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ABSTRACT
We present a new approach to IP traceback based on the
probabilistic packet marking paradigm. Our approach,
which we call randomize-and-link, uses large checksum
cords to “link” message fragments in a way that is highly
scalable, for the checksums serve both as associative ad-
dresses and data integrity verifiers. The main advantage
of these checksum cords is that they spread the addresses
of possible router messages across a spectrum that is too
large for the attacker to easily create messages that col-
lide with legitimate messages. Our methods therefore
scale to attack trees containing hundreds of routers and
do not require that a victim know the topology of the
attack tree a priori. In addition, by utilizing authenti-
cated dictionaries in a novel way, our methods do not
require routers sign any setup messages individually.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols.
General Terms: Algorithms, Management, Security.

Keywords: denial-of-service, traceback, packet marking.

1. INTRODUCTION
Internet denial-of-service (DOS) attacks are a serious

problem. Recent analysis, by Moore et al. [13], shows
that there are an average of at least 4,000 denial-of-
service attacks per week on the Internet. Moreover, their
analysis showed that 50% of attacks have an intensity
of at least 1,000 packets per second, that 25% have an
intensity of at least 5,000 packets per second, and that
some attacks have intensities in excess of 500,000 packets
per second. Most attacks last at least 10 minutes, 10%
last more than an hour, and 2% last at least 5 hours
(some even last days). The volume of packets received
in a DOS attack is, by its very nature, overwhelming.
For example, in a 10-minute attack at 5,000 packets-
per-second, a DOS victim will receive 3 million packets.
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Moore et al. note that even DOS-hardened firewalls can
be disabled at packet rates in excess of 14,000 packets-
per-second. Simply put, there is little existing deterrent
against DOS attacks and prevention of DOS attacks is
not foolproof. Therefore, we desire ways of tracing DOS
attacks back to their source(s), so as to employ packet-
blocking and law-enforcement techniques against them.

1.1 Modeling the Problem
One of the insidious aspects of a denial-of-service at-

tack is that it uses the strength of routers—to move
packets quickly—against the victim. This aspect of DOS
attacks is especially troubling in the case of a distributed
denial-of-service (DDOS) attack, where many different
hosts are compromised and used as “zombies” to fire
packets at the victim. In this case, the attack packets
proceed to the victim not in a single path, but through
a tree. Thus, in order to model DDOS attacks, we con-
sider the attack as propagating in a tree T , where the
root of the tree T is the victim, V , each internal node in
T corresponds to a router X on the Internet, and each
leaf in T is a (possibly compromised) attack host. Thus,
T is a subtree of the Internet, where we are modeling
only the inflow of packets to V . In fact, from the per-
spective of V , the tree T is a subtree of a much larger
universal tree U that consists of the union of all routes
to V in the Internet. For any internal node X in T ,
other than the root, we therefore sometimes refer to the
parent of X as X’s downstream neighbor. Likewise, the
children of a node X in T are sometimes called X’s up-
stream neighbors. Our goal in the traceback problem is
to identify the internal nodes1 of the tree T . That is, we
wish to identify the internal nodes in the universal tree
U that correspond to routers unwittingly serving in the
attack tree T to send attack packets to the victim V .
In addition, we specifically want to exclude from T any
routers that are not part of the attack. Moreover, so
as to traceback large-scale distributed denial-of-service
attacks, we desire solutions that allow for efficient trace-
back even if T contains hundreds of routers.

1One could also consider the version where we also iden-
tify the leaves of T , but identifying internal nodes is sim-
pler and sufficient—since ISPs control routers whereas
administration of hosts is not consolidated. Therefore,
we focus on the problem of identifying internal nodes in
T .
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We model the attacker as an adversary, A, who can
compromise hundreds of hosts and use them as “zom-
bies” in a DDOS attack. We allow that A may have
knowledge about our traceback algorithms, and that he
can even try to design his DDOS attack so as to confuse,
break, or delay our algorithms. In so doing, A can make
it difficult for us to identify some of the routers in the
attack tree T . Specifically, if he succeeds in having us
miss a router in T , then we say that we have made a
false-negative identification. In addition, we allow that
A may know the IP addresses of routers in the Internet;
hence, he can try to trick us so as to implicate routers
not in T . If we therefore identify a router X as belong-
ing to the attack tree T , when X is in fact not in T , then
we say that we have made a false positive identification.
Clearly, we desire algorithms that minimize the number
of false-negative and false-positive identifications.
A major challenge in the IP traceback problem is that

there are approximately 200 million hosts on the Inter-
net (e.g., see www.netsizer.com); hence, the universal
tree U for a potential victim V has 200 million leaves.
Conservatively assuming that there is a router for ev-
ery 200 hosts on the Internet, we therefore estimate the
number of routers (internal nodes) in U to be at least
one million. Thus, in practical terms, solving the IP
traceback problem amounts to correctly identifying a
few hundred of the million internal nodes in U as be-
longing to the attack tree T . Ideally, we would like to do
this identification without requiring any a priori knowl-
edge of the universal tree U on the part of the victim
V , for such information could be difficult to obtain and
maintain.
Finally, we desire solutions to the IP traceback prob-

lem that are fast and efficient. We prefer solutions that
minimize the amount of additional traffic on the Inter-
net needed to solve the traceback problem or create an
infrastructure for solving it. Likewise, we want to allow
for incremental adoption by routers in any new infras-
tructure needed for traceback, and we want to minimize
the amount of state that must be maintained by routers.
In addition, the computations needed on the part of the
victim to reconstruct the attack tree T should be fast
enough so that V can quickly reconstruct T . The main
objective of a DOS attack is to consume resources, so
our solutions to the IP traceback problem should them-
selves not contribute to that goal.

1.2 Previous Related Work
There are several existing approaches to the IP trace-

back problem (e.g., see Baba and Matsuda [3], Park and
Lee [16], or Savage et al. [19]). We review some related
approaches below.

