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Abstract—A computer network is said to provide hop integrity
iff when any router in the network receives a message sup-
posedly from an adjacent router , then can check that was
indeed sent by , was not modified after it was sent, and was not
a replay of an old message sent from to . In this paper, we de-
scribe three protocols that can be added to the routers in a com-
puter network so that the network can provide hop integrity, and
thus overcome most denial-of-service attacks. These three proto-
cols are a secret exchange protocol, a weak integrity protocol, and
a strong integrity protocol. All three protocols are stateless, require
small overhead, and do not constrain the network protocol in the
routers in any way.

Index Terms—Authentication, denial-of-service attack, Internet,
message modification, message replay, network protocol, router,
security, smurf attack, SYN attack.

I. INTRODUCTION

M OST COMPUTER networks suffer from the following
security problem: in a typical network, an adversary that

has an access to the network can insert new messages, modify
current messages, or replay old messages in the network. In
many cases, the inserted, modified, or replayed messages can
go undetected for some time until they cause severe damage
to the network. More importantly, the physical location in the
network where the adversary inserts new messages, modifies
current messages, or replays old messages may never be deter-
mined.

One type of such malicious attacks is called denial-of-service
attack, whose aim is to exhaust the communicating resources of
a network or the computing resources of a host, such that normal
services provided by the network or the host are reduced or com-
pletely denied. Two well-known examples of denial-of-service
attacks in networks that support the Internet Protocol (IP) and
the Transmission Control Protocol (TCP) are as follows.

A. Smurf Attack

In an IP network, any computer can send a “ping” message
to any other computer which replies by sending back a “pong”
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message to the first computer as required by Internet Control
Message Protocol (ICMP) [17]. The ultimate destination in the
pong message is the same as the original source in the ping mes-
sage. An adversary can utilize these messages to attack a com-
puter in such a network as follows. First, the adversary inserts
into the network a ping message whose original source is com-
puter and whose ultimate destination is a multicast address
for every computer in the network. Second, a copy of the in-
serted ping message is sent to every computer in the network.
Third, every computer in the network replies to its ping message
by sending a pong message to computer. Thus, computer is
flooded by pong messages that it had not requested.

B. SYN Attack

To establish a TCP connection between two computersand
, one of the two computerssends a “SYN” message to the

other computer. When receives the SYN message, it reserves
some of its resources for the expected connection and sends
a “SYN-ACK” message to . When receives the SYN-ACK
message, it replies by sending back an “ACK” message to. If

receives the ACK message, the connection is fully established
and the two computers can start exchanging their data messages
over the established connection. On the other hand, ifdoes
not receive the ACK message for a specified time period of
seconds after it has sent the SYN-ACK message,discards the
partially established connection and releases all the resources
reserved for that connection. The net effect of this scenario is
that computer has lost some of its resources forseconds.
An adversary can take advantage of such a scenario to attack
computer as follows [3], [23]. First, the adversary inserts into
the network successive waves of SYN messages whose original
sources are different (so that these messages cannot be easily
detected and filtered out from the network) and whose ultimate
destination is . Second, receives the SYN messages, reserves
its resources for the expected connections, replies by sending
SYN-ACK messages, then waits for the corresponding ACK
messages which will never arrive. Third, the net effect of each
wave of inserted SYN messages is that computerloses all its
resources for seconds.

In these (and other [9]) types of attacks, an adversary inserts
into the network messages with wrong original sources. These
messages are accepted by unsuspecting routers and routed to-
ward the computer under attack. To counter these attacks, each
router in the network should route a receivedonly after it
checks that the original source in is a computer adjacent to
or is forwarded to by an adjacent router. Performing the
first check is straightforward, whereas performing the second
check requires special protocols between adjacent routers. In

1063-6692/02$17.00 © 2002 IEEE



GOUDA et al.: HOP INTEGRITY IN COMPUTER NETWORKS 309

this paper, we present a suite of protocols that provide hop in-
tegrity between adjacent routers: whenever a routerreceives a
message from an adjacent router, can detect whether
was indeed sent by or it was modified or replayed by an ad-
versary that operates betweenand .

It is instructive to compare hop integrity with secure routing
[4], [14], [20], ingress filtering [6], traceback [2], [22], [21], and
IPsec [10]. In secure routing, for example [4], [14], and [20],
the routing update messages that routers exchange are authen-
ticated. This authentication ensures that every routing update
message that is modified or replayed is detected and discarded.
By contrast, hop integrity ensures that all messages (whether
data or routing update messages) that are modified or replayed
are detected and discarded.

Using ingress filtering [6], each router on the network
boundary checks whether the recorded source in each received
message is consistent with the source from which the router
received the message. If the message source is consistent, the
router forwards the message as usual. Otherwise, the router
discards the message. Thus, ingress filtering detects messages
whose recorded sources are modified (to hide the true sources
of these messages), provided that these modifications occur at
the network boundary. Messages whose recorded sources are
modified between adjacent routers in the middle of the network
will not be detected by ingress filtering, but will be detected
and discarded by hop integrity.

