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Abstract—A computer network is said to provide hop integrity message to the first computer as required by Internet Control
iff when any router p in the network receives a message: sup- Message Protocol (ICMP) [17]. The ultimate destination in the
posedly from an adjacent routerg, then p can check thatm was o message is the same as the original source in the ping mes-
indeed sent byqg, was not modified after it was sent, and was not An ad tilize th to attack
a replay of an old message sent frong to p. In this paper, we de- sage. .n adversary’can utlize these !’nessages . acl S COIE
scribe three protocols that can be added to the routers in a com- Puterdin such a network as follows. First, the adversary inserts
puter network so that the network can provide hop integrity, and  into the network a ping message whose original source is com-
thus overcome most denial-of-service attacks. These three proto- puter d and whose ultimate destination is a multicast address
cols are a secret exchange protocol, a weak integrity protocol, and for every computer in the network. Second, a copy of the in-

a strong integrity protocol. All three protocols are stateless, require - . ’ .
serted ping message is sent to every computer in the network.

small overhead, and do not constrain the network protocol in the ) ) 8 - )
routers in any way. Third, every computer in the network replies to its ping message

Index Terms—Authentication, denial-of-service attack, Internet, by sending a pong message to C.ompdte'fhus, computed is
message modification, message replay, network protocol, router, flooded by pong messages that it had not requested.
security, smurf attack, SYN attack.

B. SYN Attack

|. INTRODUCTION . .
To establish a TCP connection between two computarsd

OST COMPUTER networks suffer from the followingq, one of the two computerssends a “SYN” message to the
security problem: in a typical network, an adversary thafther computed. Whend receives the SYN message, it reserves
has an access to the network can insert new messages, mostifyie of its resources for the expected connection and sends
current messages, or replay old messages in the networkalr6YN-ACK” message ta:. Whene receives the SYN-ACK
many cases, the inserted, modified, or replayed messages g@3sage, it replies by sending back an “ACK” messagg tb
go undetected for some time until they cause severe damageceives the ACK message, the connection is fully established
to the network. More importantly, the physical location in thand the two computers can start exchanging their data messages
network where the adversary inserts new messages, modiig8r the established connection. On the other hand,dbes
current messages, or replays old messages may never be dgtreceive the ACK message for a specified time period of
mined. seconds after it has sent the SYN-ACK messagtiscards the
One type of such malicious attacks is called denial-of-serviggrtially established connection and releases all the resources
attack, whose aim is to exhaust the communicating resourcesgderved for that connection. The net effect of this scenario is
a network or the computing resources of a host, such that noradt computer! has lost some of its resources fBrseconds.
services provided by the network or the host are reduced or coRir adversary can take advantage of such a scenario to attack
pletely denied. Two well-known examples of denial-of-serviceomputerd as follows [3], [23]. First, the adversary inserts into
attacks in networks that support the Internet Protocol (IP) afgk network successive waves of SYN messages whose original
the Transmission Control Protocol (TCP) are as follows.  sources are different (so that these messages cannot be easily
detected and filtered out from the network) and whose ultimate
A. Smurf Attack destination isl. Secondd receives the SYN messages, reserves
In an IP network, any computer can send a “ping” messaije resources for the expected connections, replies by sending
to any other computer which replies by sending back a “pon@YN-ACK messages, then waits for the corresponding ACK
messages which will never arrive. Third, the net effect of each
Manuscript received December 14, 2000; revised November 17, 2001; Xﬁave of inserted SYN messages is that compdteses all its
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this paper, we present a suite of protocols that provide hop jprotocols are to be executed at selected pairs of computers in
tegrity between adjacent routers: whenever a rquteceives a the network, and they provide sophisticated levels of security
messagen from an adjacent routey, p can detect whethen  for the communications between these selected computer pairs.
was indeed sent by or it was modified or replayed by an ad-Clearly, one can envision networks where the hop integrity pro-
versary that operates betwegandq. tocol suite and the IPsec protocol suite are both supported. When
It is instructive to compare hop integrity with secure routingperating hand in hand, the hop integrity protocol suite can pro-
[4], [14], [20], ingress filtering [6], traceback [2], [22], [21], andvide router authentication, router-to-router message integrity,
IPsec [10]. In secure routing, for example [4], [14], and [20gnd determination of the adversary location when the network
the routing update messages that routers exchange are autteennder attack, whereas the IPsec protocol suite can support
ticated. This authentication ensures that every routing updataurce authentication, end-to-end message integrity, and confi-
message that is modified or replayed is detected and discardightiality.
By contrast, hop integrity ensures that all messages (whethein the next section, we describe the concept of hop integrity
data or routing update messages) that are modified or replayedome detail.
are detected and discarded.
Using ingress filtering [6], each router on the network
boundary checks whether the recorded source in each received
message is consistent with the source from which the routef® Network consists of computers connected to subnetworks.
received the message. If the message source is consistent(f@mples of subnetworks are local area networks, telephone
router forwards the message as usual. Otherwise, the rodifaes, and satellite links.) Two computers in a network are called
discards the message. Thus, ingress filtering detects messa@giacent iff both computers are connected to the same subnet-
whose recorded sources are modified (to hide the true sour¥é¥k. Two adjacent computers in a network can exchange mes-
of these messages), provided that these modifications occup@@€es over any common subnetwork to which they are both con-
the network boundary. Messages whose recorded sourcesngeted.
modified between adjacent routers in the middle of the network The computers in a network are classified into hosts and
will not be detected by ingress filtering, but will be detectefPuters. For simplicity, we assume that each host in a network
and discarded by hop integrity. is connected to one subnetwork, and each router is connected
The purpose of traceback is for the destination under attal€ktwo or more subnetworks. A messages transmitted from
to reconstruct the path traversed by the attacking messages? &®mputers to a faraway computed in the same network
as to identify the real origin(s) of the messages responsible fi§ follows. First, message is transmitted in one hop from
the attack. Two schemes have been proposed to achieve tr&@gaputers to a routerr.1 adjacent tos. Second, message
back: the message marking scheme [2], [22] and the hash-basdgansmitted in one hop from routerl to routerr.2 adjacent
scheme [21]. In the message marking scheme, when a rodge-1, and so on. Finally, messageis transmitted in one hop
r receives a message, it sends the traceback informationfrom a routerr.n that is adjacent to computerto computer.
namely the pair«, m), to the ultimate destination of the mes- A network is said to provide hop integrity iff the following
sage. The traceback information for a messagis either sent two conditions hold for every pair of adjacent routgmndg in
in the 1D field of the IP header of messageitself [22], or sent the network.
in a separate ICMP message [2]. Due to the overhead incurredl) Whenever routep receives a message over the sub-
by sending traceback information, both Bellovin [2] and Savage ~ network connecting routegsandg, p can determine cor-
[22] employ probabilistic methods rather than applying their rectly whether message was modified by an adversary
methods to every message. In the hash-based scheme, when a after it was sent by and before it was received by
routerr receives a message, r stores the traceback informa- 2) Whenever routep receives a message over the sub-
tion (r, m) in a hash table for some (relatively short) time. In network connecting routegsandq, and determines that
these two schemes, a denial-of-service attack has to proceed for messagen was not modified, thep can determine cor-
some time before the ultimate destination thatis under the attack  rectly whether message is another copy of a message
can detect the attack sources, if at all, and block them. In other  that is received earlier by.
words, these are detection-and-resolution schemes. By contraskor a network to provide hop integrity, two “thin” protocol
hop integrity is a prevention scheme. An attacking messadmyers need to be added to the protocol stack in each router in
usually with a false source address, will be detected and dise network. As discussed in [5] and [19], the protocol stack
carded in its first hop. Thus, denial-of-service attacks will bef each router (or host) in a network consists of four protocol
prevented before they start. layers. They are (from bottom to top) the subnetwork layer, the
The hop integrity protocol suite in this paper and the IPsewtwork layer, the transport layer, and the application layer. The
protocol suite presented in [10]-[12], [15], and [16] are both inwo thin layers that need to be added to this protocol stack are the
tended to provide security at the IP layer. Nevertheless, theseret exchange layer and the integrity check layer. The secret
two protocol suites provide different, and somewhat complexchange layer is added above the network layer (and below the
mentary, services. On one hand, the hop integrity protocols ar@nsport layer), and the integrity check layer is placed below
to be executed at all routers in a network, and they providlee network layer (and above the subnetwork layer).
a minimum level of security for all communications between The function of the secret exchange layer is to allow adja-
adjacent routers in that network. On the other hand, the IPsEmtrouters to periodically generate and exchange (and so share)
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the adversary can replay these copied messages over and over
to launch a smurf or SYN attack. Hop integrity can defeat this
attack as follows. If hop integrity is installed between the two
routersp andg, then the strong integrity check layer in rouger
can detect the replayed messages and discard them.