Pattern-based Filtering and Hop-by-hop Tracing. In
some cases, such as in reflector-based DDOS attacks [17],
we can use patterns in the attack packets to filter out
DDOS packets at a firewall. Likewise, the approach of
hop-by-hop tracing, which is also known as link testing,
uses a pattern-based approach to do traceback of a DOS
attack while it is in progress. This is the approach of the
automated Pushback mechanism [10], for example, and
it is the solution currently supported manually by many

router manufacturers. In this approach, a network ad-
ministrator or his/her agent logs into the routers nearest
the victim, and using statistics and pattern analysis, de-
termines the next upstream routers in the attack tree T .
The approach is then repeated at the upstream routers
for as long as the attack continues. This scheme there-
fore requires immediate action during the attack, and
requires considerable coordination between network ad-
ministrators (to either communicate directly or setup
access points for the agents of partnering administra-
tors). This technique also requires some pattern-based
way to separate legitimate packets from attack packets.
A similar approach is used by Burch and Cheswick [5]
to perform traceback by iteratively flooding from V por-
tions of the Internet to see its effects on V ’s incoming
traffic. Unfortunately, because of their iterative nature,
these approaches have limited traceback capabilities in a
large-scale DDOS. In addition, they have limited foren-
sic appeal, since they can only be used while the attack
is occurring.

ICMP Messaging. An alternative approach, based on
ICMP messaging [4], is to have each router X decide,
with some probability q (typically, q = 1/20000 is men-
tioned), for each packet P to send an additional ICMP
packet to the destination, which identifies X and some
content of P . The main idea of this approach is that dur-
ing a DDOS, a sufficient amount of attack packets will
trigger ICMP messages from the routers in the attack
tree T so that the victim can reconstruct T from these
messages. The main drawback of this approach is that it
causes additional network traffic even when no DDOS is
present. Even so, it is not efficient, for identifying all the
n internal nodes in the attack tree T requires, according
to the analysis of the coupon collectors problem (e.g.,
see Motwani and Raghavan [14]), an expected number
of nHn/dq packets to arrive at the victim, where Hn is
the n-th Harmonic number and d is the average depth
of T . For example, if d = 20 and n = 1000, then the
expected number of attack packets needing to arrive at
the victim V before V will have sufficient information
to reconstruct T is 7.5 million.

Logging. In addition to the hop-by-hop and ICMP
messaging approaches, several researchers have advo-
cated a logging approach to the IP traceback problem.
In a logging solution, we either ask routers to log the
packets they process or we augment the data packets
themselves to contain a full log of all the routers they
have encountered on their way to their destinations [18].
Stone [22] and Baba and Matsuda [3] advocate logging
of packet information at the routers, and Snoeren et
al. [20] propose the logging of message digests of pack-
ets at the routers. With any of these solutions, a victim
queries routers or their storage agents to see whether
they sent suspect attack packets. The drawback with
these approaches is that they require additional storage
at the routers. They also require a way of publishing
the data stored at routers in a timely manner (which
itself could become a performance bottleneck or DOS
vulnerability).

Probabilistic Packet Marking. An intriguing alterna-
tive solution to the IP traceback problem is probabilis-
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tic packet marking. This traceback approach, which we
follow in this paper, can be applied during or after an
attack, and it does not require any additional network
traffic, router storage, or packet size increase.
Probabilistic packet marking was originally introduced

by Savage et al. [19]. In this approach to the IP trace-
back problem, each router X performs, for each packet
it processes, an information injection event that occurs
with a set probability p (e.g., p = 1/20). The infor-
mation injection involves using b bits in the IP header
that are typically not used or changed by routers (they
identify the 16-bit IP identification field). They use 5
bits of this field for a hop count, which helps their re-
construction algorithm. The remaining bits are used for
the message MX that the router X wishes to send. If
that message is too big, they break it into fragments
and use the b − 5 bits of usable IP header to store a
fragment offset and its data fragment. By then includ-
ing a hash interleaved with the message MX , the victim
can reconstruct MX from the packets it receives during
the DOS attack. Their algorithm is quite interesting, as
it introduces the packet marking framework, and does
not require a priori knowledge of the universal tree U .
But their algorithm, unfortunately, is not practical for
large distributed denial-of-service attacks. In particu-
lar, their algorithm for reconstructing a message MX

from a router at distance d from the victim requires nl
d

checksum tests, where nd is the number of routers in T
at distance d from V and l is the number of fragments
messages have been divided into (and this bound gen-
erously assumes there are no “noise” packets from the
adversary). For example, if nd = 30 and l = 8, then the
victim has to perform over 650 trillion checksum tests
in order to reconstruct each of the 30 messages. Such
a computation is, of course, not feasible for the victim,
and even if it were, it would introduce many false pos-
itives. Moreover, this scheme is easily spoofed by an
adversary that knows this algorithm.
Song and Perrig [21] improve the performance of prob-

abilistic packet marking and suggest the use of hash
chains [12] for authenticating routers. They also use
a 5-bit distance field, but they do not fragment router
messages. Instead, they assume the victim knows the
universal tree U , and they include a (b − 5)-bit XOR
of hashed message authentication codes (HMACs) from
each router X and its downstream neighbor Y . Once
a time-released key is revealed, which is a computation
performed out-of-band, the victim uses his/her knowl-
edge of U and the revealed keys to determine which
routers have marked the given packets. The computa-
tion proceeds breadth-first from V , so that each phase
requires nd−1Nd HMAC tests, where nd−1 denotes the
number of routers in T at distance d−1 from V and Nd

denotes the number of routers in the universal graph U
at distance d from V . For example, if nd−1 = 50 and
we conservatively estimate that the number of routers in
U at distance d is 100,000, then their algorithm would
perform 5 million HMAC tests to determine the routers
at distance d in T . Summing over distances d = 5 to
d = 25 (and assuming that near-by tests are faster), im-
plies a total of at least 100 million HMAC tests, which

