
Measuring and Characterizing End-to-End
Internet Service Performance

LUDMILA CHERKASOVA
Hewlett-Packard Laboratories
YUN FU
Duke University
WENTING TANG
Hewlett-Packard Laboratories
and
AMIN VAHDAT
Duke University

Fundamental to the design of reliable, high-performance network services is an understanding of
the performance characteristics of the service as perceived by the client population as a whole.
Understanding and measuring such end-to-end service performance is a challenging task. Cur-
rent techniques include periodic sampling of service characteristics from strategic locations in the
network and instrumenting Web pages with code that reports client-perceived latency back to a
performance server. Limitations to these approaches include potentially nonrepresentative access
patterns in the first case and determining the location of a performance bottleneck in the second.

This paper presents EtE monitor, a novel approach to measuring Web site performance. Our
system passively collects packet traces from a server site to determine service performance char-
acteristics. We introduce a two-pass heuristic and a statistical filtering mechanism to accurately
reconstruct different client page accesses and to measure performance characteristics integrated
across all client accesses. Relative to existing approaches, EtE monitor offers the following bene-
fits: i) a latency breakdown between the network and server overhead of retrieving a Web page,
ii) longitudinal information for all client accesses, not just the subset probed by a third party,
iii) characteristics of accesses that are aborted by clients, iv) an understanding of the performance
breakdown of accesses to dynamic, multitiered services, and v) quantification of the benefits of
network and browser caches on server performance. Our initial implementation and performance
analysis across three different commercial Web sites confirm the utility of our approach.

A short version of this article was published in USENIX’2002. A. Vahdat and Y. Fu are supported in
part by research grant from HP and by the National Science Foundation (EIA-9972879). A. Vahdat
is also supported by an NSF CAREER award (CCR-9984328).
Author’s addresses: L. Cherkasova and W. Tang, Hewlett-Packard Laboratories, 1501 Page Mill
Road, Palo Alto, CA 94303; email: {lucy cherkasova,wenting tang}@hp.com; Y. Fu and A. Vahdat,
Department of Computer Science, Duke University, Durham, NC 27708; email: {fu,vahdat}@cs.
duke.edu
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1533-5399/03/1100-0347 $5.00

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003, Pages 347–391.

348 • L. Cherkasova et al.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring; C.2.4 [Computer-Communication Networks]: Distributed
Systems—Client/server; C.2.5 [Computer-Communication Networks]: Local and Wide-Area
Networks—Internet; C.4 [Performance of Systems]: Measurement techniques, Modeling tech-
niques, Design studies; D.2.5 [Software Engineering]: Testing and Debugging—Monitors; D.2.8
[Software Engineering]: Metrics—Performance measures

General Terms: Measurement, Performance

Additional Key Words and Phrases: End-to-end service performance, network packet traces, passive
monitoring, QoS, reconstruction of web page composition, web site performance

1. INTRODUCTION

Recent technology trends are increasingly leading to an environment where
service, reliability, and robustness are eclipsing raw system behavior as the
primary evaluation metrics for distributed services. First, the Internet is in-
creasingly being used to deliver important services in support of business, gov-
ernment, education, and entertainment. At the same time, mission critical op-
erations related to scientific instrumentation, military operations, and health
services, are making increasing use of the Internet for delivering information
and distributed coordination. Second, accessing a particular logical service (e.g.,
a news service or a bank account) typically requires the complex interaction of
multiple machines and physical services (e.g., a database, an application server,
a Web server, request routing, etc.) often spread across the network. Finally, the
baseline performance of servers and networks continues to improve at exponen-
tial rates, often making available performance plentiful in the common case. At
the same time, access to network services is inherently bursty, making order of
magnitude spikes in request load relatively common.

A first step in building reliable and robust network services is tracking and
understanding the performance of complex services across a diverse and rapidly
changing client population. In a competitive landscape, such understanding
is critical to continually evolving and engineering Internet services to match
changing demand levels and client populations. By understanding current ser-
vice access characteristics, sites might employ software to dynamically adapt
to current network conditions, for example by reducing bandwidth overhead by
transcoding Web page content, by leveraging additional replicas at appropri-
ate locations in a content distribution network, or by reducing the data qual-
ity of query results to dynamic services, for instance, by sampling database
contents.

In general, a Web page is composed of an HTML file and several embedded
objects such as images. A browser retrieves a Web page by issuing a series of
HTTP requests for all objects. However, HTTP does not provide any means to
delimit the beginning or the end of a Web page. Since client-perceived Web
server responses correspond to retrieval of Web pages, effectively measuring
and analyzing the Web page download process is a critical and challenging
problem in evaluating end-to-end performance.

Currently, there are two popular techniques for benchmarking the per-
formance of Internet services. The first approach, active probing [Keynote

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 349

Systems, Inc. www.keynote.com; NetMechanic, Inc. www.netmechanics.com;
Software Research Inc www.soft.com; Porivo Technologies, Inc. www.porivo.
com; Gomez, Inc. www.gomez.com] uses machines from fixed points in the
Internet to periodically request one or more URLs from a target Web ser-
vice, record end-to-end performance characteristics, and report a time-varying
summary back to the Web service. The second approach, Web page instru-
mentation [HP Corporation www.openview.hp.com; IBM Corporation www.
tivoli.com/products/demos/twsm.html; Candle Corporation: eBusiness Assur-
ance www.candle.com; Rajamony and Elnozahy 2001], associates code (e.g.,
JavaScript) with target Web pages. The code, after being downloaded into the
client browser, tracks the download time for individual objects and reports per-
formance characteristics back to the Web site.

In this paper, we present a novel approach to measuring Web site perfor-
mance called EtE monitor. Our system passively collects network packet traces
from the server site to enable either offline or online analysis of system perfor-
mance characteristics. Using two-pass heuristics and statistical filtering mech-
anisms, we are able to accurately reconstruct individual page composition with-
out parsing HTML files or obtaining out-of-band information about changing
site characteristics. EtE monitor offers a number of benefits relative to existing
techniques.

—Our system can determine the breakdown between the server and net-
work overhead associated with retrieving a Web page. This information is
necessary to understand where performance optimizations should be di-
rected, for instance to improve server-side performance or to leverage ex-
isting content distribution networks (CDNs) to improve network locality.
Such functionality is especially important in dynamic and personalized
Web services where the CPU time for individual page access can be highly
variable.

—EtE monitor tracks all accesses to Web pages for a given service. Many ex-
isting techniques are typically restricted to a few probes per hour to URLs
that are pre-determined to be popular. Our approach is much more agile for
changing client access patterns. What real clients are accessing determines
the performance that EtE monitor evaluates.

—Given information on all client accesses, clustering techniques [Krishna-
murthy and Wang 2000] can be utilized to determine network performance
characteristics by network region or autonomous system. System admin-
istrators can use this information to determine which content distribution
networks to partner with (depending on their points of presence) or to de-
termine multi-homing strategies with particular ISPs. In the future, such
information may be relayed back to CDNs in a cooperative environment as
hints for future replica placement.

—EtE monitor captures information on page requests that are manually
aborted by the client, either because of unsatisfactory Web site performance
or specific client browsing patterns (e.g., clicking on a link before a page has
completed the download process). Existing techniques cannot model user in-
teractions in the case of active probing or they miss important aspects of Web

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

350 • L. Cherkasova et al.

site performance such as TCP connection establishment in the case of Web
page instrumentation.

—Finally, EtE monitor is able to determine the actual benefits of both browser
and network caches. By learning the likely composition of individual Web
pages, our system can determine when certain embedded objects of a Web
page are not requested and conclude that those objects were retrieved from
some cache in the network.

This paper presents the architecture and implementation of our prototype
EtE monitor. It also highlights the benefits of our approach through an eval-
uation of the performance of three different commercial Web sites using EtE
monitor. Overall, we believe that detailed performance information will enable
network services to dynamically adapt to changing access patterns and system
characteristics to best match client QoS expectations. A key challenge to exter-
nal evaluation of dynamic and personalized Web services is subjecting them to
dynamic request streams that accurately reflect complex client interactions and
the resulting computation across multiple tiers. While Web page instrumenta-
tion does allow evaluation under realistic access patterns, it remains difficult
to break down network versus computation bottlenecks using this approach.