In the next three sections, we describe in some detail the pro-
tocols in the secret exchange layer and in the two versions of

integrity > | T L 4
check ----I pw or ps I qw or gs |

Jayer t L i

subnetwork subnetwork

4 \\

Fig. 1. Protocol stack for achieving hop integrity.

the integrity check layer. The first protocol between processes
pe andge is discussed in Section Ill. The second protocol be-
tween processesy andqw is discussed in Section IV. The third
protocol between processgsandgs is discussed in Section V.
These three protocols are described using a variation of the
Abstract Protocol Notation presented in [7]. In this notation,
each process in a protocol is defined by a set of inputs, a set
of variables, and a set of actions. For example, in a protocol

new secrets. The exchanged secrets are made available to thegnsisting of processes: andgz, procesgx can be defined as
tegrity check layer which uses them to compute and verify th@llows.
integrity check for every data message transmitted between the
adjacent routers. process pz

Fig. 1 shows the protocol stacks in two adjacent roytensd  inp (name of input ):
q. The secret exchange layer consists of the two processes
andge in routersp andg, respectively. The integrity check layer
has two versions, weak and strong. The weak version consisis
of the two processesr andqw in routersp andgq, respectively.
This version can detect message modification, but not message
replay. The strong version of the integrity check layer consigtegin
of the two processess andgs in routersp andg, respectively. (action )
This version can detect both message modification and messhge (action )
replay. l

Next, we explain how hop integrity, along with ingress fil{
tering, can be used to prevent smurf and SYN attacks (descrilsed
in Section I). Recall thatin smurf and SYN attacks, an adversary
inserts into the network ping and SYN messages with wrongComments can be added anywhere in a process definition;
original sources. These forged messages can be inserted e#agh comment is placed between two brackgts)d}.
through a boundary router or between two routers in the middleThe inputs of procesg: can be read but not updated by the
of the network. Ingress filtering (which is usually installed iractions of procesgz. Thus, the value of each input of; is
boundary routers [6]) will detect the forged messages if they asgher fixed or is updated by another process outside the protocol
inserted through a boundary router because the recorded sougegsisting ofpz and gz. The variables of process: can be
in these messages would be inconsistent with the hosts fregad and updated by the actions of progessEach(actior) of
which these messages are received. However, ingress filterjrgcesgpz is of the form
may fail in detecting forged messages if these messages are in-
serted between two routers in the middle of the network. Forex-  (guard ) — (statement ).
ample, an adversary can log into any host located between two
routersp andg, and use this host to insert forged messages to- 4
ward routem, pretending that these messages are sent by rou&;
q. The real source of these messages cannot be determine
routerp because router cannot decide whether these messages
are sent by routey or by some host betwegnandq. However,
if hop integrity is installed between the two routgrandg, then
the (weak or strong) integrity check layer in routezoncludes
that the forged messages have been modified after being
by routerq (although they are actually inserted by the adversa
and not sent by routey), and so it discards them.

