable property of
allowing multiple routers to act on the extra packet while it remains at a small
constant size. Our marking schemes have applications for other network man-
agement scenarios besides defense against denial of service.

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

136 • D. Dean et al.

One important open problem is to find better instantiation of the specific
methods we have proposed. In particular, a successful approach based on full
path tracing would be attractive. More generally, it would be interesting to
explore resource and security tradeoffs for the many parameterizations of our
schemata. Lower bounds on the size of any marking scheme would be most
helpful. It would also be interesting to explore the use of algebraic geometric
codes in marking schemes.

ACKNOWLEDGMENTS

We would like to thank David Goldberg and Dan Boneh for valuable discus-
sions. We would also like to thank Dawn Song, Adrian Perrig, Ramarathnam
Venketesan, Glenn Durfee, and the anonymous referees for helpful comments
on earlier versions of this article. The authors wish to thank Xerox PARC for
its support of this work that began while the authors were employed there.

REFERENCES

ALMQUIST, P. 1992. Type of service in the internet protocol suite. RFC 1349.
AR, S., LIPTON, R. J., RUBINFELD, R., AND SUDAN, M. 1992. Reconstructing algebraic functions from

mixed data. In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science
(Pittsburgh, Oct. 24–27), IEEE, Los Alamitos, Calif., 503–512.

BELLOVIN, S. M. 2000a. Personal communications.
BELLOVIN, S. M. 2000b. ICMP traceback messages. Available at http://www.research.att.

com/∼smb/papers/draft-bellovin-itrace-00.txt.
BERLEKAMP, E. AND WELCH, L. 1986. Error correction of algebraic block codes. US Patent 4,490,811.
BERLEKAMP, E. R. 1984. Algebraic Coding Theory. Aegean Park Press.
BLEICHENBACHER AND NGUYEN. 2000. Noisy polynomial interpolation and noisy Chinese remain-

dering. In Advances in Cryptology—Eurocrypt 2000, Springer-Verlag, New York.
BURCH, H. AND CHESWICK, B. 2000. Tracing anonymous packets to their approximate source. In

USENIX LISA 2000 (New Orleans, Dec.). USENIX.
COMPUTER EMERGENCY RESPONSE TEAM. 1999. CERT coordination center denial of service attacks.

Available at http://www.cert.org/tech tips/denial of service.html.

DEERING, S. AND HINDEN, R. 1998. Internet protocol, version 6 (IPv6) specification. RFC 2460.
DITTRICH, D. 1999a. The “Stacheldraht” distributed denial of service attack tool. Available at
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt.

DITTRICH, D. 1999b. The “Tribe Flood Network” distributed denial of service attack tool. Available
at http://staff.washington.edu/dittrich/misc/tfn.analysis.

DOEPPNER, T., KLEIN, P., AND KOYFMAN, A. 2000. Using router stamping to identify the source of
IP packets. In Proceedings of the Seventh ACM Conference on Computer and Communications
Security (Athens, Nov.). ACM, New York.

FERGUSON, P. AND SENIE, D. 1998. Network ingress filtering: Defeating denial of service at-
tacks which employ IP source address spoofing. RFC 2267. Available at http://www.ietf.

org/rfc/rfc2267.txt.
GURUSWAMI, V. AND SUDAN, M. 1999. Improved decoding of Reed–Solomon and algebraic-geometric

codes. IEEE Trans. Inf. Theor. 45, 1757–1767.
KENT, S. AND ATKINSON, R. 1998a. IP authentication header. RFC 2402, Available at
http://www.ietf.org/rfc/rfc2402.txt.

KENT, S. AND ATKINSON, R. 1998b. IP encapsulating security payload (ESP). RFC 2406, Available
at http://www.ietf.org/rfc/rfc2406.txt.

KNUTH, D. E. 1997. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Mass.

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

An Algebraic Approach to IP Traceback • 137

LEE, H. AND PARK, K. 2001. On the effectiveness of probabilistic packet marking for IP traceback
under denial of service attack. In Proceedings of IEEE INFOCOM 2001 (Anchorage, April), IEEE,
Los Alamitos, Calif.

NICHOLS, K., BLAKE, S., BAKER, F., AND BLACK, D. 1998. Definition of the differentiated services
field (DS field) in the IPv4 and IPv6 headers. RFC 2474.

OLSHEVSKY, V. AND SHOKROLLAHI, M. A. 1999. A displacement approach to efficient decoding of
algebraic-geometric codes. In Proceedings of the 31st Annual ACM Symposium on Theory of
Computation (Atlanta, Ga., May), ACM, New York, 235–244.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING, W. T. 1992. Numerical Recipes in
FORTRAN: The Art of Scientific Computing. Cambridge University Press, New York.

RAMAKRISHNAN, K. AND FLOYD, S. 1999. A proposal to add explicit congestion notification (ECN) to
IP. RFC 2481.

SAVAGE, S., WETHERALL, D., KARLIN, A., AND ANDERSON, T. 2000. Practical network support for IP
traceback. In Proceedings of the 2000 ACM SIGCOMM Conference (August).

SONG, D. AND PERRIG, A. 2000. Advanced and authenticated marking schemes for IP traceback.
Tech. Rep. UCB/CSD-00-1107 (June), University of California, Berkeley.

STOICA, I. AND ZHANG, H. 1999. Providing guaranteed services without per flow management. In
Proceedings of the ACM SIGCOMM ’99 (Cambridge, Mass.), 81–94.

SUDAN, M. 1997a. Algorithmic issues in coding theory. In Proceedings of the Seventeenth Con-
ference on Foundations of Software Technology and Theoretical Computer Science (Kharagpur,
India).

SUDAN, M. 1997b. Decoding of Reed Solomon codes beyond the error-correction bound.
J. Complex. 13, 1 (March), 180–193.

Received April 2001; revised January 2002; accepted January 2002

ACM Transactions on Information and System Security, Vol. 5, No. 2, May 2002.