The delay due to the content generation process is determined by the amount
of work required to generate a particular customized dynamic Web page. In a
multi-tiered Web system, frequent calls to application servers and databases
place a heavy load on back-end resources and may cause throughput bottlenecks
and high server-side processing latency. In one of our case studies, we use EtE
monitor to evaluate the performance of a Web service with highly personalized
and dynamic content. There are several technical challenges for performing the
analysis of such sites related to specific characteristics of dynamically gener-
ated and customized content, which we discuss in more detail in the paper. We
believe that this class of Web service becomes increasingly important as more
sites seek to personalize and customize their content for individual client prefer-
ences and interests. An important contribution of this work is a demonstration
of the utility of our approach for comprehensive evaluation of such dynamic
services.

Two main components of client-perceived response time are network trans-
fer time and server-side processing time. The network transfer time depends
on the latency and bandwidth of the underlying network connection. The
server-side processing time is determined by the server hardware and the Web
server technologies. Many Web sites use complex multi-tiered architectures
where client requests are received by a front-tier Web server. This front tier
processes client requests with the help of an application server, which may
in turn access a back-end database using middleware technologies such as
CORBA, RMI, and so on. Many new technologies, such as servlets [JavaServlet
Technology java.sun.com/products/servlet] and Javaserver Pages [JavaServer
Pages java.sun.com/products/jsp/technical.html], are popularly adopted for gen-
erating information-rich, dynamic Web pages. These new technologies and
more complex Web site architectures require more complicated performance
assessment of overall site design to understand their performance implications

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 351

on end-user observed response time. Client-side processing overhead, such as
browser rendering and cache lookup, can also affect client-perceived response
times, but this of the delay is outside of the scope of our tool.

The user satisfaction with Web site response quality influences how long the
user stays at the site, and determines the user’s future visits. Thus, the response
time observed by end users becomes a critical metric to measure and improve.
Further, being able to characterize a group of clients who are responsible for a
significant portion of the site’s content or services as well as measuring their
observed response time can help service providers make appropriate decisions
for optimizing site performance.

The rest of this paper is organized as follows. In the next section, we sur-
vey existing techniques and products and discuss their merits and drawbacks.
Section 3 outlines the EtE monitor architecture, with additional details in
Sections 4–6. In Section 7, we present the results of three performance studies,
which have been performed to test and validate EtE monitor and its approach.
The studied Web sites include static, dynamic and customized Web pages. We
also present specially designed experiments to validate the accuracy of EtE
monitor performance measurements and its page access reconstruction power.
We discuss the limitations of the proposed technique in Section 8 and present
our conclusions and future work in Section 9.

2. RELATED WORK

A number of companies use active probing techniques to offer measurement
and testing services including Keynote [Keynote Systems, Inc. www.keynote.
com], NetMechanic [NetMechanic, Inc. www.netmechanics.com], Software Re-
search [Software Research Inc www.soft.com], Porivo Technologies [Porivo
Technologies, Inc. www.porivo.com], and Gomez [Gomez, Inc. www.gomez.com].
Their solutions are based on periodic polling of Web services using a set of ge-
ographically distributed, synthetic clients. In general, only a few pages or op-
erations can be tested, potentially reflecting only a fraction of all users’ experi-
ence. Further, active probing techniques typically cannot capture the potential
benefits of browser and network caches, in some sense reflecting “worst case”
performance. From another perspective, active probes come from a different set
of machines than those that actually access the service. Thus, there may not al-
ways be correlation between the performance/reliability reported by the service
and that experienced by end users. Finally, it is more difficult to determine the
breakdown between network and server-side performance using active probing,
and currently available services leveraging active probing do not provide this
breakdown, making it more difficult for customers to determine where best to
place their optimization efforts.

The idea of active probing is also used in tools based on browser in-
strumentation. e-Valid from Software Research, Inc. [Software Research Inc
www.soft.com] is a well-known commercial product which provides a browser-
based Web site monitoring. Page Detailer [Hellerstein et al. 1999; IBM Research
www.research.ibm.com/pagedetailer] is another interesting tool from IBM Re-
search advocating the idea of client side instrumentation. While browser/client

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

352 • L. Cherkasova et al.

instrumentation can capture many useful details and performance metrics
about accesses from an individual instrumented client to Web pages of interest,
this approach has drawbacks similar to the active probing technique: Web site
performance can be assessed from a small number of instrumented clients de-
ployed in a limited number of network locations. Typically, such browser-based
tools are used for testing and debugging commercial Web sites.

Krishnamurthy et al [Krishnamurthy and Wills 2000] measured end-to-end
Web performance on 9 client sites based on the PROCOW infrastructure. To
investigate the effect of network latency on Web performance, a passive mea-
surement may be required to compare the results with the application layer
measurement.

Another popular approach is to embed instrumentation code with Web pages
to record access times and report statistics back to the server. For instance,
WTO (Web Transaction Observer) from HP OpenView suite [HP Corporation
www.openview.hp.com] uses JavaScript to implement this functionality. With
additional Web server instrumentation and cookie techniques, this prod-
uct can record the server processing time for a request, enabling a break-
down between server and network processing time. However in general, sin-
gle Web pages with non-HTML Content-Type fields, such as application/
postscript, application/x-tar, application/pdf, or application/zip, cannot be
instrumented. Further, this approach requires additional server-side instru-
mentation and dedicated resources to actively collect performance reports from
clients. A number of other products and proposals [IBM Corporation www.tivoli.
com/products/demos/twsm.html; Candle Corporation: eBusiness Assurance
www.candle.com; Rajamony and Elnozahy 2001] employ similar techniques.

Similar to our approach, Web page instrumentation can also capture end-
to-end performance information from real clients. But since the JavaScript code
is downloaded to a client Web browser with the instrumented HTML file, and
is executed after the page is downloaded, typically only the response time for
retrieving the subsequent embedded images can be measured: it does not cap-
ture the connection establishment time and the main HTML file download time
(which can be a significant portion of overall response time).

To avoid the above drawbacks, some recent work [Rajamony and Elnozahy
2001] proposes to instrument the hyperlinks for measuring the response times
of the Web pages that the links point to. This technique exploits similar ideas of
downloading a small amount of code written in JavaScript to a client browser
when a Web page is accessed via a hyperlink. However, with this approach, the
response times for pages like index.html (i.e. the Web pages that are accessed
directly, not via links to them) cannot be measured.

There have been some earlier attempts to passively estimate the response
time observed by clients from network level information. SPAND [Seshan et al.
1997; Stemm et al. 2000] determines network characteristics by making shared,
passive measurements from a collection of hosts and uses this information for
server selection—for routing client requests to the server with the best observed
response time in a geographically distributed Web server cluster.

AT&T also has many research efforts for measuring and analyzing Web
performance by monitoring the commercial AT&T IP network. Caceres et al.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 353

[2000] describe the prototype infrastructure for passive packet monitoring on
the AT&T network. Krishnamurthy et al [Krishnamurthy and Rexford 1999]
discussed the importance of collecting packet-level information for analyzing
Web content. In their work, they collected the information that server logs
cannot provide such as packet timing, lost packets, and packet order. They dis-
cussed the challenges for Web analysis based on server logging in a related
effort [Krishnamurthy and Rexford 1998].

Krishnamurthy et al [Krishnamurthy and Wills 2002] propose a set of polices
for improving Web server performance measured by client-perceived Web page
download latency. Based on passive server-side log analysis, they can group log
entries into logical Web page accesses to classify client characteristics, which
can be used to direct server adaptation. Their experiments show that even
a simple classification of client connectivity can significantly improve poorly
performing accesses.

The NetQoS, Inc. [NetQoS Inc. www.netqos.com] provides a tool for applica-
tion performance monitoring, which exploits ideas similar to those proposed in
this paper: it collects the network packet traces from server sites and recon-
structs the request-response pairs (the client requests and the corresponding
server responses) and estimates the response time for those pairs.