Smurf and SYN attacks can also be launched by replaying (variable of
old messages. For example, the adversary can log into any host
located between two routepsandq. When the adversary spots A (send statement is of the form
some passing legitimate ping or SYN message being sent from
q to p, it keeps a copy of the passing message. At a later time, send {message) to qz.

(type of input )

(name of input ): (type of input )
(name of variable ): (type of variable )

(name of variable ): (type of variable )

Zallction )

(guarg of an action of pz is either a (boolean
%R/ressio)n or a{receive statement of the form

rcv (message) from gu.

The (statemerjt of an action ofpz is a sequence of
Skip, (assignment (send, or (selectio statements. An
@ssignmer)tstatement is of the form

pr) := {expression ).
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A (selection statement is of the form public and private keys of procegs are namedB, and K,,
respectively.
if (boolean expression ) — (statement ) For procesge to chan_ge secrety, the following four steps
need to be performed. Firgt; generates a newy, and encrypts
I(boolean expression ) — (statement ) the concatenation of the olg a_nd the newsq usingge’s public
fi key B,, and sends the result in a request (rgst) message. to

Second, whege receives the rqst message, it decrypts the mes-

sage contents using its private k& and obtains the oldg

Executing an action consists of executing the statement gfy ihe newsq. Then,ge checks that its currenty equals the
this action. Executing the actions (of different processes) in,gy sq from the rgst message, and installs the pevas its cur-

protocol proceeds according to the following three rules. Fir%msq’ and sends a reply (rply) message containing the encryp-

an action is executed only when its guard is true. Second, th&, of the newsq using pe’s public key B,. Third, pe waits

actionsina pr_otocol are executed one atatime. Third, an actigfii it receives a rply message froga containing the newsg
whose guard is continuously true is eventually executed.  gncrypted usingg,. Receiving this rply message indicates that
Executing an action of procega: can cause a message Q. has received the rqst message and has accepted the;new
be sent to procesg:. There are two channels b_etween the tW?ourth, if pe sends the rqst messagegobut does not receive
processes: one is fropw to gz, and the other is frongz ©  he rply message frome for sometr seconds, indicating that
px. Each sent message frgm to gz remains in the channel gjther the rgst message or the rply message was lost before it
from px to gz until it is eventually received by procegs or ;¢ received, thepe resends the rqst messageyto Thustr is
is lost. Messages that reside simultaneously in a channel fo"ﬁrf"upper bound on the round-trip time betwgerandge.
sequencgm.1, m.2, ..., m.n) inaccordance with the orderin - \gte that the old secret (along with the new secret) is included
which they have been sent. The head message in the SeqUEAGe;ch rgst message and the new secret is included in each rply
m.1, is the earliest sent, and the tail message in the sequenggssage to ensure that if an adversary modifies or replays rgst
m.n, is the latest sent. The messages are to be received in §he,, messages, then each of these messages is detected and

same order in which they were sent. discarded by its receiving process (whetheor ge).

We assume that an adversary exists between progessesl  procesg,e has two variablesp andsg, declared as follows.
qx, and that this adversary can perform the following three types
of actions to disrupt the communications betweenand gz. o
First, the adversary can perform a message loss action whéte _Sp Integer .
it discards the head message from one of the two channels pdd: anay [0---1] of integer
tweenpz andgz. Second, the adversary can perform a message
modification action where it arbitrarily modifies the contents of Similarly, processie has an integer variable; and an array
the head message in one of the two channels betweemd Vvariablesp.
gx. Third, the adversary can perform a message replay actiodn processe, variablesp is used for storing the secrep,
where it replaces the head message in one of the two channel¥&yablesq[0] is used for storing the oleg, and variablesg[1]
a message that was sent previously. For simplicity, we assulddised for storing the newg. The assertiorsq[0] # sq[1]
that each head message in one of the two channels bepreerindicates that procegge has generated and sent the new se-

andqz is affected by at most one adversary action. cretsq, and thatye may not have received it yet. The assertion
sq[0] = sq[1] indicates thage has already received and ac-
IIl. SECRETEXCHANGE PROTOCOL cepted the new secrey. Initially
In the secret exchange protocol, the two procegsemdge 5q[0] In pe = sq[1] in pe = sqin ge
maintain two shared secretp and sq. Secretsp is used by and
routerp to compute the iqtggrity check for each data message sp[0]in ge = sp[1] in ge = sp in pe.
sent byp to routerq, and it is also used by routerto verify .
the integrity check for each data message received fsgm Procesge can be defined as follows.

routerp. Similarly, secresq is used by; to compute the integrity

checks for data messages sengtand it is used by to verify process pe

the integrity checks for data messages received from inp R,: integer  {private key of pe}
As part of maintaining the two secreip and sq, processes B,: integer  {public key of qe}

pe andge need to change these secrets periodically, say, every  te: integer {time between secret

te hours, for some chosen valée Procesye is to initiate the ~ exchanges }

change of secrefy, and processe is to initiate the change of tr: integer  {upper bound on round-trip

secretsp. Processege and ge each have a public key and a time }

private key that they use to encrypt and decrypt the messages sp: integer sq: array [0...1] of integer

that carry the new secretbetweerpe andge. A public key is {initially 5q[0] = sq[1] = s¢ in ge }

known to all processes (in the same layer), whereas a private key  d, e: integer

is known only to its owner process. The public and private keyggin

of procesge are named3, andR,,, respectively; similarly, the timeout  s¢[0] = sq[1]A
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(te hours passed since rgst message sent timeout & S:rqst Rarply

last)y — 50
sq[1] := NEWSCR,;

e := NCR(By, ( sq[0]; sq[1])); Rirgst & Sirply

send rgst( e) to ge —1 S.1 > s2 —
[ rcv rgst( e) from ge —

(d,e) := DCR(R,. ¢);

timeout &
S:rgst

if sp = FAY; sp=e — Pugst | Mrgst Lirgst Luply M:rply Purply
5p =€, L |
e := NCR(By, sp); Rirgst Rerply
send reply (e) to ge —» M.l > L0 [ M2 |
[ sp#£dAsp#e—

G {detect adversary } skip Fig. 2. State transition diagram of the secret exchange protocol.
i
[ rev rply( e) from ge —

d = DCR(,. ¢) if sqll] = d — sql0] = and the resulting first valued to be stored in variablé, and the

resulting second valuel to be stored in variable.