The purpose of traceback is for the destination under attack
to reconstruct the path traversed by the attacking messages, so
as to identify the real origin(s) of the messages responsible for
the attack. Two schemes have been proposed to achieve trace-
back: the message marking scheme [2], [22] and the hash-based
scheme [21]. In the message marking scheme, when a router

receives a message, it sends the traceback information,
namely the pair ( ), to the ultimate destination of the mes-
sage. The traceback information for a messageis either sent
in the ID field of the IP header of messageitself [22], or sent
in a separate ICMP message [2]. Due to the overhead incurred
by sending traceback information, both Bellovin [2] and Savage
[22] employ probabilistic methods rather than applying their
methods to every message. In the hash-based scheme, when a
router receives a message stores the traceback informa-
tion ( ) in a hash table for some (relatively short) time. In
these two schemes, a denial-of-service attack has to proceed for
some time before the ultimate destination that is under the attack
can detect the attack sources, if at all, and block them. In other
words, these are detection-and-resolution schemes. By contrast,
hop integrity is a prevention scheme. An attacking message,
usually with a false source address, will be detected and dis-
carded in its first hop. Thus, denial-of-service attacks will be
prevented before they start.

The hop integrity protocol suite in this paper and the IPsec
protocol suite presented in [10]–[12], [15], and [16] are both in-
tended to provide security at the IP layer. Nevertheless, these
two protocol suites provide different, and somewhat comple-
mentary, services. On one hand, the hop integrity protocols are
to be executed at all routers in a network, and they provide
a minimum level of security for all communications between
adjacent routers in that network. On the other hand, the IPsec

protocols are to be executed at selected pairs of computers in
the network, and they provide sophisticated levels of security
for the communications between these selected computer pairs.
Clearly, one can envision networks where the hop integrity pro-
tocol suite and the IPsec protocol suite are both supported. When
operating hand in hand, the hop integrity protocol suite can pro-
vide router authentication, router-to-router message integrity,
and determination of the adversary location when the network
is under attack, whereas the IPsec protocol suite can support
source authentication, end-to-end message integrity, and confi-
dentiality.

In the next section, we describe the concept of hop integrity
in some detail.

II. HOP INTEGRITY PROTOCOL

A network consists of computers connected to subnetworks.
(Examples of subnetworks are local area networks, telephone
lines, and satellite links.) Two computers in a network are called
adjacent iff both computers are connected to the same subnet-
work. Two adjacent computers in a network can exchange mes-
sages over any common subnetwork to which they are both con-
nected.

The computers in a network are classified into hosts and
routers. For simplicity, we assume that each host in a network
is connected to one subnetwork, and each router is connected
to two or more subnetworks. A messageis transmitted from
a computer to a faraway computer in the same network
as follows. First, message is transmitted in one hop from
computer to a router adjacent to . Second, message
is transmitted in one hop from router to router adjacent
to , and so on. Finally, messageis transmitted in one hop
from a router that is adjacent to computerto computer .

A network is said to provide hop integrity iff the following
two conditions hold for every pair of adjacent routersand in
the network.

1) Whenever router receives a message over the sub-
network connecting routersand , can determine cor-
rectly whether message was modified by an adversary
after it was sent by and before it was received by.

2) Whenever router receives a message over the sub-
network connecting routersand , and determines that
message was not modified, then can determine cor-
rectly whether message is another copy of a message
that is received earlier by.

For a network to provide hop integrity, two “thin” protocol
layers need to be added to the protocol stack in each router in
the network. As discussed in [5] and [19], the protocol stack
of each router (or host) in a network consists of four protocol
layers. They are (from bottom to top) the subnetwork layer, the
network layer, the transport layer, and the application layer. The
two thin layers that need to be added to this protocol stack are the
secret exchange layer and the integrity check layer. The secret
exchange layer is added above the network layer (and below the
transport layer), and the integrity check layer is placed below
the network layer (and above the subnetwork layer).

The function of the secret exchange layer is to allow adja-
cent routers to periodically generate and exchange (and so share)
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Fig. 1. Protocol stack for achieving hop integrity.

new secrets. The exchanged secrets are made available to the in-
tegrity check layer which uses them to compute and verify the
integrity check for every data message transmitted between the
adjacent routers.

Fig. 1 shows the protocol stacks in two adjacent routersand
. The secret exchange layer consists of the two processes

and in routers and , respectively. The integrity check layer
has two versions, weak and strong. The weak version consists
of the two processes and in routers and , respectively.
This version can detect message modification, but not message
replay. The strong version of the integrity check layer consists
of the two processes and in routers and , respectively.
This version can detect both message modification and message
replay.