Other research work on network performance analysis includes the analysis
of critical TCP transaction paths [Barford and Crovella 2000], which also de-
composes network from server response time based on packet traces collected
at both the server and client sides. Olshefski et al. [2001] attempt to estimate
client-perceived response times at the server side and quantify the effect of
SYN drops on a client response time. Meanwhile, many research efforts eval-
uate the performance improvements of HTTP/1.1 [Krishnamurthy and Wills
2000; Nielsen et al. 1997].

However, the client-perceived Web server responses are the retrievals of Web
pages (a Web page is composed of an HTML file and several embedded objects
such as images, and not just a single request-response pair). Thus, there is
an orthogonal problem of grouping individual request-response pairs into the
corresponding Web page accesses. EtE monitor provides the additional step of
client page access reconstruction from network level packet trace aiming both
to accurately assess the true end-to-end time observed by the client as well as to
determine the breakdown between the server and network overhead associated
with retrieving a Web page.

3. ETE MONITOR ARCHITECTURE

EtE monitor consists of four program modules shown in Figure 1:

(1) The Network Packet Collector module collects network packets using tcp-
dump [Tcpdump www.tcpdump.org] and records them to a Network Trace,
enabling offline analysis.

(2) In the Request-Response Reconstruction module, EtE monitor reconstructs
all TCP connections from the Network Trace and extracts HTTP transac-
tions (a request with the corresponding response) from the payload. EtE
monitor does not consider encrypted connections whose content cannot be

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

354 • L. Cherkasova et al.

Fig. 1. EtE monitor architecture.

analyzed. After obtaining the HTTP transactions, the monitor stores some
HTTP header lines and other related information in the Transaction log for
future processing (excluding the HTTP payload). To rebuild HTTP transac-
tions from TCP-level traces, we use a methodology proposed by Feldmann
[2000] and described in more detail and extended to work with persistent
HTTP connections by Krishnamurthy and Rexford [2001].

(3) The Web Page Reconstruction module is responsible for grouping underlying
physical object retrievals together into logical Web pages (and stores them
in the Web Page Session Log).

(4) Finally, the Performance Analysis and Statistics module summarizes a va-
riety of performance characteristics integrated across all client accesses.

EtE monitor can be deployed in several different ways. First, it can be in-
stalled on a Web server as a software component to monitor Web transactions on
a particular server. However, our software would then compete with the server
for CPU cycles and I/O bandwidth (as quantified in Section 7).

Another solution is to place EtE monitor as an independent network appli-
ance at a point on the network where it can capture all HTTP transactions for
a Web server. If a Web site consists of multiple servers, EtE monitor should be
placed at the common entrance and exit of all of them. If a Web site is sup-
ported by geographically distributed servers, such a common point may not
exist. Nevertheless, distributed Web servers typically use “sticky connections”:
once the client has established a connection with a server, the subsequent client
requests are sent to the same server. In this case, EtE monitor can still be used
to capture a flow of transactions to a particular geographic site.

EtE monitor can also be configured as a mixed solution in which only the
Network Packet Collector and the Request-Response Reconstruction module are
deployed on Web servers, the other two modules can be placed on an inde-
pendent node. Since the Transaction Log is two to three orders of magnitude
smaller than the Network Trace, this solution reduces the performance impact
on Web servers and does not introduce significant additional network traffic.

4. REQUEST-RESPONSE RECONSTRUCTION MODULE

As described above, the Request-Response Reconstruction module reconstructs
all observed TCP connections. The TCP connections are rebuilt from the Net-
work Trace using client IP addresses, client port numbers, and request (re-
sponse) TCP sequence numbers. We chose not to use existing third-party pro-
grams to reconstruct TCP connections for efficiency. Rather than storing all
connection information in the file system, our code processes and stores all

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 355

information in memory for high performance. In our reconstructed TCP con-
nections, we store all necessary IP packet-level information according to our re-
quirements, which cannot be easily obtained from third-party software output.

Within the payload of the rebuilt TCP connections, HTTP transactions can
be delimited as defined by the HTTP protocol. Meanwhile, the timestamps,
sequence numbers and acknowledged sequence numbers for HTTP requests
can be recorded for later matching with the corresponding HTTP responses.

When a client clicks a hypertext link to retrieve a particular Web page, the
browser first establishes a TCP connection with the Web server by sending a
SYN packet. If the server is ready to process the request, it accepts the con-
nection by sending back a second SYN packet acknowledging the client’s SYN.1

At this point, the client is ready to send HTTP requests to retrieve the HTML
file and all embedded objects. For each request, we are concerned with the time
stamps for the first byte and the last byte of the request since they delimit the
request transfer time and the beginning of server processing. We are similarly
concerned with the time stamps of the beginning and the end of the correspond-
ing HTTP response. Besides, the timestamp of the acknowledgment packet for
the last byte of the response explicitly indicates that the browser has received
the entire response.

EtE monitor detects aborted connections by observing either

—a RST packet sent by an HTTP client to explicitly indicate an aborted
connection or

—a FIN/ACK packet sent by the client where the acknowledged sequence num-
ber is less than the observed maximum sequence number sent from the
server.

After reconstructing the HTTP transactions (a request and the corresponding
response), the monitor records the HTTP header lines of each request in the
Transaction Log and discards the body of the corresponding response. Table I
describes the format of an entry in the HTTP Transaction Log.

One alternative way to collect most of the fields of the Transaction Log entry
is to extend Web server functionality. Apache, Netscape and IIS all have ap-
propriate APIs. Most of the fields in the Transaction Log can be extracted via
server instrumentation. In this case, the overall architecture of EtE monitor
will be represented by the three program modules shown in Figure 2:

This approach has some merits: 1) since a Web server deals directly with
request-response processing, the reconstruction of TCP connections becomes
unnecessary; 2) it can handle encrypted connections.

However, the primary drawback of this approach is that Web servers must be
modified, making it more difficult to deploy in the hosting center environment.
Our approach is independent of any particular server technology. Additionally,

1Whenever EtE monitor detects a SYN packet, it considers the packet as a new connection iff
it cannot find a SYN packet with the same source port number from the same IP address. A
retransmitted SYN packet is not considered as a newly established connection. However, if a SYN
packet is dropped, e.g. by intermediate routers, there is no way to detect the dropped SYN packet
on the server side.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

356 • L. Cherkasova et al.

Table I. HTTP Transaction Log Entry

Field Value
URL The URL of the transaction
Referer The value of the header field Referer if it exists
Content Type The value of the header field Content-Type in the responses
Flow ID A unique identifier to specify the TCP connection of this

transaction
Source IP The client’s IP address
Request Length The number of bytes of the HTTP request
Response Length The number of bytes of the HTTP response
Content Length The number of bytes of HTTP response body
Request SYN timestamp The timestamp of the SYN packet from the client
Response SYN timestamp The timestamp of the SYN packet from the server
Request Start Timestamp The timestamp to receive the first byte of the HTTP request
Request End Timestamp The timestamp to receive the last byte of the HTTP request
Response Start Timestamp The timestamp to send the first byte of the HTTP response
Response End Timestamp The timestamp to send the last byte of the HTTP response
ACK of Response timestamp The ACK packet from the client for the last byte of the HTTP

response
Response Status The HTTP response status code
Via Field Is the HTTP field Via is set?
Aborted Is the TCP connection aborted?
Resent Response Packet The number of packets resent by the server

Fig. 2. EtE monitor architecture.

EtE monitor may efficiently reflect the network level information, such as the
connection setup time and resent packets, to provide complementary metrics
of service performance.

5. PAGE RECONSTRUCTION MODULE

To measure the client perceived end-to-end response time for retrieving a Web
page, one needs to identify the objects that are embedded in a particular Web
page and to measure the response time for the client requests retrieving these
embedded objects from the Web server. In other words, to measure the client
perceived end-to-end response time, we must group the object requests into Web
page accesses. Although we can determine some embedded objects of a Web page
by parsing the HTML for the “container object,” some embedded objects cannot
be easily discovered through static parsing. For example, JavaScript is used in
Web pages to retrieve additional objects. Without executing the JavaScript, it
may be difficult to discover the identity of such objects.