To verify the correctness of the secret exchange protocol,
refer to the state transition diagram of this protocol in Fig. 2.
This diagram has six nodes that represent all possible reachable
states of the protocol. Every transition in the diagram stands for
either a legitimate action (of procegs or processse), or an
illegitimate action of the adversary. For convenience, each tran-
sition is labeled by the message event that is executed during
that transition. In particular, each transition has a label of the
form

sq[1]
[sq[1] # d — {detect adversary } skip
fi
[ timeout  sq[0] # sq[1]A
(tr seconds passed since rgst message sent
last) —
¢:= NCR(By, ( sql0); sql1]));
send rgst( e) to ge
end

Process;c can be defined in the same way, except that each (event typé: (message type
occurrence of?, in pe is replaced by an occurrence8f in ge, ) )
each occurrence a8, in pe is replaced by an occurrence B, Where(event typg is one of the following.
in ge, each occurrence 6f in peis replaced by an occurrence of S stands for sending a message of the specified type.

sq in ge, and each occurrence &§[0] or sq[1] in pe is replaced R stands for receiving a message of the specified type.
by an occurrence ofp[0] or sp[1], respectively, irge. L stands for losing a message of the specified type.
The four actions of procege use three functions NEWSCR, M stands for modifying a message of the specified type

NCR, and DCR, defined as follows. Function NEWSCR takes P stands for replaying a message of the specified type.
no arguments, and when invoked, it returns a fresh secret that ighe notationch.pe.ge is used to denote the content of the
different from any secret that was returned in the past. Functiohannel from procesgse to processye.

NCR is an encryption function that takes two arguments, a keylnitially, the protocol starts at a state0, where the two chan-
and a data item, and returns the encryption of the data item usirgjs between processgs andgc are empty and the values of
the key. For example, execution of the statement variablessq[0], sqg[1] in pe and variablesg in ge are the same.

This state can be defined by the following predicate:
e := NCR(By, (sq[0]; sq[1]))

5.0 = ch.pe.ge = {) A ch.ge.pe = A

causes the concatenatiorsgf0] andsg[1] to be encrypted using . ) )
s¢[0] in pe = sq[1] in pe = sqin ge.

the public key5,;, and the result to be stored in variablé-unc-
tion DCR is a decryption function that takes two arguments, aat stateS.0, exactly one action, namely, the first timeout ac-

key and an encrypted data item, and returns the decryptiontjgh in procesge, is enabled for execution. Executing this ac-
the data item using the key. For example, execution of the stajigh at stateS.0 leads the protocol to statg1, defined as fol-

ment lows:
d := DCR(R,, ¢) 5.1 = ch.pe.ge = (rqst(e)) A ch.ge.pe = ()A
causes the (encrypted) data itento be decrypted using the ¢ = NCR(B,, (sq[0]; sq[1]))A
private keyR,,, and the result to be stored in variable As 5q[0] in pe # sq[1] in pe A sq[0] in pe = sqin ge.

another example, consider the statement . . .
AtstateS.1, exactly one legitimate action, namely, the receive

(d, ¢) := DCR(R,, ¢). action (that receives argst message) in progess enabled for

_ o ) . execution. Executing this action at stetd leads the protocol
This statement indicates that the valueza$ the encryption stateS.2, defined as follows:

of the concatenation of two values), v1) using key£,,. Thus,
executing this statement cause® be decrypted using key,,, 5.2 = ch.pe.ge = ) A ch.ge.pe = {rply(e))A
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e =NCR(B,, sg)A cycle. Hence, the correctness of the secret exchange protocol is
5g[0] in pe # sq[1]in pe A sq[1] in pe = sqin ge. verified.
At stateS.2, exactly one legitimate action, namely, the receive IV. WEAK INTEGRITY PROTOCOL

action (that receives arply message) in progess enabled for

execution. Executing this action at state2 leads the protocol . . .
9 P sider the case where a dabaessage, with being the mes-
back to state5.0, defined above. : .
sage text, is generated at a souge then transmitted through
StatesS.0, S.1, and S.2 are called good states because the : o
. . . a.sequence of adjacent routerk, 7.2, ..., r.n to a destination
transitions between these states consist of executing the Iegétl- ! .
. -dst, When data() reaches the first routet1, ».1 computes a di-
mate actions of the two processes. The sequence of transﬂmggtd for the message as follows:
from stateS.0 to stateS.1, to stateS.2, and back to stats.0 9 9 '
constitutes the good cycle of the protocol. If only legitimate ac- d := MD(#; scr)
tions of processes: andge are executed, the protocol will stay
in this good cycle indefinitely. Next, we discuss the bad effectghere MD is the message digest functioh, {cr) is the con-
caused by the actions of an adversary, and how the protocol catenation of the message téxand the shared secretr be-
recover from these effects. tweenr.1 andr.2 (provided by the secret exchange protocol in
First, the adversary can execute a message loss action at stdde Then,r.1 addsd to the message before transmitting the re-
S.1 or 5.2. If the adversary executes a message loss actionsatting dataf, ) message to routet2.