Next, we explain how hop integrity, along with ingress fil-
tering, can be used to prevent smurf and SYN attacks (described
in Section I). Recall that in smurf and SYN attacks, an adversary
inserts into the network ping and SYN messages with wrong
original sources. These forged messages can be inserted either
through a boundary router or between two routers in the middle
of the network. Ingress filtering (which is usually installed in
boundary routers [6]) will detect the forged messages if they are
inserted through a boundary router because the recorded sources
in these messages would be inconsistent with the hosts from
which these messages are received. However, ingress filtering
may fail in detecting forged messages if these messages are in-
serted between two routers in the middle of the network. For ex-
ample, an adversary can log into any host located between two
routers and , and use this host to insert forged messages to-
ward router , pretending that these messages are sent by router
. The real source of these messages cannot be determined by

router because routercannot decide whether these messages
are sent by router or by some host betweenand . However,
if hop integrity is installed between the two routersand , then
the (weak or strong) integrity check layer in routerconcludes
that the forged messages have been modified after being sent
by router (although they are actually inserted by the adversary
and not sent by router), and so it discards them.

Smurf and SYN attacks can also be launched by replaying
old messages. For example, the adversary can log into any host
located between two routersand . When the adversary spots
some passing legitimate ping or SYN message being sent from

to , it keeps a copy of the passing message. At a later time,

the adversary can replay these copied messages over and over
to launch a smurf or SYN attack. Hop integrity can defeat this
attack as follows. If hop integrity is installed between the two
routers and , then the strong integrity check layer in router
can detect the replayed messages and discard them.

In the next three sections, we describe in some detail the pro-
tocols in the secret exchange layer and in the two versions of
the integrity check layer. The first protocol between processes

and is discussed in Section III. The second protocol be-
tween processes and is discussed in Section IV. The third
protocol between processesand is discussed in Section V.

These three protocols are described using a variation of the
Abstract Protocol Notation presented in [7]. In this notation,
each process in a protocol is defined by a set of inputs, a set
of variables, and a set of actions. For example, in a protocol
consisting of processes and , process can be defined as
follows.

process px

inp hname of input i: htype of input i

…

hname of input i: htype of input i

var hname of variable i: htype of variable i

…

hname of variable i: htype of variable i

begin

haction i

[] haction i

[] …

[] haction i

end

Comments can be added anywhere in a process definition;
each comment is placed between two brackets,and .

The inputs of process can be read but not updated by the
actions of process . Thus, the value of each input of is
either fixed or is updated by another process outside the protocol
consisting of and . The variables of process can be
read and updated by the actions of process. Each action of
process is of the form

hguard i ! hstatement i.

The guard of an action of is either a boolean
expressionor a receive statement of the form

rcv hmessage i from qx.

The statement of an action of is a sequence of
skip, assignment send, or selection statements. An
assignmentstatement is of the form

hvariable of pxi := hexpression i.

A send statement is of the form

send hmessage i to qx.
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A selection statement is of the form

if hboolean expression i ! hstatement i

…

[]hboolean expression i ! hstatement i

fi

Executing an action consists of executing the statement of
this action. Executing the actions (of different processes) in a
protocol proceeds according to the following three rules. First,
an action is executed only when its guard is true. Second, the
actions in a protocol are executed one at a time. Third, an action
whose guard is continuously true is eventually executed.

Executing an action of process can cause a message to
be sent to process . There are two channels between the two
processes: one is from to , and the other is from to

. Each sent message from to remains in the channel
from to until it is eventually received by process or
is lost. Messages that reside simultaneously in a channel form a
sequence in accordance with the order in
which they have been sent. The head message in the sequence,

, is the earliest sent, and the tail message in the sequence,
, is the latest sent. The messages are to be received in the

same order in which they were sent.
We assume that an adversary exists between processesand
, and that this adversary can perform the following three types

of actions to disrupt the communications betweenand .
First, the adversary can perform a message loss action where
it discards the head message from one of the two channels be-
tween and . Second, the adversary can perform a message
modification action where it arbitrarily modifies the contents of
the head message in one of the two channels betweenand

. Third, the adversary can perform a message replay action
where it replaces the head message in one of the two channels by
a message that was sent previously. For simplicity, we assume
that each head message in one of the two channels between
and is affected by at most one adversary action.

III. SECRETEXCHANGE PROTOCOL

In the secret exchange protocol, the two processesand
maintain two shared secrets and . Secret is used by
router to compute the integrity check for each data message
sent by to router , and it is also used by routerto verify
the integrity check for each data message received byfrom
router . Similarly, secret is used by to compute the integrity
checks for data messages sent to, and it is used by to verify
the integrity checks for data messages received from.

As part of maintaining the two secrets and , processes
and need to change these secrets periodically, say, every
hours, for some chosen value. Process is to initiate the

change of secret , and process is to initiate the change of
secret . Processes and each have a public key and a
private key that they use to encrypt and decrypt the messages
that carry the new secretbetween and . A public key is
known to all processes (in the same layer), whereas a private key
is known only to its owner process. The public and private keys
of process are named and , respectively; similarly, the

public and private keys of process are named and ,
respectively.