Automatically determining the content of a page requires a technique to
delimit individual page accesses. One recent study [Smith et al. 2001] uses an
estimate of client think time as the delimiter between two pages. While this

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 357

method is simple and useful, it may be inaccurate in some important cases. For
example, consider the case where a client opens two Web pages from one server
at the same time. Here, the requests for the two different Web pages interleave
each other without any think time between them. Another case is when the
interval between the requests for objects within one page may be too long to be
distinguishable from think time (perhaps because of the network conditions).

As opposed to previous work, our methodology uses heuristics to determine
the objects composing a Web page, the content of the Web page, and applies
statistics to adjust the results. EtE uses the HTTP referer field as a major “clue”
to group objects into a Web page. The referer field specifies the URL from which
the requested URL was obtained. Thus, all requests for the embedded objects in
an HTML file are recommended to set the referer fields to the URL of the HTML
file. However, since the referer fields are set by client browsers, not all browsers
set the fields. To solve this, EtE monitor first builds a Knowledge Base from
those requests with referer fields, and uses more aggressive heuristics to group
the requests without referer fields based on the Knowledge Base information.

The following simplified example shows the requests and responses that are
used to retrieve the index.html page with the embedded image img1.jpg from
Web server www.hpl.hp.com.

request:
Get /index.html HTTP/1.0
Host: www.hpl.hp.com

response:
HTTP/1.0 200 OK
Content-Type: text/html

request:
Get /img1.jpg HTTP/1.0
Host: www.hpl.hp.com
Referer: http://www.hpl.hp.com/index.html

response:
HTTP/1.0 200 OK
Content-Type: image/jpeg

The first request is for the HTML file index.html. The content-type field in the
corresponding response shows that it is an HTML file. Then, the next request
is for the image img1.jpg. The request header field referer indicates that the
image is embedded in index.html. The corresponding response shows that the
content type is an image in jpeg format.

Subsection 5.1 outlines Knowledge Base construction of Web page objects.
Subsection 5.2 presents the algorithm and technique to group the requests in
Web page accesses using Knowledge Base information and a set of additional
heuristics. Subsection 5.3 introduces a statistical analysis to identify valid page
access patterns and to filter out incorrectly constructed accesses.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

358 • L. Cherkasova et al.

5.1 First Pass: Building a Knowledge Base of Web Page Objects

The goal of this step is to reconstruct a special subset of Web page accesses,
which we use to build a Knowledge Base about Web pages and the objects com-
posing them. Before grouping HTTP transactions into Web pages, EtE monitor
first sorts all transactions from the Transaction Log using the time stamps for
the beginning of the requests in increasing time order. Thus, the requests for
the embedded objects of a Web page must follow the request for the correspond-
ing HTML file of the page. When grouping objects into Web pages (here and in
the next subsection), we consider only transactions with successful responses,
that is, with status code 200 in the responses.2

The next step is to scan the sorted transaction log and group objects into
Web page accesses. Not all the transactions are useful for the Knowledge Base
construction process. During this step, some of the Transaction Log entries are
excluded from our current consideration:

—Content types that are known not to contain embedded objects are excluded
from the knowledge base, for example, application/postscript, application/
x-tar, application/pdf, application/zip and text/plain. For the rest of this
article, we call them independent, single page objects.

—If the referer field of a transaction is not set and its content type is not
text/html, EtE monitor excludes it from further consideration.

To group the rest of the transactions into Web page accesses, we use the
following fields from the entries in the Transaction Log: the request URL, the
request referer field, the response content type, and the client IP address. EtE
monitor stores the Web page access information into a hash table, the Client
Access Table depicted in Figure 3, which maps a client’s IP address to a Web
Page Table containing the Web pages accessed by the client. Each entry in the
Web Page Table is a Web page access, and is composed of the URLs of HTML
files and the embedded objects. Notice that EtE monitor makes no distinction
between statically and dynamically generated HTML files. We consider embed-
ded HTML pages, for example, framed Web pages, as separate Web pages.

When processing an entry of the Transaction Log, EtE monitor first locates
the Web Page Table for the client’s IP in the Client Access Table. Then, EtE
monitor handles the transaction according to its content type:

(1) If the content type is text/html, EtE monitor treats it as the beginning of a
Web page and creates a new entry in the Web Page Table.

2In the future, we plan to extend EtE monitor to handle the requests with 304 status code. Currently,
we exclude them from our consideration, because to obtain the template of a Web page it is enough
to merely use the transactions with successful responses. By taking into account requests with
304 status code during the second pass, EtE monitor will be able to more accurately estimate the
overall response time, especially in the case, when requests with 304 status code finish the Web
page access. Since the requests with 304 status code are special “validation” transactions that do
not produce responses with corresponding Web objects to transfer, they need to be handled specially
to avoid skewing the performance statistics on network-related and server-side related components
of response time.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 359

Fig. 3. Client access table.

Fig. 4. Knowledge Base of Web pages: maps URLs to the corresponding accessed content
templates.

(2) For other content types, EtE monitor attempts to insert the URL of the
requested object into the Web page that contains it according to its referer
field. If the referred HTML file is already present in the Web Page Table, EtE
monitor appends this object at the end of the entry. If the referred HTML file
does not exist in the client’s Web Page Table, it means that the client may
have retrieved a cached copy of the object from somewhere else between
the client and the Web server. In this case, EtE monitor first creates a new
Web page entry in the Web Page Table for the referred HTML file. Then it
appends the considered object to this page.

From the Client Access Table, EtE monitor determines the content template
of any given Web page as a combined set of all the objects that appear in all
the access patterns for this page. Thus, EtE monitor scans the Client Access
Table and creates a new hash table, as shown in Figure 4, which is used as
a Knowledge Base to group the accesses for the same Web pages from other
client’s browsers that do not set the referer fields.

Since in this pass, the Client Access Table is based on an explicit refer-
ence relationship, the Content Template Table constructed from it is relatively

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

360 • L. Cherkasova et al.

trustable and can be used as a Knowledge Base to group the accesses for the
same Web pages from other client’s browsers that do not set the referer fields.

5.2 Second Pass: Reconstruction of Web Page Accesses

With the help of the Knowledge Base, EtE monitor reprocesses the entire Trans-
action Log. This time, EtE monitor does not exclude the entries without referer
fields. It significantly extends the number of correctly processed Web page ac-
cesses. Using data structures similar to those introduced in Section 5.1, EtE
monitor scans the sorted Transaction Log and creates a new Client Access Table
to store all accesses as depicted in Figure 3. For each transaction, EtE monitor
locates the Web Page Table for the client’s IP in the Client Access Table. Then,
EtE monitor handles the transaction depending on the content type:

(1) If the content type is text/html, EtE monitor creates a new Web page entry
in the Web Page Table.

(2) If a transaction is an independent, single page object, EtE monitor marks it
as individual page without any embedded objects and allocates a new Web
page entry in the Web Page Table.

(3) For other content types that can be embedded in a Web page, EtE monitor
attempts to insert it into the page that contains it.
—If the referer field is set for this transaction, EtE monitor attempts to

locate the referred page in the following way. If the referred HTML file is
in an existing page entry in the Web Page Table, EtE monitor appends the
object at the end of the entry. If the referred HTML file does not exist in
the client’s Web Page Table, EtE monitor first creates a new entry in the
table for the referred page and marks it as nonexistent. Then it appends
the object to this page. If the referer field is not set for this transaction,
EtE monitor uses the following policies. With the help of the Knowledge
Base, EtE monitor checks each page entry in the Web Page Table from
the latest to earliest. If the Knowledge Base contains the content template
for the checked page and the considered object does not belong to it, EtE
monitor skips the entry and checks the next one until a page containing
the object is found. If such an entry is found, EtE monitor appends the
object to the end of the Web page.