stateS.1 or S.2, the network moves to a stafe0, defined as ~ When the second router2 receives the data(d) message,

The main idea of the weak integrity protocol is simple. Con-

follows: 7.2 computes the message digest using the secret shared be-
tweenr.1 andr.2 (provided by the secret exchange process in
L.0 = ch.pe.ge = () A ch.ge.pe = (A r.2), and checks whether the result equall they are unequal,
s¢[0] in pe # sq[1] in peA thenr.2 concludes that the received message has been modified,

discards it, and reports an adversary. If they are equal,itRen
concludes that the received message has not been modified and
At stateL.0, only the second timeout action j is enabled proceeds to prepare the message for transmission to the next
for execution, and executing this action leads the network baaduterr.3. Preparing the message for transmissiom.8ocon-
to stateS.1. sists of computing using the shared secret betweehandr.3
Second, the adversary can execute a message modificatiod storing the result in field of the dataf, d) message.
action at state5.1 or S.2. If the adversary executes a message When the last router.n receives the data(d) message, it
modification action at statg. 1, the network movesto stalé.1, computes the message digest using the shared secret between
defined as follows: r.(n—1) andr.n and checks whether the result equalf they
are unequat;.n discards the message and reports an adversary.
M.1 = ch.pe.ge = (ras{(e)) A ch.ge.pe = (A Otherwisey.n sends the daté(message to its destinatioit.
e #NCR(By, (sq[0]; sq[1])A Note that this protocol detects and discards every modified
s5q[0] in pe # sq[1] in peA message. More importantly, it also determines the location
where each message modification has occurred.
Procesgw in the weak integrity protocol has two inputs
If the adversary executes a message modification actiona&d sq that pw reads but never updates. These two inputs in

stateS.2, the network moves to stafef.2, defined as follows: procesgw are also variables in procegss andpe updates them
periodically, as discussed in the previous section. Progess

(sg[0] in pe = sqin ge V sq[1] in pe = sqin ge).

(5¢[0] in pe = sqin ge V sq[l] in pe = sq in ge).

M2 = ch.pe.ge = () A ch.qe.pe = (1ply(e))A can be defined as follows. (Procegs is defined in the same
e # NCR(B,,, sq)A way except that each occurrencepofy, pw, qw, sp, andsq is
sq[0]in pe # sq[1]in pen [_epllatied by an occurrence @f p, qw, pw, sq, andsp, respec-

ively.

(5¢[0] in pe = sqin ge V sq[l] in pe = sq in ge).

In either case, the protocol moves next to sfateand even- process pw

tually returns to staté.1. inp sp: integer

Third, the adversary can execute a message replay action at sq: array [0 ... 1] of integer
stateS.1 or S.2. If the adversary executes a message replay aar
tion at stateS.1, the network moves to stafef.1. If the adver- t, d: integer

sary executes a message replay action at statehe network begin
moves to staté/.2. As shown above, the protocol eventually rcv data( ¢, d) from quw —

returns to state'.1. if MO sq[0]) = d VMO sq[l]) =d —
From the state transition diagram in Fig. 2, it is clear that {defined later  } RTMSG

each illegitimate action by the adversary will eventually lead [IMDOt; sq[0]) # d A MDOt; sq[l]) # d —

the network back to statg.1, which is a good state. Once the {report adversary } skip

network is in a good state, the network can progress in the good i
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|] true _ S:data R:data & Accept
{p receives data( t, d) from router other } T [
{than ¢ and checks that its message } T.0 >dem‘
{digest is correct } 1
RTMSG Mdata Dot
[ true — A
{either  p receives data( t) from an } M.O
{adjacent host or p generates the } x_J
{text ¢ for the next data message } Sidata
RTMSG
end. T.0= I A (Vdata(t, d) message in ch.qw.pw, d =MD(t; sq))

MO= I A (Vdata(t, d) message in ch.qw.pw,
(—Head(data(t, d)) = d = MD(t; sq)) A

In the first action of procesgw, if pw receives a data(d) ( Head(data(t, d)) = d = MD(s sq)))

. where

message frongw while sq[0] # sq[1], thenpw cannot deter- | [ = inqw=sq0linpw v sqinqw=sq[linpw

mine beforehand whethegrw computed] usingsq[0] or using

- Eﬂé Ik:'oqu[%?saen%i q”[‘f]edrz ;geiﬁsgstz;gocg“rﬁgz‘gfh‘i'%jvf).@?g 3. State transition diagram of the weak integrity protocol.

digests withd. If either digest equald, thenpw accepts the

message. Otherwispw discards the message and reports the Initially, the protocol starts at statE0. At state7".0, two le-

detection of an adversary. gitimate actions, namely, the send actioginthat sends a data

The three actions of procegss use two functions, named message, and the receive actiopinthat receives a data mes-
MD and NXT, and one statement named RTMSG. Function Méage, can be executed. Executing either one of the two actions
takes one argument, namely, the concatenation of the textadktateZ’.0 keeps the protocol in stafgo.

a message and the appropriate secret, and computes a digeStates?’.0 is the only good state in the weak integrity pro-
for that argument. Function NXT takes one argument, namefgcol. The sequence of the transitions from stété to state

the text of a message (which we assume includes the messggeconstitutes the good cycle of the protocol. If only legitimate
header), and computes the next router to which the messagfions of processesy andqw are executed, the protocol will
should be forwarded. Statement RTMSG is defined as fO”OW§‘[ay in this good Cyc|e |ndef|n|te|y Next, we discuss the bad ef-
fects caused by the actions of an adversary, and how the protocol
can recover from these effects.