is several orders of magnitude better than a similar re-
construction in the Savage et al. approach. Such a com-
putation is still a great effort for the victim, of course,
but it is at least feasible. Unfortunately, using an 11-bit
HMAC implies that over 45,000 of these tests will be
validated at random. Thus, the authentication aspects
of their algorithm has scalability issues in addition to
the drawback of requiring knowledge of U .
Dean et al. [7] introduce an interesting algebraic ap-

proach to probabilistic packet marking. In their scheme
a router X will mark the b reusable bits of a packet
with probability p, as in the previous schemes, but the
marking information is the value of a linear polynomial
with X’s identity as its leading coefficient. Any sub-
sequent router Y not initiating a similar computation
nevertheless changes the b-bits by performing an itera-
tion of Horner’s rule to create an evaluation of a new
polynomial having the IP addresses of the routers on
the path from X to Y as its coefficients. Thus, in order
to reconstruct each path in the attack tree, the victim
must perform polynomial interpolation with noise on the
packets it has received. Dean et al. identify 25 bits in
the IP header that can be used for marking, namely, 16
bits from the ID field used in fragmentation (which is
used only 0.25% of the time), 8 type-of-service bits, and
one flag bit (which is also used in fragmentation). They
describe several algorithms for polynomial interpolation
with noise for reconstructing paths of T . Their schemes
do not require knowledge of the universal tree U . Un-
fortunately, their schemes do not easily lend themselves
to authentication (without requiring knowledge of U).
Moreover, the interpolation-with-noise algorithms are
complex and slow for large distributed denial-of-service
attacks (e.g., when T contains hundreds of routers), for
in such cases the amount of “noise” far exceeds the in-
terpolation data (some of which could have been forged
by the adversary).
In addition to the above packet marking algorithms,

Adler [1] and Park and Lee [16] study tradeoffs for var-
ious parameters in probabilistic packet marking.

1.3 Our Results
In this paper we introduce a novel approach to prob-

abilistic packet marking, which we call the randomize-
and-link approach, that greatly improves the practical-
ity and security of probabilistic packet marking. The
main idea of our approach is to have each router X
fragment its message MX into several words and in-
clude in the b reusable bits such a word fragment at
random together with a large checksum cord on the en-
tire message MX . For example, if b = 25, we may wish
to include 14 bits of a checksum cord in every marked
packet. Such an approach to packet marking may at first
seem counter-intuitive, for we are apparently wasting a
large amount of “real estate” in the precious b bits. But
the checksum cords make the reconstruction algorithm
much more efficient. The checksum cords serve both as
associative addresses for the router messages and also as
partial integrity validators. They also spread the spec-
trum of possible messages across a large domain, which
significantly reduces the ability of the adversary to in-
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terject false messages that collide with legitimate ones.
As we will show, such an approach can easily recon-
struct 8-fragment messages or higher, from hundreds of
routers, even when the adversary is injecting packets
meant to confuse or slow-down our algorithm. In addi-
tion, by including reasonably-large HMAC information
in the message MX , we can achieve unpredictability for
these checksum cords, which makes the adversary’s job
harder, while also providing moderate-to-strong authen-
tication of the routers in the attack tree T . Moreover,
our algorithms do not require any knowledge of the uni-
versal tree U , and we avoid the requirement of having
routers sign individual setup messages by employing au-
thenticated dictionaries [2, 6, 8, 9, 15] for the out-of-
band validations. We describe our methods in the sec-
tions that follow.

2. EFFICIENT PACKET MARKING
Let b denote the number of bits in the IP header that

we can safely use to encode information from a router.
For example, we may wish to use b = 25, as advocated by
Dean et al. [7]. Indeed, we will use b = 25 as a running
example throughout most of this paper. Still, even if
one does not use the 8 type-of-service bits (which are
being advocated for differentiated services), we would
still have b = 17 (and we give some examples using this
value for b as well). In either case, we may sometimes
upset packet fragmentation2, but the frequency of use
of fragmentation is arguably below typical packet loss
rates [7].

2.1 High-Level View
Our scheme for sending to V the message MX from

each routerX in the attack tree is based on using a tech-
nique that we call randomize-and-link. The main idea of
this technique is to perform the following transformation
to MX :

1. Pad MX as needed to make |MX | a multiple of l,
which is a parameter in our algorithm.

2. Compute a reasonably large (and statistically ran-
dom) checksum C = C(MX) on the sequenceMX .
The checksum C(MX) should utilize randomness
in itself or MX , so that C(MX) is statistically
random (like a random hash function) and unpre-
dictable to the adversary (but not necessarily con-
fidential).

3. Break MX into a sequence W of non-overlapping
word fragments w0, w1, w2, . . . , wl−1.

4. Create a collection of blocks, which are used to
over-write the b bits, so bi = [i, C,wi].

We use these bi blocks to transmit the message MX to
the victim V . These pieces are not sent in any par-
ticular order, however. We call C = C(MX) the cord

2We will not completely destroy fragmentation, how-
ever, for our scheme will only overwrite the b seldom
used bits in the IP header with probability p.

for MX , as it will be used as both an associative ad-
dress for MX and a checksum to “link” all the pieces
of MX back together. Moreover, since the cord C is
statistically random and unpredictable to the attacker,
he cannot easily create false cords that would confuse
the reconstruction algorithm. This reconstruction algo-
rithm is therefore quite simple—given a collection of bi’s
with the same cord C, a victim simply tries all possible
ways of putting the bi’s back together in the right order,
using the checksum property of the cord C to eliminate
unintended sequences. Once the victim V has a valid
sequence of bi’s correctly constructed in order, V will
have built the message MX . We give the details below.

2.2 Randomize-and-Link Transmission
As mentioned above, we assume that the IP header al-

lows the reuse of some of its bits for the purpose of infor-
mation marking by routers. We partition the b reusable
bits in the IP header as follows:

• �log l� bits for the fragment index i
• c bits for the cord, which serves both as an asso-
ciative address and as a checksum

• h = b− c− �log l� bits for the data word wi.