For process to change secret , the following four steps
need to be performed. First, generates a new , and encrypts
the concatenation of the old and the new using ’s public
key , and sends the result in a request (rqst) message to.
Second, when receives the rqst message, it decrypts the mes-
sage contents using its private key and obtains the old
and the new . Then, checks that its current equals the
old from the rqst message, and installs the newas its cur-
rent , and sends a reply (rply) message containing the encryp-
tion of the new using ’s public key . Third, waits
until it receives a rply message from containing the new
encrypted using . Receiving this rply message indicates that

has received the rqst message and has accepted the new.
Fourth, if sends the rqst message tobut does not receive
the rply message from for some seconds, indicating that
either the rqst message or the rply message was lost before it
was received, then resends the rqst message to. Thus is
an upper bound on the round-trip time betweenand .

Note that the old secret (along with the new secret) is included
in each rqst message and the new secret is included in each rply
message to ensure that if an adversary modifies or replays rqst
or rply messages, then each of these messages is detected and
discarded by its receiving process (whetheror ).

Process has two variables and , declared as follows.

var sp: integer

sq: array [0 . . . 1] of integer .

Similarly, process has an integer variable and an array
variable .

In process , variable is used for storing the secret ,
variable is used for storing the old , and variable
is used for storing the new . The assertion
indicates that process has generated and sent the new se-
cret , and that may not have received it yet. The assertion

indicates that has already received and ac-
cepted the new secret . Initially

in in in
and

in in in

Process can be defined as follows.

process pe

inp Rp: integer fprivate key of peg

Bq : integer fpublic key of qeg

te: integer ftime between secret

exchanges g

tr: integer fupper bound on round-trip

time g

var sp: integer sq: array [0 . . . 1] of integer

finitially sq[0] = sq[1] = sq in qe g

d; e: integer

begin

timeout sq[0] = sq[1]^
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( te hours passed since rqst message sent

last) !

sq[1] := NEWSCR;

e := NCR(Bq, ( sq[0]; sq[1]));

send rqst( e) to qe

[] rcv rqst( e) from qe !

( d; e) := DCR(Rp; e);

if sp = d _ sp = e !

sp := e;

e := NCR(Bq; sp);

send reply (e) to qe

[] sp 6= d ^ sp 6= e !

fdetect adversary g skip

fi

[] rcv rply( e) from qe !

d := DCR(Rp; e); if sq[1] = d ! sq[0] :=

sq[1]

[]sq[1] 6= d! fdetect adversary g skip

fi

[] timeout sq[0] 6= sq[1]^

( tr seconds passed since rqst message sent

last) !

e := NCR(Bq, ( sq[0]; sq[1]));

send rqst( e) to qe

end

Process can be defined in the same way, except that each
occurrence of in is replaced by an occurrence of in ,
each occurrence of in is replaced by an occurrence of
in , each occurrence of in is replaced by an occurrence of

in , and each occurrence of or in is replaced
by an occurrence of or , respectively, in .

The four actions of process use three functions NEWSCR,
NCR, and DCR, defined as follows. Function NEWSCR takes
no arguments, and when invoked, it returns a fresh secret that is
different from any secret that was returned in the past. Function
NCR is an encryption function that takes two arguments, a key
and a data item, and returns the encryption of the data item using
the key. For example, execution of the statement

NCR

causes the concatenation of and to be encrypted using
the public key , and the result to be stored in variable. Func-
tion DCR is a decryption function that takes two arguments, a
key and an encrypted data item, and returns the decryption of
the data item using the key. For example, execution of the state-
ment

DCR

causes the (encrypted) data itemto be decrypted using the
private key , and the result to be stored in variable. As
another example, consider the statement

DCR

This statement indicates that the value ofis the encryption
of the concatenation of two values (, ) using key . Thus,
executing this statement causesto be decrypted using key ,

Fig. 2. State transition diagram of the secret exchange protocol.

and the resulting first value to be stored in variable, and the
resulting second value to be stored in variable.

To verify the correctness of the secret exchange protocol,
refer to the state transition diagram of this protocol in Fig. 2.
This diagram has six nodes that represent all possible reachable
states of the protocol. Every transition in the diagram stands for
either a legitimate action (of process or process ), or an
illegitimate action of the adversary. For convenience, each tran-
sition is labeled by the message event that is executed during
that transition. In particular, each transition has a label of the
form

event type message type

where event type is one of the following.

stands for sending a message of the specified type.
stands for receiving a message of the specified type.
stands for losing a message of the specified type.
stands for modifying a message of the specified type

stands for replaying a message of the specified type.
The notation is used to denote the content of the

channel from process to process .
Initially, the protocol starts at a state , where the two chan-

nels between processes and are empty and the values of
variables in and variable in are the same.
This state can be defined by the following predicate:

in in in

At state , exactly one action, namely, the first timeout ac-
tion in process , is enabled for execution. Executing this ac-
tion at state leads the protocol to state , defined as fol-
lows:

rqst

NCR

in in in in

At state , exactly one legitimate action, namely, the receive
action (that receives a rqst message) in process, is enabled for
execution. Executing this action at state leads the protocol
to state , defined as follows:

rply
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NCR

in in in in

At state , exactly one legitimate action, namely, the receive
action (that receives a rply message) in process, is enabled for
execution. Executing this action at state leads the protocol
back to state , defined above.