First, the adversary can execute a message loss action at state
T.0. If the adversary executes a message loss action at state
T.0, the predicate that for every data message da#(n the
channel fromgw to pw, d = MD(%; sq) still holds. Therefore,
the protocol stays at stafe0.

if NXT(¢t) =p — {accept message } skip

[ NXT(#¥) = q — d:= MD¢; sp);
send data( t,d) to quw

| NXT(t) # pA NXT(t) #q —
{compute d as the message digest of }
{the concatenation of t and the secret }

{for sending data to NXT( #); forward ) Second, the adversary can execute a message modification
(data( t, d) to router NXT(  #) } skip action at statd".0. If the adversary executes a message modifi-
fi | cation at staté".0, the protocol moves to stafe.0. The receive

and discard action executed py at state’M.0 leads the pro-
tocol back to staté’.0.
To verify the correctness of the weak integrity protocol, refer From the state transition diagram, it is clear that each illegit-

to the state transition diagram of this protocol in Fig. 3, whicimate action by the adversary will eventually lead the protocol
considers the channel from procegs to processpw. (The back toZ’.0, which is a good state. Once the protocol is in a good
channel fronpw to qw, and the channels fropw to any other state, the protocol can progress in the good cycle. However, the
weak integrity process in an adjacent routepafan be verified weak integrity protocol, while being able to detect and discard
in the same way.) This diagram has two nodes that represeniglimodified messages, cannot detect some replayed messages.
possible reachable states of the protocol. Every transition in ffiethe next section, we introduce the strong integrity protocol

diagram stands for either a legitimate action (of progesr  that is capable of detecting and discarding all modified and re-
processyw), or an illegitimate action of the adversary. layed messages.

Note that because the weak integrity protocol operates below
the secret exchange protocol in the protocol stack, we can assert
that (sq in qw = sq¢[0] in pw V sq in qw = sq¢[1] in pw) is an
invariant in every state of the weak integrity protocol. We denote In this section, we discuss how to strengthen the weak in-
this invariant ad in the specification in Fig. 3. Also, note thattegrity protocol to make it detect message replay. We present
the notation Head(data(d)) in the specification in Fig. 3 is a the strong integrity protocol in two steps. First, we present a
predicate whose value is true iff datag) is the head messageprotocol that uses “soft sequence numbers” to detect and dis-
of the specified channel. card replayed data messages. Second, we show how to combine

V. STRONG INTEGRITY PROTOCOL
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this protocol with the weak integrity protocol to form the strongrocess v
integrity protocol. inp N: integer
Consider a protocol that consists of two processesdv. L: integer
Process; continuously sends data messages to procefs- var st integer
sume that there is an adversary that attempts to disrupt the com- ~ {sequence number of received message  }

munication betweem andv by inserting (i.e., replaying) old exp:  integer

messages in the message stream frota v. In order to over- {sequence number of next '}
come this adversary, processattaches an integer sequence {expected message }
numbers to every data message sent to proaed® keep track c,cmax: 0...N -1

of the sequence numbers, procesmaintains a variablaxt Pegin
that stores the sequence number of the next data message to be eV data( s) from « —
sent byw and process maintains a variablexp that stores the if (s <expVs>exp+l) Ac# cmax —
sequence number of the next data message to be received by {reject message; report an

To send the next daté{message, processassigns the cur-  adversary } )
rent value of variablext, then incrementsxt by one. Assume ¢:=(c+1modN
that no more thai, consecutive messages can get lost in transit. [exp < s < exp+L) Ve = cmax —
When process receives a data] messagey compares its vari- {accept message }
ableexp with s. If exp < s < exp + L, thenv accepts the oxp =5+ 1 )
received data) message and assigasp the values + 1; oth- if e emax — ci= (c+ modN
erwise,v discards the datal message. Ie :_Crgax -

Correctness of this protocol is based on the observation that Zn;x : RANDOML, N — 1)
the predicatexp < nxt holds at each (reachable) state of the fi o
protocol. However, if due to some fault (for example, an acci- f
dental resetting of the values of variahiet) the value ofexp
becomes much larger than the valuensf;, then all the data
messages that sends from this point on will be wrongly dis-

carded by until nxt becomes equal texp. Next, we describe be combined with procesgsv of the weak integrity protocol to
how to modify this protocol such that the number of dafages- construct procegss of the strong integrity protocol. A main dif-

sages that can be wrongly discarded when the synchronizatf‘gnsnce between procesgasandps is thatpw exchanges mes-

betweer_u andv is Iost_due to some fault is at mat, for some sages of the form data(d), whereags exchanges messages of

chosen integeV that is much larger than one. ~ the form data{, ¢, d), wheres is the message sequence number
The modification consists of adding to processwo vari-  computed according to the soft sequence number protol,

ablesc andcmax, whose values are in the range.. N — 1. the message text, antlis the message digest computed over

When process receives a dataJ messagey compares the the concatenations( ¢; scr) of s, ¢, and the shared secratr.

values ofc andcmax. If ¢ # cmax, then process increments procesgs in the strong integrity protocol can be defined as fol-

c by one (modV) and proceeds as before [namely, either agows. (Procesgs can be defined in the same way.)

cepts the dataj message itxp < s < exp+L, or discards

the message #xp > s orexp +L < s]. Otherwisew accepts process ps

the message, assigathe value 0, and assigasnax a random inp sp: integer

Processes andw of the soft sequence number protocol can

integer intherangé... N — 1. sq: array [0 ... 1] of integer
This modification achieves two objectives. First, itguarantees  N: integer
that process never discards more thdy data messages when L: integer

the synchronization betweenandw is lost due to some fault. var s, t, d: integer
Second, it ensures that the adversary cannot predict the instants  exp, nxt: integer

when process is willing to accept any received data message, ¢, cmax: 0...N -1
and so cannot exploit such predictions by sending replayed da¢gin
messages at those instants. rcv data( s, t,d) from g¢s —
Formally, process andwv in this protocol can be defined as it MDs; & sq0]) = d vV MDs; ¢; sq[1]) = d —
follows. if (s<expVs>exp+L)Ac# cmax —