For example, if b = 25 and l = 8, then we could use
�log l� = 3 bits for the index i, c = 15 bits for the
checksum C, and h = 7 bits for each data word wi.
As we will show in our analysis, the choices of these
parameters relate to the security and efficiency of our
approach.
We assume that either the function C() or MX itself

contain a sufficient number of bits that are essentially
random, so that the checksum value C(MX) is statisti-
cally random and unpredictable to the adversary. That
is, it is as unlikely as a random hash function with sim-
ilar output size for C(MX) = C(MY ) for two different
router messages MX and MY . In addition, C should
be unpredictable, so that it is difficult for the adversary
to compute C(MX) prior to its transmission to V . In
particular, we want C(MX) to be unpredictable to an
adversary who knows only the value of X (we assume
the adversary does not know all of MX). For example,
if MX does not contain sufficient randomness in itself,
we could pad MX with a random nonce, so that its cord
C = C(MX) has the desired randomness and unpre-
dictability properties.
Given the message MX , we pad to have size that is

a multiple of l. We then compute the c-bit checksum
(cord) C = C(MX) on MX , and we break MX into a
sequence W of l words w0, w1, w2, . . . , wl−1 of length h
bits each. We define a set of l blocks b0, b1, . . . , bl−1 so
that bi = [i, C,wi]. Note that the cord C is included
in every block bi. Indeed, it is the inclusion of the cord
C that links the blocks bi together, as it makes C an
associative address for the blocks.

2.3 Packet Marking
Once we have the blocks b0, b1, . . . , bl−1 defined for

a message MX , we proceed with probabilistic packet
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marking in the natural way. Namely, we define a prob-
ability parameter p (e.g., p = 1/20). With each packet
that X receives, we “flip a coin” with probability p. If
this coin comes up “tails” (an event that occurs with
probability 1 − p), then X simply forwards the packet
on to its destination as usual. Otherwise, if the coin
comes up “heads,” then X chooses one of its blocks bi
at random, inserts bi into the reusable bits of this packet
(updating the header checksum as needed), and forwards
this revised packet on to its destination.
This packet marking process continues until we choose,

for timeliness reasons, to change the message MX . At
such a time that we wish to change to a new MX ,
the router X repeats that above computation for the
bi blocks for the new message. The router then re-
peats the probabilistic packet marking for this new set
of blocks, until we decide yet another change is needed.
Thus, we keep very little state at a router in order
to implement the randomize-and-link packet marking
scheme. A router doesn’t even need to store the blocks
b0, b1, . . . , bl−1, so long as it has a fast way of generating
a bi at random. Moreover, note that the computational
overhead per packet is very small. In the default case,
when the “coin flip” is tails, the router’s work is the
same as when we were doing no packet marking at all;
hence, this scheme can be deployed incrementally. This
property contrasts with most previous packet marking
schemes [7, 19, 21], which require specialized additional
work even when routers are not marking packets.

2.4 Message Reconstruction
The message reconstruction algorithm is based on a

simple combinatorial process. Given a set of packets
received at the victim, we sort their b-bit blocks lexico-
graphically by their (C, i, wi) values, and remove dupli-
cates (interpreting values according to the same format
we used to store blocks in the IP header). This sorting
can be done, for example by a radix sort. Thus, we have,
for each distinct cord C, all the distinct blocks for this
cord ordered by their i-index. We let PC,i denote the set
of distinct packets that have cord C and fragment index
i. We then try all combinatorial combinations of the
blocks in PC,0 · PC,1 · · ·PC,l−1, computing a checksum
for each. We keep only those combinations that have a
checksum equal to the cord C. That is, we accept these
strings as being strong candidates as having been sent
from the routers (although we must recognize that some
of these may have been sent by the attacker). The total
running time, then, for this reconstruction algorithm at
the victim is proportional to the following quantity:

N +
X
C

lY
i=0

NC,i,

where N is the total number of packets and NC,i is the
number of distinct packets from this set with cord C and
fragment index i. As we show in Section 3, the expected
values of these quantities can be made quite reasonable,
even if there are a large number of routers in the attack
tree. For example, it is easy to observe that the expected
value of NC,i is (N

′+nl)/l2c, where N ′ is the number of

distinct packets received and n is the number of routers
in T .

2.5 Two-Phase Fragmentation
In the above discussion, we argued how fragmenting a

message into small blocks indexed (that is, linked) by a
large statistically-random checksum cord can be an ef-
fective means for sending a message to the victim that
is longer than b bits. In particular, fragmenting a mes-
sage into two, four, or eight word fragments can be an
efficient way to send a moderate-sized message to the
victim (say, on the order of 48 to 96 bits). Unfortu-
nately, if we have a larger-sized message (say, on the
order of 128 or 192 bits), eight fragments may not be
sufficient to send the message and still utilize a large
checksum cord (which is needed for both security and
message reconstruction). We can iterate our randomize-
and-link approach, however, to send larger messages. In
this subsection, we describe how to design a two-phase
fragmentation scheme for sending larger messages.
We begin as in our previous method. We take the mes-

sage M and subdivide it into l words, w0, w1, . . . , wl.
This subdivision should be done in such as way as to
preserve in each word wi the same degree of random-
ness as is present globally in the message M . Still, in
many cases where we want M to be reasonably large,
we may observe that each word wi is too big to be
transported with high confidence in a single data block.
So we further subdivide each word wi into m subwords
si,0, si,1, . . . , si,m. Given the value m and the size of the
subwords, we determine the number, c1, of checksum
bits that we can devote to sending the subwords in the
first round (given our fixed size of b bits per block). We
devote b− c1 −�logm� bits to the data in each subword
si,j . Thus, we can compose subwords to form bigger
blocks of m(b− c1−�logm�) bits. In order for these big
blocks to have the same security as the smaller blocks,
we should devote c2 = c1 − �logm� bits to a random
checksum cord for each of them, just as we did in our
single-phase approach. This factor is due to the fact that
the probability of collision between two distinct packets
in the first round is 1/m2c1 and this probability in the
second round is 1/lm2c2 , since every round-two word
was comprised of m round-one subwords. In addition,
we must also devote �log l� bits to a fragment number of
each index i. So, for each word wi we compute a c2-bit
checksum cord we wish to use in order to achieve high
confidence of message transmission for each word.
Data transmission in the two-level scheme is as in the

one-level scheme, except that now when a router decides
to interject a message into a packet it chooses one of its
many subwords, si,j at random and interjects this. Re-
construction of the message, of course, proceeds in two
phases. In the first phase we reconstruct all the candi-
date words wi and in the second phase we reconstruct
all the candidate messages. Thus, the running time for
message reconstruction in the two-phase scheme is pro-
portional to the following:

N +
X
C

mY
i=0

MC,i +
X
C

lY
i=0

NC,i,
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where N is the total number of packets the victim is
using for reconstruction, MC,i is the number of distinct
phase-one blocks from this set with cord C and fragment
index i, and NC,i is the number of distinct phase-two
blocks with cord C and fragment index i. In the analysis
section that follows, we show that these quantities can
be quite reasonable, provided that there are a sufficient
number of bits devoted to the checksum cords.

3. ANALYSIS
In this subsection, we analyze the randomize-and-link

approach to probabilistic packet marking. We give this
analysis parameterized by the various values, such as N ,
l, and c, and we also give specific analyses for various
values assuming we have b = 25 or b = 17 bits that can
be used in an IP header for message transmission.

3.1 Number of Packets Needed
We begin our analysis by estimating the number of

packets that are needed for traceback in our single-phase
method. Let n denote the number of routers in the
attack tree T , and recall that l is the number of words
in the message MX each router X wishes to transmit
to the victim V . Thus, the victim wishes to receive nl
distinct packets if we are to reconstruct the messages
from all the routers in T .
Let p denote the probability that a router injects its

information in a packet. So, p(1−p)d−1 is the probability
that a packet is marked and arrives unchanged from a
router that is d hops away from V . If we conservatively
assume that all routers have their packets successfully
delivered with probability at least that of the farthest
routers, then we can safely estimate that the information
from some router in the attack tree will be contained in
a packet received by the victim with probability at least
dp(1− p)d−1, where d is the maximum hop-distance for
any such router.
Since every router must successfully send l different

blocks for all of its information to arrive at the victim,
the expected number of packets that must be received
before all fragments have been received is an instance
of the coupon collectors problem [14], where the num-
ber of “coupons” is nl and the probability of receiving a
marked packet is dp(1−p)d−1. This observation implies
that the expected number of packets that must arrive
at the victim before it can perform a complete trace-
back of all n routers is nlHnl/dp(1− p)d−1, where Hn

denotes the n-th Harmonic number. Using an inequality
for Hn from Knuth [11], Hn < lnn + γ + 1/2n, where
γ = 0.5772156649... is Euler’s constant. Thus, the ex-
pected number of packets that must arrive at V before it
can perform a complete traceback of n routers using our
scheme is at most (nl ln(nl) + γnl + 1)/dp(1− p)d−1. For
example, if p = 1/20, d = 20, n = 1000, and l = 8, then
the expected number of needed packets to do reconstruc-
tion of all the router messages is 76516, not considering
the packet marking probability dp(1 − p)d−1. Dividing
this expectation by the packet marking probability in
this case implies that the expected total number of pack-
ets needed by the victim to do complete reconstruction
of all messages is 202770. Moreover, we can assume that

the attacker’s packets arrive at the victim with proba-
bility (1− p)d, which is approximately 36% of the time
in this example. Thus, in this example, we could expect
that victim received unchanged from the attacker 72690
the 202770 expected packets the victim needs for attack
tree reconstruction. Note that there are only nl dis-
tinct packets that come from the routers in the attack
tree. Thus, in this example, we should not expect to
have to consider more than 80690 distinct packets during
the message reconstruction phase of the randomize-and-
link algorithm (72690 “noise” packets and 8000 message
packets). Note that this is roughly equal to the expected
number of packets needed without consideration of the
packet marking probability. Contrast this, for example,
with an ICMP messaging solution, which would require
that the victim receive at least 7.5 million attack pack-
ets before it could expect to identify all the participating
routers (assuming d = 20 and the ICMP injection prob-
ability is 1/20000).
The analysis of the two-phase version of the randomize-

and-link algorithm is similar to that given above for
the single-phase version. The main difference is that in
the two-phase algorithm we wish to receive, from each
router, l words subdivided intom subwords. That is, we
wish to receive lm packets from each router. Thus, the
expected number of packets we have to receive in order
to do complete traceback is nlmHnlm/dp(1− p)d−1.

3.2 Analysis of Message Reconstruction
Let us address next the expected running time needed

to reconstruct all the messages received by the victim.
We give the analysis first for our single-phase algorithm,
and we then explain the slight differences for our two-
phase algorithm.
The important observation in analyzing the expected

running time of the message reconstruction algorithm is
that, since the checksum cords are statistically random,
we can view the mapping of messages to checksum in-
dices as a random hash function. Thus, the number of
collisions among legitimate messages should be small.
Of course, the adversary might construct lots of fake
messages and then construct lots of collisions with these
messages, but let us ignore this possibility for the time
being (we will revisit this possibility shortly).
We begin with the reconstruction algorithm for our

single-phase scheme. Let N denote the number of dis-
tinct packets the victim has received and let n denote
the number of routers in the attack tree. Since there
are l pieces to each message and each one has a c-bit
checksum cord that is statistically random, the proba-
bility that two random packets have the same fragment
index i and cord C is 1/(l2c). In addition, the probabil-
ity that two router-sent packets have the same fragment
index i and cord C is at most 1/2c, since any router
wishing to send a message will send a packet with each
i-index for the checksum cord C it is using. Thus, the
expected number of packets with the same fragment in-
dex i and cord C is at most �N/(l2c) + n/2c�. For any
given cord C, then, the running time for computing all
combinatorial combinations of blocks with this cord is
proportional to Z = Z0Z1 · · ·Zl−1, where Zi is a ran-
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dom variable corresponding to the number of packets
with fragment index i (for this checksum cord C). Since
these Zi’s refer to different fragment indices, they are
independent; hence, the expected value of their product
is equal to the product of their expected values. That is,
the expected running time for checking all the combina-
tions for a given checksum cord C is �(N + ln)/(l2c)�l.
Summing this expectation over the at most N possible
cord values, we see that the expected number of check-
sum tests in the message reconstruction phase is�

N

l

��
N + ln

l2c

�l

,

where the N/l bound comes from the fact that we have
to have at least l different fragments for a given check-
sum cord before we will have to perform an actual check-
sum test. So, for example, if N = 80000, l = 8, n =
1000, and c = 14, then the expected number of check-
sum tests the victim must make is only 10,000. Thus,
if the adversary acts in a completely random fashion,
there is little additional work that he can create for us
in our single-phase algorithm.
The adversary has little advantage in our two-phase

algorithm, as well, although the total number of pack-
ets needed in this case is somewhat greater than in the
single-phase approach. Specifically, in the two-phase al-
gorithm, each router sends a total of lm fragments. The
victim first assembles these as m-length subwords, and
then assembles the l words produced from this recon-
struction. If the first phase uses c1-bit checksum cords
and the second phase uses c2-bit checksum cords, then
the expected number of checksum tests for the two-phase
algorithm is�

N

m

��
N + nlm

m2c1

�m

+

�
N

lm

��
N + nlm

lm2c2

�l

.

The arguments justifying this bound are similar to those
above, but applied twice. So, for example, if N = 80000,
l = 8, m = 4, n = 250, c1 = 14, and c2 = 12, then
the expected number of checksum tests the victim must
make is 10,000.
Of course, the adversary may deliberately send false

messages to us that have valid checksum cords accord-
ing to our scheme. But the number of such messages is
limited, for the adversary must be limited to the same
coupon collector bounds as the legitimate routers in T .
To estimate the number of such false messages, let us
conservatively assume that the probability that a packet
arrives unchanged from the adversary is equal to the
probability that the victim receives a packet marked by
a router. Thus, the maximum number of false messages
the adversary can send is bounded by n, the number
of legitimate routers in the attack tree. Still, the adver-
sary may not only try to send us false message with valid
checksum cords. He may also send lots of extra packets
that have checksum cords that deliberately collide with
each other, so as to make us do extra wasteful work try-
ing in vain to find a combination of these word fragments
that have a checksum equal to this cord. Fortunately,
as we show in the next subsection, we can apply a prob-
abilistic packet filtering strategy to our algorithm that

significantly limits the amount of extra work the ad-
versary can force us to do in combining colliding word
fragments.

3.3 High Probability Packet Filtering
In this subsection, we derive a high-probability upper

bound on the running time of the message reconstruc-
tion algorithm, which is useful for identifying improba-
bly large numbers of collisions that are most likely de-
liberately sent by the adversary in an attempt to slow
down our traceback algorithm. Armed with this high-
probability bound, we can safely discard packets that
define an improbably large number of collisions in re-
constructing the blocks for a specific cord C. We derive
this upper bound somewhat indirectly, as it is easier to
derive bounds on summations of random variables than
it is on their products. Let us fix a checksum cord C,
and let Y = Z0 + Z1 + · · · + Zl−1, where Zi denotes
the number of distinct blocks with fragment index i and
cord C. We will bound Y and thereby derive a bound on
Z = Z0Z1 · · ·Zl−1. We will utilize the following Cher-
noff bound (e.g., see Motwani and Raghavan [14]):

Theorem 1 (Chernoff Bound Theorem): Let Y be
the sum of independent indicator (0/1) random vari-
ables, and let µ denote the expected value of Y . Then,

Pr(Y > (1 + δ)µ) <

�
eδ

(1 + δ)1+δ

�µ

.

Corollary 2: Let Y be the sum of independent indi-
cator (0/1) random variables, and let µ denote the ex-
pected value of Y . For any k > µ,

Pr(Y > k) <
ek−µµk

kk
.

Returning to our analysis, then, note that Y can be
defined as the sum of independent indicator random
variables and that the expected value of Y is E(Z0) +
E(Z1) + · · · + E(Zl−1). Thus, in the single-phase algo-
rithm, E(Y ) is lN/(l2c) + ln/2c = (N + ln)/2c. Thus,
we have the following fact:

Lemma 3: Suppose N ≤ l2c. Then, for any integer
x ≥ 2,

Pr(Y > lx) <
exl−(N+ln)/2c

xxlll(x−1)
;

hence,

Pr(Z > xl) <
exl−(N+ln)/2c

xxlll(x−1)
.

Thus, we can bound with this same probability that
Y > lx the odds that Z > xl. So, for example, if l =
8, c = 15, x = 3, n = 210, and N = 218, then the
probability that Y > 24 is less than 1/248, which is
a very small number. Thus, in this example, we may
safely discard the packets for any index C that have
more than 24 packets. That is, we may safely discard
any subproblems that would cause us to perform more
than 38 = 6561 checksum tests. With high probability,
such a subproblem will not occur at random, so it most
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Frag. Number, c, of Checksum Bits
scheme 9 10 11 12 13 14 15

2 56 52 48 44 40 36 32
3 104 96 88 80 72 64 56

2 + 2 188 168 148 128 108 88 68
3 + 2 380 344 308 272 236 200 164
3 + 3 760 688 616 544 472 400 328

Table 1: Message sizes for the given fragmentation
schemes and checksum lengths, assuming b = 25 is the
bit length of individual blocks. A fragment scheme iden-
tified by ”x” indicates a scheme with x number of bits
used to index fragments. A fragment scheme identified
by “x+ y” indicates a two-phase fragmentation scheme
where the first round uses x bits for the fragment index
and the second round uses y bits for the fragment index.
We index the checksum needs in the two-phase schemes
by c1, since we can set c2 = c1−�log l� and get the same
confidence bound.