States , , and are called good states because the
transitions between these states consist of executing the legiti-
mate actions of the two processes. The sequence of transitions
from state to state , to state , and back to state
constitutes the good cycle of the protocol. If only legitimate ac-
tions of processes and are executed, the protocol will stay
in this good cycle indefinitely. Next, we discuss the bad effects
caused by the actions of an adversary, and how the protocol can
recover from these effects.

First, the adversary can execute a message loss action at state
or . If the adversary executes a message loss action at

state or , the network moves to a state , defined as
follows:

in in

in in in in

At state , only the second timeout action in is enabled
for execution, and executing this action leads the network back
to state .

Second, the adversary can execute a message modification
action at state or . If the adversary executes a message
modification action at state , the network moves to state ,
defined as follows:

rqst

NCR

in in

in in in in

If the adversary executes a message modification action at
state , the network moves to state , defined as follows:

rply

NCR

in in

in in in in

In either case, the protocol moves next to stateand even-
tually returns to state .

Third, the adversary can execute a message replay action at
state or . If the adversary executes a message replay ac-
tion at state , the network moves to state . If the adver-
sary executes a message replay action at state, the network
moves to state . As shown above, the protocol eventually
returns to state .

From the state transition diagram in Fig. 2, it is clear that
each illegitimate action by the adversary will eventually lead
the network back to state , which is a good state. Once the
network is in a good state, the network can progress in the good

cycle. Hence, the correctness of the secret exchange protocol is
verified.

IV. WEAK INTEGRITY PROTOCOL

The main idea of the weak integrity protocol is simple. Con-
sider the case where a data() message, with being the mes-
sage text, is generated at a source, then transmitted through
a sequence of adjacent routers to a destination

. When data() reaches the first router , computes a di-
gest for the message as follows:

MD

where MD is the message digest function, ( ) is the con-
catenation of the message textand the shared secret be-
tween and (provided by the secret exchange protocol in

). Then, adds to the message before transmitting the re-
sulting data( ) message to router .

When the second router receives the data( ) message,
computes the message digest using the secret shared be-

tween and (provided by the secret exchange process in
), and checks whether the result equals. If they are unequal,

then concludes that the received message has been modified,
discards it, and reports an adversary. If they are equal, then
concludes that the received message has not been modified and
proceeds to prepare the message for transmission to the next
router . Preparing the message for transmission tocon-
sists of computing using the shared secret betweenand
and storing the result in field of the data( ) message.

When the last router receives the data( ) message, it
computes the message digest using the shared secret between

and and checks whether the result equals. If they
are unequal, discards the message and reports an adversary.
Otherwise, sends the data() message to its destination .

Note that this protocol detects and discards every modified
message. More importantly, it also determines the location
where each message modification has occurred.

Process in the weak integrity protocol has two inputs
and that reads but never updates. These two inputs in
process are also variables in process, and updates them
periodically, as discussed in the previous section. Process
can be defined as follows. (Process is defined in the same
way except that each occurrence of , and is
replaced by an occurrence of , and , respec-
tively.)

process pw

inp sp: integer

sq: array [0 . . . 1] of integer

var

t; d: integer

begin

rcv data( t; d) from qw !

if MD(t; sq[0]) = d _MD(t; sq[1]) = d !

fdefined later g RTMSG

[]MD(t; sq[0]) 6= d ^ MD(t; sq[1]) 6= d !

freport adversary g skip

fi
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[] true !

fp receives data( t; d) from router other g

fthan q and checks that its message g

fdigest is correct g

RTMSG

[] true !

feither p receives data( t) from an g

fadjacent host or p generates the g

ftext t for the next data message g

RTMSG

end .

In the first action of process , if receives a data( )
message from while , then cannot deter-
mine beforehand whether computed using or using

. In this case, needs to compute two message digests
using both and , respectively, and compare the two
digests with . If either digest equals, then accepts the
message. Otherwise, discards the message and reports the
detection of an adversary.

The three actions of process use two functions, named
MD and NXT, and one statement named RTMSG. Function MD
takes one argument, namely, the concatenation of the text of
a message and the appropriate secret, and computes a digest
for that argument. Function NXT takes one argument, namely,
the text of a message (which we assume includes the message
header), and computes the next router to which the message
should be forwarded. Statement RTMSG is defined as follows.

if NXT(t) = p ! faccept message g skip

[] NXT(t) = q ! d := MD(t; sp);

send data( t; d) to qw

[] NXT(t) 6= p^ NXT(t) 6= q !

fcompute d as the message digest of g

fthe concatenation of t and the secret g

ffor sending data to NXT( t); forward g

fdata( t; d) to router NXT( t) g skip

fi .

To verify the correctness of the weak integrity protocol, refer
to the state transition diagram of this protocol in Fig. 3, which
considers the channel from process to process . (The
channel from to , and the channels from to any other
weak integrity process in an adjacent router of, can be verified
in the same way.) This diagram has two nodes that represent all
possible reachable states of the protocol. Every transition in the
diagram stands for either a legitimate action (of processor
process ), or an illegitimate action of the adversary.