—If none of the entries in the Web Page Table contains the object based on
the Knowledge Base, EtE monitor searches in the client’s Web Page Table
for a Web page accessed via the same flow ID as this object. If there is
such a Web page, EtE monitor appends the object to the it.

—Otherwise, if there are any accessed Web pages in the table, EtE monitor
appends the object to the latest accessed one.

If none of the above policies can be applied, EtE monitor drops the re-
quest. Obviously, the above heuristics may introduce some mistakes. Thus,
EtE monitor also adopts a configurable think time threshold to delimit Web
pages. If the time gap between the object and the tail of the Web page that
it tries to append to is larger than the threshold, EtE monitor skips the con-
sidered object. In this paper, we adopt a configurable think time threshold
of 4 sec.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 361

Table II. Web Page Probable Content Template.
There are 3075 Accesses for this Page

Index URL Frequency Ratio (%)
1 /index.html 2937 95.51
2 /img1.gif 689 22.41
3 /img2.gif 641 20.85
4 /log1.gif 1 0.03
5 /log2.gif 1 0.03

5.3 Identifying Valid Accesses Using Statistical Analysis of Access Patterns

Although the above two-pass process can provide accurate Web page access
reconstruction in most cases, there could still be some accesses grouped in-
correctly. To filter out such accesses, we must better approximate the actual
content of a Web page.

The accesses to a Web page usually exhibit various access patterns. For ex-
ample, one access pattern can contain all the objects of a Web page, while other
patterns may contain a subset of them (e.g., because some objects were retrieved
from a browser or network caches). We assume the same access patterns of those
incorrectly grouped accesses should rarely appear repeatedly. Thus, we can use
the following statistical analysis on access patterns to determine the actual
content of Web pages and exclude the incorrectly grouped accesses.

First, from the Client Access Table created in Subsection 5.2, EtE monitor
collects all possible access patterns for a given Web page and identifies the
probable content template of the Web page as the combined set of all objects
that appear in all the accesses for this page. Table II shows an example of a
probable content template. EtE monitor assigns an index for each object. The
column URL lists the URLs of the objects that appear in the access patterns for
the Web page. The column Frequency shows the frequency of an object in the set
of all Web page accesses. In Table II, the indices are sorted by the occurrence
frequencies of the objects. The column Ratio is the percentage of the object’s
accesses in the total accesses for the page.

Sometimes, a Web page may be pointed to by several URLs. For example,
http://www.hpl.hp.com and http://www.hpl.hp.com/index.html both point to
the same page. Before computing the statistics of the access patterns, EtE
monitor attempts to merge the accesses for the same Web page with differ-
ent URL expressions. EtE monitor uses the probable content templates of these
URLs to determine whether they indicate the same page. If the probable con-
tent templates of two pages only differ due to the objects with small percent-
age of accesses (less than 1%, which means these objects might have been
grouped by mistake), then EtE monitor ignores this difference and merges the
URLs.

Based on the probable content template of a Web page, EtE monitor uses the
indices of objects in the table to describe the access patterns for the Web page.
Table III demonstrates a set of different access patterns for the Web page in
Table II. Each row in the table is an access pattern. The column Object Indices
shows the indices of the objects accessed in a pattern. The columns Frequency
and Ratio are the number of accesses and the proportion of the pattern in the

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

362 • L. Cherkasova et al.

Table III. Web Page Access Patterns

Pattern Object Indices Frequency Ratio (%)
1 1 2271 73.85
2 1,2,3 475 15.45
3 1,2 113 3.67
4 1,3 76 2.47
5 2,3 51 1.66
6 2 49 1.59
7 3 38 1.24
8 1,2,4 1 0.03
9 1,3,5 1 0.03

Table IV. Web Page True
Content Template

Index URL
1 /index.html
2 /img1.gif
3 /img2.gif

total number of all the accesses for that page. For example, pattern 1 is a pattern
in which only the object index.html is accessed. It is the most popular access
pattern for this page: 2271 accesses out of the total 3075 accesses represent
this pattern. In pattern 2, the objects index.html, img1.gif and img2.gif are
accessed.

With the statistics of access patterns, EtE monitor further attempts to es-
timate the true content template of Web pages, which excludes the mistakenly
grouped access patterns. Intuitively, the proportion of these invalid access pat-
terns cannot be high. Thus, EtE monitor uses a configurable ratio threshold to
exclude the invalid patterns (in this paper, we use 1% as a configurable ratio
threshold). If the ratio of a pattern is below the threshold, EtE does not consider
it as a valid pattern. In the above example, patterns 8 and 9 are not considered
as valid access patterns. Only the objects found in the valid access patterns are
considered as the embedded objects in a given Web page. Objects 1, 2, and 3
define the true content template of the Web page shown in Table IV. Based on
the true content templates, EtE monitor filters out all the invalid accesses in a
Client Access Table, and records the correctly constructed page accesses in the
Web Page Session Log, which can be used to evaluate the end-to-end response
performance.

6. METRICS TO MEASURE WEB SERVICE PERFORMANCE

In this section, we introduce a set of metrics and the ways to compute them in
order to measure a Web service efficiency. These metrics can be categorized as:

—metrics approximating the end-to-end response time observed by the client
for a Web page download. Additionally, we provide a means to calculate the
breakdown between the server processing and networking portions of the
overall response time.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 363

—metrics evaluating the caching efficiency for a given Web page by computing
the server file hit ratio and server byte hit ratio.

—metrics relating the end-to-end performance of aborted Web pages to the QoS.

6.1 Response Time Metrics

We use the following functions to denote the critical time stamps for connection
conn and request r:

—tsyn(conn): time when the first SYN packet from the client is received for
establishing the connection conn;

—tstart
req (r): time when the first byte of the request r is received ;

—tend
req (r): time when the last byte of the request r is received;

—tstart
resp (r): time when the first byte of the response for r is sent;

—tend
resp(r): time when the last byte of the response for r is sent;

—tack
resp(r): time when the ACK for the last byte of the response for r is received.

Metrics introduced in this section account for packet retransmission. However,
EtE monitor cannot account for retransmissions that take place on connection
establishment (i.e. due to dropped SYNs).

Additionally, for a Web page P , we have the following variables:

— N—the number of distinct connections (conn1, . . . , connN) used to retrieve
the objects in the Web page P ;

—rk
1 , . . . rk

nk
—the requests for the objects retrieved through the connection connk

(k = 1, . . . , N), and ordered accordingly to the time when these requests were
received, i.e.,

tend
req

(
rk

1

) ≤ tend
req

(
rk

2

) ≤ · · · ≤ tend
req

(
rk

nk

)
.

Figure 5 shows an example of a simplified scenario where a 1-object page is
downloaded by the client: it shows the communication protocol for the connec-
tion setup between the client and the server as well as the set of major time
stamps collected by the EtE monitor on the server side. The connection setup
time measured on the server side is the time between the client SYN packet and
the first byte of the client request. This represents a close approximation for the
original client setup time (we present more detail on this point in subsection 7.3
when reporting our validation experiments).

If the ACK for the last byte of the client response is not delayed or lost, tack
resp(r)

is a more accurate approximation of the end-to-end response time observed
by the client rather than tend

resp(r). When tack
resp(r) is considered as the end of a

transaction, it “compensates” for the latency of the first client SYN packet that
is not measured on the server side. The difference between the two methods—
EtE time (last byte) and EtE time (ack)—is only a round trip time, which is
on the scale of milliseconds. Since the overall response time is on the scale of
seconds, we consider this deviation an acceptably close approximation. To avoid
the problems with delayed or lost ACKs, EtE monitor uses the time when the
last byte of a response is sent by a server as the end of a transaction. Thus in
the following formulae, we use tend

resp(r) to calculate the response time.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

364 • L. Cherkasova et al.

Fig. 5. An example of a 1-object page download by the client: major time stamps collected by the
EtE monitor on the server side.