Frag. Number, c, of Checksum Bits
scheme 8 9 10 11

3 48 40 32 24
2 + 2 80 60 40 20
3 + 2 160 124 88 52
3 + 3 320 248 176 104

Table 2: Message sizes for the given fragmentation
schemes and checksum lengths, assuming b = 17 is the
bit length of individual blocks.

likely was sent to us by the adversary in an attempt to
make us do extra unnecessary work in our single-phase
traceback algorithm. A similar analysis can be done for
the two-phase algorithm, which we omit here.

3.4 Trading-Off Message and Cord Size
As we observed above, increasing the checksum size

leads to higher security. A large checksum makes the
space of possible messages addresses large, which in turn
makes it that much more difficult for the adversary to
interject false messages that collide with legitimate ones.
Of course, this increased security has a cost. Namely, as
the checksum becomes larger, the bits left over for the
message must go down. Even so, there are still several
strong choices for checksum lengths and fragmentation
schemes that allow for message sizes long enough to do
authenticated IP traceback. We show in Table 1 the
maximum message size for various randomize-and-link
fragmentation schemes, assuming b = 25, and we show
similar information for b = 17 in Table 2.

3.5 Sufficient Packet Volume
We have described the randomize-and-link strategy in

a general way, so as to allow for several possible message
sizes. But we should also recognize that reconstructing
large messages requires more packets. Moreover, the
number of needed packets also increases with the num-
ber of routers in the attack tree. In order to keep the
reconstruction algorithm fast, we prefer that expected
number of collisions between a given packet and any
other packet be less than 2. The randomize-and-link
algorithm will still work for higher expectations, but it

Frag. Number, n, of Routers in Attack Tree
scheme 50 100 250 500 1000

2 1176 2628 7486 16357 35486
3 2628 5810 16357 35486 76516

2 + 2 5810 12729 35486 76516 164122
3 + 1 5810 12729 35486 76516 164122
2 + 3 12729 27675 76516 164122 350424
3 + 2 12729 27675 76516 164122 350424
3 + 3 27675 59785 164122 350424 745208

Table 3: Expected upper bounds on N , the number
of packets that need to be received for various frag-
mentation schemes and number of routers, n, in the at-
tack tree. The volumes given are the expected number
needed to cover all the routers. If we conservatively as-
sume that the probability a packet arrives marked by a
router is equal to the probability that a packet arrives
unmarked, the same numbers bound the expected num-
ber of packets from the adversary. The upper bounds
are on the number of required packets, without regard
to the marking probability. To convert the presented
numbers to an expectation that factors in the mark-
ing probability, the above values should be divided by
pd(1− p)d−1.

Frag. Number, n, of Routers in Attack Tree
scheme 50 100 250 500 1000 2000

2 8 9 10 11 13 14
3 8 9 10 12 13 14

2 + 2 10 11 13 14 15 16
3 + 1 9 10 12 13 14 15
2 + 3 11 12 14 15 16 17
3 + 2 10 11 13 14 15 16
3 + 3 11 12 14 15 16 17

Table 4: The checksum sizes needed for the differ-
ent randomize-and-link fragmentation schemes, assum-
ing various values of the number of routers, n, in the
attack tree. The checksum sizes given are the number
needed to force the expected collision size to be less than
2. For the two-phase schemes, the checksum size is given
for the first round, since its checksum needs are higher.

is most efficient when the expected collision size is less
than 2. Thus, we have worked out the needed packet
volume and checksum bit-length for various randomize-
and-link fragmentation schemes under various numbers
of routers in the attack tree. We provide this informa-
tion in Tables 3 and 4.

4. ROUTER AUTHENTICATION
In this section, we discuss several possible IP trace-

back schemes that are based on the randomize-and-link
approach. This discussion is not meant to be exhaus-
tive, however, as the randomize-and-link approach only
specifies the length of the information that is sent from
routers in the attack tree to the victim. The main points
we want to make in the following discussion, then, is to
show how the randomize-and-link strategy can be used
to create traceback methods that scale to hundreds of
routers, that do not require the victim know the univer-
sal tree U , and that can authenticate routers without
requiring them individually to sign setup messages.
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All of our traceback mechanisms create the message
MX that a router X will transmit so that it includes
X’s identity. That is, MX includes X’s 32-bit IP ad-
dress. Additionally, if we want to learn the topology
of the attack tree T , as opposed to simply learning the
names of all the routers in T , we can optionally have
each router X also include in MX the name of its down-
stream router in T , which would add another 32 bits to
MX . This identity and optional topology information,
of course, does not provide any additional randomness or
authentication information to MX , as is needed by the
security needs of a good randomize-and-link traceback
scheme. Fortunately, there are several ways that we can
simultaneously add randomness and authentication to
MX . Before we describe some of these ways, however,
let us briefly review the main cryptographic tool that
these methods are based on.

4.1 Authenticated Dictionaries
Our different authentication schemes all utilize an au-

thenticated dictionary for some portions of the task of
authenticating routers. An authenticated dictionary [2,
6, 8, 9, 15] consists of a trusted source and many un-
trusted directories. The trusted source produces and
maintains a dictionary database, D, of objects, stored
as key-value pairs, (k, o), while the directories answer
key-value queries for D on behalf of client users. In re-
questing a key-value query, a client provides a key k and
asks the directory to return the object o in D that has
k as its key. If there is such an object, then the direc-
tory returns it. If, on the other hand, there is no object
with key k in D, then the directory returns a special
“no-such-object” value. In either case, in addition to
the answer a directory gives, a directory also provides
a cryptographic proof of that answer, which validates
(subject to standard cryptographic assumptions) that
the answer is current and is as accurate as if it had come
directly from the source. There is a small (usually loga-
rithmic) overhead incurred for this cryptographic proof,
but it allows the source to be offline during the request.
In addition, by deploying many directories widely dis-
persed in the network, using an authenticated dictionary
allows us to reduce response latency and the effective-
ness of a denial-of-service attack on the authenticated
dictionary itself (for such an attack would have to tar-
get all of the directories simultaneously). We describe
below how authenticated dictionaries can be used in var-
ious traceback schemes to allow for strong authentica-
tion of routers without requiring them to sign any setup
messages individually.