Note that because the weak integrity protocol operates below
the secret exchange protocol in the protocol stack, we can assert
that ( in in in in ) is an
invariant in every state of the weak integrity protocol. We denote
this invariant as in the specification in Fig. 3. Also, note that
the notation Head(data( )) in the specification in Fig. 3 is a
predicate whose value is true iff data( ) is the head message
of the specified channel.

Fig. 3. State transition diagram of the weak integrity protocol.

Initially, the protocol starts at state . At state , two le-
gitimate actions, namely, the send action inthat sends a data
message, and the receive action in that receives a data mes-
sage, can be executed. Executing either one of the two actions
at state keeps the protocol in state .

States is the only good state in the weak integrity pro-
tocol. The sequence of the transitions from state to state

constitutes the good cycle of the protocol. If only legitimate
actions of processes and are executed, the protocol will
stay in this good cycle indefinitely. Next, we discuss the bad ef-
fects caused by the actions of an adversary, and how the protocol
can recover from these effects.

First, the adversary can execute a message loss action at state
. If the adversary executes a message loss action at state
, the predicate that for every data message data() in the

channel from to , MD still holds. Therefore,
the protocol stays at state .

Second, the adversary can execute a message modification
action at state . If the adversary executes a message modifi-
cation at state , the protocol moves to state . The receive
and discard action executed by at state leads the pro-
tocol back to state .

From the state transition diagram, it is clear that each illegit-
imate action by the adversary will eventually lead the protocol
back to , which is a good state. Once the protocol is in a good
state, the protocol can progress in the good cycle. However, the
weak integrity protocol, while being able to detect and discard
all modified messages, cannot detect some replayed messages.
In the next section, we introduce the strong integrity protocol
that is capable of detecting and discarding all modified and re-
played messages.

V. STRONG INTEGRITY PROTOCOL

In this section, we discuss how to strengthen the weak in-
tegrity protocol to make it detect message replay. We present
the strong integrity protocol in two steps. First, we present a
protocol that uses “soft sequence numbers” to detect and dis-
card replayed data messages. Second, we show how to combine
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this protocol with the weak integrity protocol to form the strong
integrity protocol.

Consider a protocol that consists of two processesand .
Process continuously sends data messages to process. As-
sume that there is an adversary that attempts to disrupt the com-
munication between and by inserting (i.e., replaying) old
messages in the message stream fromto . In order to over-
come this adversary, processattaches an integer sequence
number to every data message sent to process. To keep track
of the sequence numbers, processmaintains a variable
that stores the sequence number of the next data message to be
sent by and process maintains a variable that stores the
sequence number of the next data message to be received by.

To send the next data() message, processassigns the cur-
rent value of variable , then increments by one. Assume
that no more than consecutive messages can get lost in transit.
When process receives a data() message, compares its vari-
able with . If , then accepts the
received data() message and assigns the value ; oth-
erwise, discards the data() message.

Correctness of this protocol is based on the observation that
the predicate holds at each (reachable) state of the
protocol. However, if due to some fault (for example, an acci-
dental resetting of the values of variable ) the value of
becomes much larger than the value of , then all the data
messages that sends from this point on will be wrongly dis-
carded by until becomes equal to . Next, we describe
how to modify this protocol such that the number of data() mes-
sages that can be wrongly discarded when the synchronization
between and is lost due to some fault is at most, for some
chosen integer that is much larger than one.

The modification consists of adding to processtwo vari-
ables and , whose values are in the range .
When process receives a data() message, compares the
values of and . If , then process increments

by one (mod ) and proceeds as before [namely, either ac-
cepts the data() message if , or discards
the message if or ]. Otherwise, accepts
the message, assignsthe value 0, and assigns a random
integer in the range .

This modification achieves two objectives. First, it guarantees
that process never discards more than data messages when
the synchronization betweenand is lost due to some fault.
Second, it ensures that the adversary cannot predict the instants
when process is willing to accept any received data message,
and so cannot exploit such predictions by sending replayed data
messages at those instants.

Formally, process and in this protocol can be defined as
follows.

process u

var nxt: integer

fsequence number of next sent message g

begin

true ! send data( nxt) to v; nxt := nxt + 1

end

process v

inp N : integer

L: integer

var s: integer

fsequence number of received message g

exp: integer

fsequence number of next g

fexpected message g

c; cmax: 0 . . .N � 1

begin

rcv data( s) from u !

if ( s < exp_s > exp+L) ^c 6= cmax !

freject message; report an

adversary g

c := (c + 1)modN

[](exp � s � exp+L) _ c = cmax !

faccept message g

exp := s + 1;

if c 6= cmax ! c := (c+ 1)modN

[]c = cmax !

c := 0;

cmax := RANDOM(0; N � 1)

fi

fi

end .