The extended version of HTTP 1.0 and later version HTTP 1.1 [Fielding
et al. 2001] introduce the concepts of persistent connections and pipelining.
Persistent connections enable reuse of a single TCP connection for multiple
object retrievals from the same IP address. Pipelining allows a client to make
a series of requests on a persistent connection without waiting for the previous
response to complete (the server must, however, return the responses in the
same order as the requests are sent).

We consider the requests rk
i , . . . , rk

n to belong to the same pipelining group
(denoted as PipeGr = {rk

i , . . . , rk
n }) if for any j such that i ≤ j − 1 < j ≤ n,

tstart
req (rk

j) ≤ tend
resp(rk

j−1).
Thus for all the requests on the same connection connk : rk

1 , . . . , rk
nk

, we define
the maximum pipelining groups in such a way that they do not intersect:

rk
1 , . . . , rk

i︸ ︷︷ ︸
PipeGr1

, rk
i+1︸︷︷︸

PipeGr2

, . . . , rk
nk︸︷︷︸

PipeGrl

.

For each of the pipelining groups, we define three portions of response time:
total response time (Total), network-related portion (Network), and lower-bound
estimate of the server processing time (Server).

Let us consider the following example. For convenience, let us denote
PipeGr1 = {rk

1 , . . . , rk
i }.

Then
Total(PipeGr1) = tend

resp

(
rk

i

)− tstart
req

(
rk

1

)
,

Network(PipeGr1) =
i∑

j=1

(
tend
resp

(
rk

j

)− tstart
resp

(
rk

j

))
,

Server(PipeGr1) = Total(PipeGr1)−Network(PipeGr1).
If no pipelining exists, a pipelining group consists of only one request. In this

case, the computed server time represents precisely the server processing time
for a given request-response pair.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 365

Fig. 6. An example of a pipelining group consisting of two requests, and the corresponding
network-related portion and server processing portion of the overall response time.

In order to understand what information and measurements can be extracted
from the time stamps observed at the server side for pipelined requests, let us
consider Figure 6, which shows the communication between a client and a
server, where two pipelined requests are sent in a pipelining group.

This interaction consists of: 1) the connection setup between the client and
the server; 2) two subsequent requests r1 and r2 issued by the client (these
requests are issued as a pipelining group); 3) the server responses for r1 and
r2 are sent in the order the client requests are received by the server.

The time stamps collected at the server side reflect the time when the re-
quests r1 and r2 are received by the server: tstart

req (r1) and tstart
req (r2); as well as the

time when the first byte of the corresponding responses is sent by the server:
tstart
resp (r1) and tstart

resp (r2). However, according to the HTTP 1.1 protocol, the re-
sponse for r2 has been sent only after the response for r1 being sent by the
server. The time between tstart

req (r2) and tstart
resp (r2) is indicative of the time delay

on the server side before the response for r2 is sent to the client. However, the
true server processing time for this request might be lower: the server might
have processed it and simply waited for its turn to send it back to the client.
The network portion of the response time for the pipelining group is defined
by the sum of the network delays for the corresponding responses. This net-
work portion of the delay defines the critical delay component in the response
time.

We choose to count server processing time as only the server time that is ex-
plicitly exposed on the connection. If a connection adopts pipelining, the “real”
server processing time might be larger than the computed server time because
it can partially overlap the network transfer time, and it is difficult to estimate
the exact server processing time from the packet-level information. However,
we are still interested in estimating the “non-overlapping” server processing
time as this is the portion of the server time on the critical path of over-
all end-to-end response time. We use this as an estimate of the lower-bound

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

366 • L. Cherkasova et al.

server processing time, which is explicitly exposed in the overall end-to-end
response.

If connection connk is a newly established connection to retrieve a Web page,
we observe additional connection setup time:

Setup(connk) = tstart
req

(
rk

1

)− tsyn(connk),3

otherwise the setup time is 0. Additionally, we define tstart(connk) = tsyn(connk)
for a newly established connection, otherwise, tstart(connk) = tstart

req (rk
1).

Similarly, we define the breakdown for a given connection connk :

Total(connk) = Setup(connk)+ tend
resp

(
rk

nk

)− tstart
req

(
rk

1

)
,

Network(connk) = Setup(connk)+
l∑

j=1

Network(PipeGr j),

Server(connk) =
l∑

j=1

Server(PipeGr j).

Now, we define similar latencies for a given page P :

Total(P) = max
j≤N

tend
resp

(
r j

nj

)−min
j≤N

tstart(conn j),

CumNetwork(P) =
N∑

j=1

Network(conn j),

CumServer(P) =
N∑

j=1

Server(conn j).

For the rest of this article, we will use the term EtE time interchangeably with
Total(P) time.

The functions CumNetwork(P) and CumServer(P) give the sum of all the
network-related and server processing portions of the response time over all
connections used to retrieve the Web page. However, the connections can be
opened concurrently by the browser as shown in Figure 7, and the server pro-
cessing time portion and network transfer time portion on different concurrent
connections may overlap.

To evaluate the concurrency (overlap) impact, we introduce the page concur-
rency coefficient ConcurrencyCoef(P):

ConcurrencyCoef(P) =
∑N

j=1 Total(conn j)

Total(P)
.

Using page concurrency coefficient, we finally compute the network-related and
service-related portions of response time for a particular page P :

Network(P) = CumNetwork(P)/ConcurrencyCoef (P),

Server(P) = CumServer(P)/ConcurrencyCoef (P).

3The connection setup time as measured by EtE monitor does not include dropped SYNs, as
discussed earlier in Section 4.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 367

Fig. 7. An example of concurrent connections and the corresponding time stamps.

Understanding this breakdown between the network-related and server-
related portions of response time is necessary for future service optimizations.
It also helps to evaluate the possible impact on end-to-end response time im-
provements resulting from server-side optimizations.

EtE monitor can distinguish the requests sent to a Web server from clients
behind proxies by checking the HTTP via fields. If a client page access is handled
via the same proxy (which is typically the case, especially when persistent
connections are used), EtE monitor provides correct measurements for end-
to-end response time and other metrics, and provides interesting statistics on
the percentage of client requests coming from proxies. Clearly, this percentage
is an approximation, since not all the proxies set the via fields in their requests.
Finally, EtE monitor can only measure the response time to a proxy instead of
the actual client behind it.

6.2 Metrics Evaluating the Web Service Caching Efficiency

Real clients of a Web service may benefit from the presence of network and
browser caches, which can significantly reduce their perceived response time.
However, most existing performance measurement techniques do not provide
a substantial amount of information on the impact of caches on Web services:
what percentage of the files and bytes are delivered from the server compared
with the total files and bytes required for delivering the Web service. This im-
pact can only be partially evaluated from Web server logs by checking response
status code 304, whose corresponding requests are sent by the network caches
to validate whether the cached object has been modified. If the status code 304
is set, the cached object is not expired and need not be retrieved again.

To evaluate the caching efficiency of a Web service, we introduce two metrics:
server file hit ratio and server byte hit ratio for each Web page.

For a Web page P , assume the objects composing the page are O1, . . . , On. Let
Size(Oi) denote the size of object Oi in bytes. Then we define NumFiles(P) = n
and Size(P) =∑n

j=1 Size(O j).

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

368 • L. Cherkasova et al.

Additionally, for each access Pi
access of the page P , assume the objects re-

trieved in the access are Oi
1, . . . , Oi

ki
, we define NumFiles(Pi

access) = ki and
Size(Pi

access) =
∑ki

j=1 Size(Oi
j). First, we define file hit ratio and byte hit ratio

for each page access in the following way:

FileHitRatio
(
Pi

access

) = NumFiles
(
Pi

access

)
/NumFiles(P),

ByteHitRatio
(
Pi

access

) = Size
(
Pi

access

)
/Size(P).

Let P1
access, . . . , P N

access be all the accesses to the page P during the observed time
interval. Then

ServerFileHitRatio(P) = 1
N

∑
k≤N

FileHitRatio
(
Pk

access

)
,

ServerByteHitRatio(P) = 1
N

∑
k≤N

ByteHitRatio
(
Pk

access

)
.

The lower numbers for server file hit ratio and server byte hit ratio indicate the
higher caching efficiency for the Web service, that is, more files and bytes are
served from network and client browser caches.