{reject message; report an
adversary }

process u ¢ := (c+ 1)modN
var nxt: integer [(exp < s < exp+L)Vc=cmax —
{sequence number of next sent message } {accept message }
begin exp := s + 1;
true — send data( nxt) to wv; nxt:=nxt+1 if ¢ # cmax —

end ¢:= (c+ 1)modN
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|]C — cmax — S:data R:data & Accept
Y "
c:=0;
cmax := RANDOM{, N —1) uo Ddem
fi )
fi Midata | P:data Dk b Do pidata i;‘ia:;l&
IMDs; t; sq[0]) # d A MDs; ¢ sq[1]) # d — v V ‘
{report an adversary } skip MO PO P
fi
[ true — h,j }lﬁ ‘S\d;j
{p receives a data( s, t d) from a router }
{other than ¢ and checks that its U0= I A (7data(s, t, d) message in ch.gs.ps,

encryption } d =MD(s; t;5q) A (Head(data(s, t, d)) = exp < s <exp + L in ps))

{is correct and its sequence number is MO= T A (vdatals, t, d) message in ch.gs.ps,
o (—Head(data(s, t, d)) = d = MD(s; t; 5q)) A
within  } ( Head(data(s, t, d)) = d = MD(s; t; sq)))
{range } PO= 1 A (Vdata(s, t, d) message in ch.gs.ps,
RTMSG d=MD(s; t;5q) A
|] true _ (Head(data(s, t, d)) = s <exp v s>exp+Linps) A ¢=cmax in ps)
{either p receives a data( t) from P.1= I A (data(s, t. d) message in ch.gs.ps,
di d=MD(s; t;sq) A
adjacent } (Head(data(s, t, d)) = s <exp v s>exp +Linps) A ¢ =cmax in ps)
{host or p generates the text t for the where
I = sqings=sq[0]inps v sqings=sq[l]inps
next }
{data message }
RTMSG Fig. 4. State transition diagram of the strong integrity protocol.

end.

variant in every state of the strong integrity protocol. We denote
this invariant ad in the specification in Fig. 4.

Initially, the protocol starts at staté.0. At statel/.0, two le-
gitimate actions, namely, the send actioménthat sends a data
message, and the receive actiorpinthat receives a data mes-
if NXT(t) = p— {accept message } skip sage, can be executed. Execu_ting either one of the two actions
[ NXT(#) =q — d:= MDQnaxt; t; sp); at statel/.0 keeps the protocol in staté0.

Statel/.0 is the only good state in the strong integrity pro-
tocol. The sequence of the transitions from stateto statd/.0

The first and second actions of processhave a statement
RTMSG that is defined as follows.

send data( nzt, t,d) to gs;
nxt := nxt + 1

[ NXT(t) # pA NXT(t) #q — c_onstitutes the good cycle of the protocol. If only Iegitimate ac-
{compute next soft sequence number tions of processess andgs are executed, the protocol will stay
51 in this good cycle.indefinitely. Next, we discuss the bad effects
{compute d as the message digest of caused by the actions of an adversary, and how the protocol can
the } recover from these effects.
{concatenation of snxt, t, and the First, the adversary can execute a message loss action at state
secret } U.0. If the adversary executes a message loss action atstate
{for sending data to NXT( #); forward the predicate that for every data message data@) in the
{data( s, t, d) to router NXT( )} skip channel fromys to ps, d = MD(s; ¢; sq) still holds. Therefore,
fi | the protocol stays at statéo.

Second, the adversary can execute a message modification
action at staté/.0 causing the protocol to move to staté.0.
To verify the correctness of the strong integrity protocollhe receive and discard action executegbwt stated/.0 leads
refer to the state transition diagram of this protocol in Fig. 4he protocol back to staté.0.
which considers the channel from procegsto processps. Third, the adversary can execute a message replay action at
(The channel fronps to ¢s, and the channels froms to any statel/.0. There are two cases to consider. First, if the replayed
other strong integrity process in an adjacent routep,ofan message data(¢, d) is too old such that the secret used to com-
be verified in the same way.) This diagram has four nodes thatte the message digest is different from the current value of
represent all possible reachable states of the protocol. Evargut sq in processys, then the protocol moves to staié.0,
transition in the diagram stands for either a legitimate acti@nd later returns to staté.0 as discussed above. Second, if
(of processps or processys), or an illegitimate action of the the replayed message dataf, d) is recent such that the se-
adversary. cret used to compute the message digest is equal to the cur-
Note that because the strong integrity protocol operates belmant value of inputsq in processyw, then the protocol moves
the secret exchange protocol in the protocol stack, we can assétier to stateP.0 or to stateP.1. With a high probability of
that (sq in gs = sq[0] in ps V sqin gs = sq[1] in ps) isanin- (cmax—1)/cmax, the protocol moves to stafé0, and the re-
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played message will be received and discardeg@dlpecause sages can be sent in a period of 4 hours. Using 4 B to store the
the value of fields in the message tells that the message is reeft sequence numbers is a proper choice with considerations of
played. With a probability ofl /cmax, the protocol moves to covering the maximum number of consumed sequence numbers
state P.1, and the replayed message will be received and do-time periodte and aligning with the original IP header.
cepted. In both cases, the protocol returns to giaie As discussed in Section V, inp¥ needs to be much larger
From the state transition diagram, it is clear that each illegithan 1. For examplgy can be chosen to be 200. In this case, the
imate action by the adversary will eventually lead the protocotaximum number of messages that can be discarded wrongly
back tol.0, which is a good state. Once the protocol is in a goaghenever synchronization between two adjacent routers is lost
state, the protocol can progress in the good cycle. Moreoverisf200, and the probability of detecting an adversary which re-
the adversary replays a recent data message, the replayed plags an old message is 99%.
sage will be detected and discarded with the high probability The message overhead of the strong integrity protocol is
(cmax —1)/cmax. about 8 B per data message: 4 B for storing the message digest,
and 4 B for storing the soft sequence number of the message.