4.2 Authentication Methods
In this subsection, we describe several methods for au-

thenticating routers in a randomize-and-link traceback
scheme.

HMAC with Individual Key Exposure. One way to do
router authentication is to determine, for each router X,
a sequence of secret keys KX,0,KX,1, .... Then, with a
message MX intended for a victim V , the router X in-
cludes a hashed message authentication code (HMAC)
of h(V ||KX,t), where h is a one-way cryptographic hash

function and t is a time-quantum counter that is of suf-
ficient granularity that we can assume rough synchro-
nization between routers and the victim. We include
V in the HMAC so as to reduce the possibility of a re-
play attack. We reveal the key KX,t for each router X
in time quantum t + 2. The revelation is done using
an authenticated dictionary for each autonomous sys-
tem (AS), whose source is the administrator of the AS.
Indeed, we assume this administrator distributed the
secret keys to his or her routers in the first place. To
determine the amount of extra space this scheme adds
to the message MX , note that we did not include the
packet’s source address in the HMAC, as is done, for
example, in a previous scheme [21], for this value is set
by the adversary. Thus, there is no risk of a birthday
attack for our hash function h, as its data is fixed for V
and the current time quantum t. This scheme will there-
fore add 32, 48, or 64 bits to MX depending on whether
we want fair, moderate, or strong authentication of X.

HMAC with Messaged Key Exposure. An alternate
scheme to the previous authentication method is to uti-
lize a sequence of secret keys, KX,0,KX,1, ..., as be-
fore, but include KX,t−2 in MX during time quantum
t. In this way, the router X itself reveals the secret
key used in the HMAC. In this case, we should create
the sequence of keys themselves as a hash chain [12]
using a one-way cryptographic hash function, g, so that
KX,i = g(KX,i+1). Then we need only store KX,0 in the
authenticated dictionary for X’s autonomous system.
For given any revealed KX,t, the victim can determine
the authenticity of this key by performing t applications
of the function g. Thus, this approach reduces the work
required of the AS administrator, so that rather than
revealing keys with each time quantum, the administra-
tor now just needs to reveal the base of each router’s
hash chain. The trade-off is that we now are including
more information inMX . Namely, we are adding 64, 96,
or 128 bits to MX , depending on whether we want fair,
moderate, or strong authentication of X. In addition,
since the keys are determined through a hash chain, we
now require the victim to perform t hash computations
for every router in the attack tree. This effort can be
significant if the number of routers in T is over 1000.

HMAC with Key Collection Exposure. There is an-
other alternative that we can make to router authen-
tication, which reduces the work needed for both the
victim and the AS administrators when the number of
routers is large. Rather than issue a different sequence of
keys for every router in an AS, the administrator instead
issues just 64 key sequences, divided into two sets of 32
key sequences: κ0, κ1, . . . , κ31 and λ0, λ1, . . . , λ31. So
κi = (Ki,0,Ki,1, . . . ) and λi = (Li,0, Li,1, . . . ). These
key sequences (possibly as hash chains) are then dis-
tributed to routers according to their IP addresses—so
that if X = (x0, x1, . . . , x31) is the binary expansion
of X’s address, then X is assigned the key sequence
(ω0, ω1, . . . , ω31), where ωi = κi if xi = 0 and ωi = λi

otherwise. To determine the key KX,t to use in an
HMAC, the router X simply computes the XOR of all
the t-th keys in the sequences it was assigned. Thus,
after a delay of two time quantums, a victim need only
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retrieve from the authenticated dictionary the 64 t-th
keys in the sequences κ0, κ1, . . . , κ31 and λ0, λ1, . . . , λ31.
From these 64 keys it can compute any key KX,t, just by
knowing the value of X. Thus, this scheme has the ben-
efits of keeping the amount of additional authentication
information in MX to 32, 48, or 64 bits, depending on
whether we desire fair, moderate, or strong authentica-
tion. Even so, it requires only a modest amount of work
on the part of the administrator for the AS: namely, the
revelation of 64 keys in each time quantum. Of course,
this revelation could be carried out by a trusted agent
for the administrator if we use hash chains to determine
the κi and λi sequences.

5. DISCUSSION AND CONCLUSION
We have presented a new approach to IP traceback

based on the probabilistic packet marking paradigm.
Our approach, which we call randomize-and-link, uses
large checksum cords to link message fragments in a way
that is highly scalable, for the cords serve both as as-
sociative addresses and data integrity verifiers. For ex-
ample, with a 12-bit checksum cord we can use a single-
phase randomize-and-link scheme to produce an 80-bit
message that contains a router’s 32-bit IP address and a
48-bit combination HMAC. Such a scheme would allow
for fast and efficient message reconstruction for up to
500 routers in the attack tree T . If we wish to traceback
efficiently attacks that are targeting a victim through a
larger attack tree, we could use a 16-bit initial check-
sum cord in a two-phase randomize-and-link strategy
(using 8 subwords in phase one and 4 words in phase
two) that produces a 128-bit message. Such a message
could contain a router X’s IP address, the IP address
of the downstream neighbor of X, and a 64-bit HMAC
(collective or individual). Or such a message could con-
tain X’s IP address, a 48-bit HMAC, and a 48-bit key
revelation. In either case, using a 16-bit checksum cord
with a two-phase scheme producing a 128-bit message
would allow for fast and efficient traceback for attack
trees of size up to 2000 routers. In general, our methods
do not require that a victim know the topology of the
universal tree U , we do not require that routers sign any
setup messages individually, and we allow for incremen-
tal adoption (for the default router action is to process
packets in the same way as a non-participating router).
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