Often, a corporate Web site has a set of templates, buttons, logos, and shared
images that are actively reused among a set of different pages. A user, browsing
through such a site, can clearly benefit from the browser cache. The proposed
caching metrics are useful for evaluating the efficiency of caching and compar-
ing different site designs.

6.3 Aborted Pages and QoS

User-perceived QoS is another important metric to consider in EtE monitor.
One way to measure the QoS of a Web service is to measure the frequency
of aborted connections. The logic behind this is that if a Web site is not fast
enough a user will get impatient and hit the stop button, thus aborting the
connection. However, such simplistic interpretation of aborted connections and
Web server QoS has several drawbacks. First, a client can interrupt HTTP
transactions by clicking the browser’s “stop” or “reload” button while a Web
page is downloading, or clicking a displayed link before the page is completely
downloaded. Thus, only a subset of aborted connections are relevant to poor Web
site QoS or poor networking conditions, while other aborted connections are
caused by client-specific browsing patterns. On the other hand, a Web page can
be retrieved through multiple connections. A client’s browser-level interruption
may cause these connections to be aborted. Thus, the number of aborted page
accesses more accurately reflects client satisfaction than the number of aborted
connections.

For aborted pages, we distinguish the subset of pages5bad with response time
higher than the given threshold X EtE (in our case studies, X EtE = 6 sec.). Only
these pages might be reflective of the bad quality downloads. While a simple
deterministic cutoff point cannot truly capture a particular client’s expectation
for site performance, the current industrial ad hoc quality goal is to deliver

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 369

pages within 6 sec [Keeley 2000]. We thus attribute aborted pages that have
not crossed the 6 sec threshold to individual client browsing patterns. The next
step is to distinguish the reasons leading to poor response time: whether it is
due to network-or server-related performance problems, or both.

7. CASE STUDIES

In this section, we present three case studies to illustrate the benefits of EtE
monitor in assessing Web site performance.

—The content of the first site (HPL Site) is comprised of static Web pages.
—The content of the second site (OV-Support Site) is dynamic but without

elements of content personalization.
—The third site (IT-Support Site) returns pages to the clients that are both

dynamic and personalized.

To attract and retain customers online, many Web sites use page personal-
ization to deliver relevant content that can be customized to enrich the user
experience.

At a high level, dynamic content generation operates as follows. A user re-
quest is mapped to an invocation of a script. This script executes the necessary
programs to generate the requested page. The performance of the content gen-
eration process is determined by the amount of work required to generate a
particular dynamic Web page. In general, HTML pages consist of two distinct
components: content and layout. Content defines the actual information com-
prising the page, while layout defines the page presentation: how and where
the content appears on the page.

Typically, dynamic content generation may involve the following three layers
during page preparation. A number of different Web technologies support these
three layers. A presentation logic layer defines a layout (display) of information
to users and includes formatting and transformation tasks. Presentation layer
tasks are typically handled by dynamic scripts (e.g. ASP, JSP). The business
logic layer is responsible for execution of the business logic, and is typically
implemented by using component technology such as Enterprise Java Beans
(EJB). The data access layer provides the connectivity to back-end system re-
sources such as databases and is typically supported by standard interfaces
such as JDBC or ODBC.

In multi-tiered Web systems, frequent calls to application servers and
databases place a heavy load on back-end resources and may cause through-
put bottlenecks and high server-side processing latency. Consider a Web site
providing service to both registered users (i.e., users who have an account with
the site) and non-registered users (i.e. occasional or new-coming visitors). Sup-
pose the site allows registered users to create a user profile, which specifies
the user’s content preferences, for example, the choice of language for returned
content. For each registered user request, the Web site retrieves the user profile
preferences and generates the content according to a language choice. While for
non-registered users, the Web site returns a specific default page.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

370 • L. Cherkasova et al.

An additional feature of sites with dynamic and customized content is that
the user preferences are often incorporated in the requested URL via a param-
eter list or a client-specific cookie. Thus the requests to the same logical Web
page may appear as requests to different unique URLs due to the client-specific
extension or a corresponding parameter list.

Thus the most important characteristics of dynamically generated and
customized content from our perspective are that:

—the requests from different users to the same logical URL may result in
different page content and/or different page layout;

—the requests from different users to the same logical URL may appear as
requests to different unique URLs.

From the three sites used in our case studies, only the third (IT-Support Site)
returns both dynamic and personalized content. The content of the second site
under study is represented by dynamic pages but with properties being very
close to the static pages: the requests to the same URL result in the same
returned page (as measured by both the content and the layout).

To demonstrate the generality of our approach to a broad range of exist-
ing network challenges and to illustrate our approach to performing accurate
performance evaluation for personalized Web services, we structure the presen-
tation of our case studies into two parts: Section 7.1 presents the measurements
and analysis of the HPL Site and OV-Support Site, and Section 7.2 presents the
IT-Support Site case study and discusses in more detail the technical challenges
of the page reconstruction process and performance analysis related to the sites
with both dynamic and personalized content. In the IT-Support Site case study,
we additionally compare the EtE monitor measurements with the measure-
ments provided by Keynote, a very popular website performance evaluation
service. While EtE monitor provides detailed output of performance measure-
ments for all three sites, we choose to include in the paper only a portion of
EtE monitor measurements to demonstrate the most interesting performance
results and to illustrate the utility of our newly introduced metrics. Finally, in
Section 7.3, we present our validation experiments to demonstrate the correct-
ness of EtE monitor.

7.1 HPL and OV-Support Sites’ Case Study

The first site under study is the HP Labs external site (HPL Site),
http://www.hpl.hp.com. Static Web pages comprise most of this site’s con-
tent. We measured performance of this site for a month, from July 12, 2001
to August 11, 2001. The second site is a support site for a popular HP product
family, which we call OV-Support Site. It uses JavaServer Pages [JavaServer
Pages java.sun.com/products/jsp/technical.html] technology for dynamic page
generation. The architecture of this site is based on a geographically dis-
tributed Web server cluster with Cisco Distributed Director [Cisco Distributed
Director www.cisco.com] for load balancing, using “sticky connections” or “sticky
sessions”—once a client has established a TCP connection with a particular
Web server, the client’s subsequent requests are sent to the same server. We

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 371

Table V. At-a-Glance Statistics for www.hpl.hp.com and support Site During the Measured Period

Metrics HPL url1 HPL url2 OV-Support url1 OV-Support url2
EtE time 3.5 sec 3.9 sec 2.6 sec 3.3 sec
% of accesses above 6 sec 8.2% 8.3% 1.8% 2.2%
% of aborted accesses above 6 sec 1.3% 2.8% 0.1% 0.2%
% of accesses from clients-proxies 16.8% 19.8% 11.2% 11.7%
EtE time from proxies 4.2 sec 3 sec 4.5 sec 3 sec
% EtE time due to network 99.6% 99.7% 96.3% 93.5%
Page size 99 KB 60.9 KB 127 KB 100 KB
Server file hit ratio 38.5% 58% 22.9% 28.6%
Server byte hit ratio 44.5% 63.2% 52.8% 44.6%
Number of objects 4 2 32 32
Number of connections 1.6 1 6.5 9.1

measured the site performance for 2 weeks, from October 11, 2001 to October
25, 2001. Both sites are running HTTP 1.0 servers.