Processes and of the soft sequence number protocol can
be combined with process of the weak integrity protocol to
construct process of the strong integrity protocol. A main dif-
ference between processesand is that exchanges mes-
sages of the form data( ), whereas exchanges messages of
the form data( ), where is the message sequence number
computed according to the soft sequence number protocol,is
the message text, andis the message digest computed over
the concatenation ( ) of , and the shared secret .
Process in the strong integrity protocol can be defined as fol-
lows. (Process can be defined in the same way.)

process ps

inp sp: integer

sq: array [0 . . . 1] of integer

N : integer

L: integer

var s; t; d: integer

exp; nxt: integer

c; cmax: 0 . . .N � 1

begin

rcv data( s; t; d) from qs !

if MD(s; t; sq[0]) = d _MD(s; t; sq[1]) = d!

if (s < exp_s > exp+L) ^ c 6= cmax !

freject message; report an

adversary g

c := (c + 1)modN

[](exp � s � exp+L) _ c = cmax !

faccept message g

exp := s + 1;

if c 6= cmax !

c := (c + 1)modN
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[]c = cmax !

c := 0;

cmax := RANDOM(0; N � 1)

fi

fi

[]MD(s; t; sq[0]) 6= d ^MD(s; t; sq[1]) 6= d!

freport an adversary g skip

fi

[] true !

fp receives a data( s; t; d) from a router g

fother than q and checks that its

encryption g

fis correct and its sequence number is

within g

frange g

RTMSG

[] true !

feither p receives a data( t) from

adjacent g

fhost or p generates the text t for the

next g

fdata message g

RTMSG

end .

The first and second actions of processhave a statement
RTMSG that is defined as follows.

if NXT(t) = p ! faccept message g skip

[] NXT(t) = q ! d := MD(nxt; t; sp);

send data( nxt; t; d) to qs;

nxt := nxt + 1

[] NXT(t) 6= p^ NXT(t) 6= q !

fcompute next soft sequence number

s; g

fcompute d as the message digest of

the g

fconcatenation of snxt, t, and the

secret g

ffor sending data to NXT( t); forward g

fdata( s; t; d) to router NXT( t) g skip

fi .

To verify the correctness of the strong integrity protocol,
refer to the state transition diagram of this protocol in Fig. 4,
which considers the channel from processto process .
(The channel from to , and the channels from to any
other strong integrity process in an adjacent router of, can
be verified in the same way.) This diagram has four nodes that
represent all possible reachable states of the protocol. Every
transition in the diagram stands for either a legitimate action
(of process or process ), or an illegitimate action of the
adversary.

Note that because the strong integrity protocol operates below
the secret exchange protocol in the protocol stack, we can assert
that ( in in in in ) is an in-

Fig. 4. State transition diagram of the strong integrity protocol.

variant in every state of the strong integrity protocol. We denote
this invariant as in the specification in Fig. 4.

Initially, the protocol starts at state . At state , two le-
gitimate actions, namely, the send action inthat sends a data
message, and the receive action inthat receives a data mes-
sage, can be executed. Executing either one of the two actions
at state keeps the protocol in state .

State is the only good state in the strong integrity pro-
tocol. The sequence of the transitions from stateto state
constitutes the good cycle of the protocol. If only legitimate ac-
tions of processes and are executed, the protocol will stay
in this good cycle indefinitely. Next, we discuss the bad effects
caused by the actions of an adversary, and how the protocol can
recover from these effects.

First, the adversary can execute a message loss action at state
. If the adversary executes a message loss action at state,

the predicate that for every data message data( ) in the
channel from to , MD still holds. Therefore,
the protocol stays at state .

Second, the adversary can execute a message modification
action at state causing the protocol to move to state .
The receive and discard action executed byat state leads
the protocol back to state .

Third, the adversary can execute a message replay action at
state . There are two cases to consider. First, if the replayed
message data( ) is too old such that the secret used to com-
pute the message digest is different from the current value of
input in process , then the protocol moves to state ,
and later returns to state as discussed above. Second, if
the replayed message data( ) is recent such that the se-
cret used to compute the message digest is equal to the cur-
rent value of input in process , then the protocol moves
either to state or to state . With a high probability of

, the protocol moves to state , and the re-
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played message will be received and discarded bybecause
the value of field in the message tells that the message is re-
played. With a probability of , the protocol moves to
state , and the replayed message will be received and ac-
cepted. In both cases, the protocol returns to state.

From the state transition diagram, it is clear that each illegit-
imate action by the adversary will eventually lead the protocol
back to , which is a good state. Once the protocol is in a good
state, the protocol can progress in the good cycle. Moreover, if
the adversary replays a recent data message, the replayed mes-
sage will be detected and discarded with the high probability

.

VI. I MPLEMENTATION CONSIDERATIONS

In this section, we discuss several issues concerning the im-
plementation of the hop integrity protocols presented in the pre-
vious three sections. In particular, we discuss acceptable values
for the inputs of each of these protocols.