VI. | MPLEMENTATION CONSIDERATIONS

. . . . . . VII. CONCLUDING REMARKS
In this section, we discuss several issues concerning the im-

plementation of the hop integrity protocols presented in the pre-In this paper, we introduced the concept of hop integrity in
vious three sections. In particular, we discuss acceptable valgemputer networks. A network is said to provide hop integrity
for the inputs of each of these protocols. iff whenever a routep receives a message supposedly from an
There are four inputs in the secret exchange protocol in Sealjacent routeg, routerp can check whether the received mes-
tion lll. They areR,,, B,, te, andtr. Input R, is a private key sage was indeed sent lgyor was modified or replayed by an
for routerp, and inputB, is a public key for router. These adversary that operates betwgeandg.
are long-term keys that remain fixed for long periods of time The effectiveness of hop integrity is apparent in those sit-
(say, one to three months), and can be changed only off-linations where ingress filtering is not effective. For example,
and only by the system administrators of the two routers. Thusgress filtering can detect and discard messages with wrongly
these keys should consist of a relatively large number of bytescorded sources at the network boundary, but cannot do so be-
say, 128 B (1024 bits) each. There are no special requiremetieen adjacent routers in the middle of the network. By contrast,
for the encryption and decryption functions that use these kdysp integrity can detect and discard messages with wrongly
in the secret exchange protocol. recorded source between adjacent routers in the middle of the
Inputte is the time period between two successive secret exetwork.
changes betweepe andge. This time period should be small Moreover, ingress filtering is not compatible with mobile IP.
enough that an adversary does not have enough time to dediigressage sent by a mobile node and forwarded by the foreign
the secretsp andsq used in computing the integrity checks ofagent (of this mobile node) will be filtered out by the next router
data messages. It should also be large enough that the overtmarhuse the recorded source of the message seems wrong to
that results from the secret exchanges is reduced. An acceptatierouter. By contrast, hop integrity can guarantee that every
value forte is around 4 hours. message forwarded by the foreign agent will be accepted by
Input ¢7 is the time-out period for resending a rgst messagiee router. (Reverse tunneling [13] was proposed to remedy this
when the last rqst message or the corresponding rply messpggblem, but the cost of using reverse tunneling is high because
was lost. The value ofr should be an upper bound on theevery message that is sent by a mobile node has to be tunneled
round-trip delay between the two adjacent routers. If the tvimack to the home agent of the mobile node before the message
routers are connected by a high-speed Ethernet, then an acoegut-be forwarded.)
able value oftr is around 4 s. We presented three protocols that can be used to make any
Next, we consider the two input® andsg and function MD computer network provide hop integrity. These three protocols
used in the integrity protocols in Sections IV and V. Inpsits are a secret exchange protocol, a weak integrity protocol, and
and sq are short-lived secrets that are updated every 4 houasstrong integrity protocol. These three protocols have several
Thus, this key should consist of a relatively small number ofovel features that make them correct and efficient. First, when-
bytes, say, 8 B. Function MD is used to compute the digest @fer the secret exchange protocol attempts to change a secret, it
a data message. Function MD is computed in two steps as fakeps both the old secret and the new secret until it is certain
lows. First, the standard function MD5 [18] is used to computiat the integrity check of any future message will not be com-
a 16-byte digest of the data message. Second, the first 4 B frpated using the old secret. Second, the integrity protocol com-
this digest constitute our computed message digest. (Computnges a digest at every router along the message route so that the
amessage digest over a 1024-byte message using MD5 is tirtmaztion of any occurrence of message modification can be de-
at just 0.037 ms on a Pentium Il 730-MHz machine runningermined. Third, the strong integrity protocol uses soft sequence
Linux. It is not a significant overhead to a router.) numbers to make the protocol tolerate any loss of synchroniza-
The soft sequence numbers in Section V can be recycled ption.
vided that not each of the sequence numbers has been used kis possible to reduce the overhead induced by the three pro-
least once in time periotk. In a usual Ethernet, at most 800tocols as follows. If in a network some hops are assured to be
messages can be sent in a second, thus at most 11 520 000 adgersary-proof (for example, the hops between core routers),
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then hop integrity does not need to be implemented over thege1] A. Snoeren, C. Patridge, L. Sanchez, C. Jones, F. Tchakounito, S.
hops. When a router needs to forward a message over an adver- Kent, and W. Strayer, "Hash-based IP traceback,"Aroc. ACM

sary-proof hop, it just follows the same procedure as in norma[bz]

IP.

SIGCOMM’0}, San Diego, CA, Aug. 2001, pp. 3-14.
S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network support
for IP traceback,1EEE/ACM Trans. Networkingvol. 9, pp. 226-237,

All three protocols are stateless, require small overhead 3& June 2001.

each hop, and do not constrain the network protocol in any way.
Thus, we believe that they are compatible with IP in the Internet,
and it remains to estimate or measure the performance of IP
when augmented with these protocols.

Recently, hop integrity has been proposed to protect the mes-
sages of particular protocols, for example, RSVP [1]. By con-
trast, our proposed protocol suite is more general becaus:
protects every message transmitted through the network, ¢
is easier to manage because it updates shared secrets in a

3] M. de Vivo, G. de Vivo, and G. Isern, “Internet security attacks at the
basic levels,’'Oper. Syst. Rewol. 32, no. 2, pp. 4-15, Apr. 1998.
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