There are four inputs in the secret exchange protocol in Sec-
tion III. They are , , , and . Input is a private key
for router , and input is a public key for router . These
are long-term keys that remain fixed for long periods of time
(say, one to three months), and can be changed only off-line
and only by the system administrators of the two routers. Thus,
these keys should consist of a relatively large number of bytes,
say, 128 B (1024 bits) each. There are no special requirements
for the encryption and decryption functions that use these keys
in the secret exchange protocol.

Input is the time period between two successive secret ex-
changes between and . This time period should be small
enough that an adversary does not have enough time to deduce
the secrets and used in computing the integrity checks of
data messages. It should also be large enough that the overhead
that results from the secret exchanges is reduced. An acceptable
value for is around 4 hours.

Input is the time-out period for resending a rqst message
when the last rqst message or the corresponding rply message
was lost. The value of should be an upper bound on the
round-trip delay between the two adjacent routers. If the two
routers are connected by a high-speed Ethernet, then an accept-
able value of is around 4 s.

Next, we consider the two inputs and and function MD
used in the integrity protocols in Sections IV and V. Inputs
and are short-lived secrets that are updated every 4 hours.
Thus, this key should consist of a relatively small number of
bytes, say, 8 B. Function MD is used to compute the digest of
a data message. Function MD is computed in two steps as fol-
lows. First, the standard function MD5 [18] is used to compute
a 16-byte digest of the data message. Second, the first 4 B from
this digest constitute our computed message digest. (Computing
a message digest over a 1024-byte message using MD5 is timed
at just 0.037 ms on a Pentium III 730-MHz machine running
Linux. It is not a significant overhead to a router.)

The soft sequence numbers in Section V can be recycled pro-
vided that not each of the sequence numbers has been used at
least once in time period . In a usual Ethernet, at most 800
messages can be sent in a second, thus at most 11 520 000 mes-

sages can be sent in a period of 4 hours. Using 4 B to store the
soft sequence numbers is a proper choice with considerations of
covering the maximum number of consumed sequence numbers
in time period and aligning with the original IP header.

As discussed in Section V, input needs to be much larger
than 1. For example, can be chosen to be 200. In this case, the
maximum number of messages that can be discarded wrongly
whenever synchronization between two adjacent routers is lost
is 200, and the probability of detecting an adversary which re-
plays an old message is 99%.

The message overhead of the strong integrity protocol is
about 8 B per data message: 4 B for storing the message digest,
and 4 B for storing the soft sequence number of the message.

VII. CONCLUDING REMARKS

In this paper, we introduced the concept of hop integrity in
computer networks. A network is said to provide hop integrity
iff whenever a router receives a message supposedly from an
adjacent router, router can check whether the received mes-
sage was indeed sent byor was modified or replayed by an
adversary that operates betweenand .

The effectiveness of hop integrity is apparent in those sit-
uations where ingress filtering is not effective. For example,
ingress filtering can detect and discard messages with wrongly
recorded sources at the network boundary, but cannot do so be-
tween adjacent routers in the middle of the network. By contrast,
hop integrity can detect and discard messages with wrongly
recorded source between adjacent routers in the middle of the
network.

Moreover, ingress filtering is not compatible with mobile IP.
A message sent by a mobile node and forwarded by the foreign
agent (of this mobile node) will be filtered out by the next router
because the recorded source of the message seems wrong to
the router. By contrast, hop integrity can guarantee that every
message forwarded by the foreign agent will be accepted by
the router. (Reverse tunneling [13] was proposed to remedy this
problem, but the cost of using reverse tunneling is high because
every message that is sent by a mobile node has to be tunneled
back to the home agent of the mobile node before the message
can be forwarded.)

We presented three protocols that can be used to make any
computer network provide hop integrity. These three protocols
are a secret exchange protocol, a weak integrity protocol, and
a strong integrity protocol. These three protocols have several
novel features that make them correct and efficient. First, when-
ever the secret exchange protocol attempts to change a secret, it
keeps both the old secret and the new secret until it is certain
that the integrity check of any future message will not be com-
puted using the old secret. Second, the integrity protocol com-
putes a digest at every router along the message route so that the
location of any occurrence of message modification can be de-
termined. Third, the strong integrity protocol uses soft sequence
numbers to make the protocol tolerate any loss of synchroniza-
tion.

It is possible to reduce the overhead induced by the three pro-
tocols as follows. If in a network some hops are assured to be
adversary-proof (for example, the hops between core routers),



318 IEEE TRANSACTIONS ON NETWORKING, VOL. 10, NO. 3, JUNE 2002

then hop integrity does not need to be implemented over these
hops. When a router needs to forward a message over an adver-
sary-proof hop, it just follows the same procedure as in normal
IP.

All three protocols are stateless, require small overhead at
each hop, and do not constrain the network protocol in any way.
Thus, we believe that they are compatible with IP in the Internet,
and it remains to estimate or measure the performance of IP
when augmented with these protocols.

Recently, hop integrity has been proposed to protect the mes-
sages of particular protocols, for example, RSVP [1]. By con-
trast, our proposed protocol suite is more general because it
protects every message transmitted through the network, and
is easier to manage because it updates shared secrets in a dis-
tributed way.
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