Table V, called at-a-glance, provides the summary of the two sites’ perfor-
mance for the measured period using the two most frequently accessed pages at
each site. The statistics in Table V are derived from the hourly statistics during
the measured period.4

The average end-to-end response time of client accesses to these pages re-
flects good overall performance. However in the case of HPL, a sizeable percent-
age of accesses take more than 6 sec to complete (8.2%–8.3%), with a portion
leading to aborted accesses (1.3%–2.8%). The OV-Support site had better overall
response time with a much smaller percentage of accesses above 6 sec (1.8%–
2.2%), and a correspondingly smaller percentage of accesses aborted due to high
response time (0.1%–0.2%). Overall, the pages from both sites are comparable
in size. However, the two pages from the HPL site have a small number of ob-
jects per page (4 and 2 correspondingly), while the OV-Support site pages are
composed of 32 different objects. Page composition influences the number of
client connections required to retrieve the page content. Additionally, statistics
show that network and browser caches help to deliver a significant amount of
page objects: in the case of the OV-Support site, only 22.9%–28.6% of the 32
objects are retrieved from the server, accounting for 44.6%–52.8% of the bytes
in the requested pages. As discussed earlier, the OV-Support site content is gen-
erated using dynamic pages, which could potentially lead to a higher ratio of
server processing time in the overall response time. But in general, the network
transfer time dominates the performance for both sites, ranging from 93.5% for
the OV-Support site to 99.7% for the HPL site.

Given the above summary, we now present more detailed information from
our site measurements. For the HPL site, the two most popular pages during
the observed period were index.html and a page in the news section describing
the Itanium chip (we call it itanium.html).

410%–15% of requests with 304 status code were excluded by EtE monitor from consideration. Most
of them occur in the “middle” of the Web page accesses, and hence, they do not have significant
impact on the accuracy of EtE monitor measurements.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

372 • L. Cherkasova et al.

Fig. 8. HPL site during a month: (a) Number of all and aborted accesses to index.html;
(b) Approximated page size and average access size to index.html.

Figure 8(a) shows the number of page accesses to index.html, as well as the
number of aborted page accesses during the measured period. The graph clearly
reflects weekly access patterns to the site.

Figure 8(b) reflects the approximate page size, as reconstructed by EtE
monitor—the page size of the corresponding page content template as recon-
structed by EtE monitor. We use this data to additionally validate the page
reconstruction process. While debugging the tool, we manually compare the
content of the 20 most frequently accessed pages reconstructed by EtE monitor
against the actual Web pages: the EtE monitor page reconstruction accuracy
for popular pages is very high, practically 100%. Figure 8(b) allows us to “see”
the results of this reconstruction process over the period of the study. In the
beginning, it is a straight line exactly coinciding with the actual page size.
This means that EtE monitor has reconstructed the page content template pre-
cisely. At hour mark 153, it jumps and returns to a straight line interval at
the 175 hour mark. As we verified, the page was partially modified during this
time interval. The EtE monitor “picked” both the old and the modified page
images, since they both occurred during the same day interval and represented
a significant fraction of accesses. Thus, the content template, reconstructed by
EtE monitor during this time interval, has a union of images from the “old”
and “new” (modified) page. However, the next day, the Knowledge Base was
updated with correct, up-to-date page information. The second “jump” of this
line corresponds to the next modification of the page. The gap can be tightened,
depending on the time interval EtE monitor is set to process. The other line in

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 373

Fig. 9. HPL site during 3 days: (a) Number of all and aborted accesses to index.html; (b) End-
to-end response times for accesses to index.html; (c) CDF of all and aborted accesses to index.html
sorted by the response time in increasing order.

Figure 8(b) shows the average page access size, reflecting the server byte hit
ratio of approximately 44%.

To characterize the reasons leading to the aborted Web pages, we present
analysis of the aborted accesses to index.html page for 3 days in August (since
the monthly graph looks very “busy” on an hourly scale). Figure 9(a) shows the
number of all the requests and the aborted requests to index.html page during
this interval. The number of aborted accesses (662) accounts for 16.4% of the
total number of requests (4028).

Figure 9(b) shows the average end-to-end response time measured by EtE
monitor for index.html and the average end-to-end response time for the aborted
accesses to index.html on an hourly scale. The end-to-end response time for
index.html page, averaged across all the page accesses, is 3.978 sec, while the
average end-to-end response time of the aborted page accesses is 9.21 sec.

Figure 9(c) shows a cumulative distribution of all accesses and aborted ac-
cesses to index.html sorted by the end-to-end response time in increasing order.
The vertical line on the graph shows the threshold of 6 sec that corresponds to an
acceptable end-to-end response time. Figure 9(c) shows that 68% of the aborted
accesses demonstrate end-to-end response times below 6 sec. This means that
only 32% of all the aborted accesses, which in turn account for 5% of all ac-
cesses to the page, observe high end-to-end response time. The next step is to
distinguish the reasons leading to a poor response time: whether it is due to
network or server performance problems, or both. For all the aborted pages with
high response time, the network portion dominates the overall response time

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

374 • L. Cherkasova et al.

Fig. 10. HPL site during a month: (a) end-to-end response time and connection setup time for
accesses to index.html; (b) number of resent packets in response.

(98%–99% of the total). Thus, we can conclude that performance problems are
likely not server-related but rather due to congestion in the network (though it
is unclear whether the congestion is at the edge or the core of the network).

Figure 10(a) shows the end-to-end response time and connection setup time
for accesses to index.html on an hourly scale during a month. In spite of good
average response time reported in at-a-glance table, hourly averages reflect
significant variation in response times. The observed response time may be
affected by many factors [Cardwell et al. 2000] such as network round trip
time and packet loss rate, and so on. This graph helps to stress the advantages
of EtE monitor and reflects the shortcomings of active probing techniques that
measure page performance only a few times per hour: the collected test numbers
could vary significantly from a site’s instantaneous performance characteristics.

Figure 10(b) shows the number of resent packets in the response stream
to clients. There are three pronounced “humps” with an increased number of
resent packets. Typically, resent packets reflect network congestion or the ex-
istence of some network-related bottlenecks. Interestingly enough, such peri-
ods correspond to weekends when the overall traffic is one order of magnitude
lower than weekdays (as reflected in Figure 8(a)). The explanation for this phe-
nomenon is that during weekends the client population of the site “changes”
significantly: most of the clients access the site from home using modems or
other low-bandwidth connections. This leads to a higher observed end-to-end
response time and an increase in the number of resent packets (i.e., TCP is likely
to cause drops more often when probing for the appropriate congestion window

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 375

Fig. 11. HPL site during a month: (a) number of all accesses to itanium.html; (b) percentage of
accesses with end-to-end response time above 6 sec.

over a low-bandwidth link). These results again stress the unique capabilities
of EtE monitor to extract appropriate information from network packets, and
reflect another shortcoming of active probing techniques that use a fixed num-
ber of artificial clients with rather good network connections to the Internet. For
site designers, it is important to understand the actual client population and
their end-to-end response time and the “quality” of the response. For instance,
when a large population of clients has limited bandwidth parameters, the site
designers should consider making the pages and their objects “lighter weight.”

Figure 11(a) shows the number of page accesses to itanium.html. When we
started our measurement of the HPL site, the itanium.html page was the most
popular page, “beating” the popularity of the main index.html page. However,
ten days later, this news article started to get “colder,” and the page got to the
seventh place by popularity.

Figure 11(b) shows the percentage of accesses with end-to-end response time
above 6 sec. The percentage of high response time jumps significantly when
the page becomes “colder.” The reason behind this phenomenon is shown in
Figure 12, which plots the server file hit and byte hit ratio. When the page be-
came less popular, the number of objects and the corresponding bytes retrieved
from the server increased significantly. This reflects the fact that fewer net-
work caches store the objects as the page becomes less popular, forcing clients
to retrieve them from the origin server.

Figure 11(b) and Figure 12 explicitly demonstrate the network caching im-
pact on end-to-end response time. When the caching efficiency of a page is

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

376 • L. Cherkasova et al.

Fig. 12. HPL site: (a) server file hit ratio for itanium.html; (b) server byte hit ratio for itanium.html.

higher (i.e., more page objects are cached by network and browser caches), the
response time measured by EtE monitor is lower. Again, active probing tech-
niques cannot measure (or account for) the page caching efficiency to reflect the
“true” end-to-end response time observed by the actual clients.

We now switch to the analysis of the OV-Support site. We will only highlight
some new observations specific to this site.

Figure 13(a) shows the average end-to-end response time as measured by
EtE monitor when downloading the site main page. This site uses JavaServer
Pages technology for dynamic generation of the content. Since dynamic pages
are typically more “compute intensive,” this is reflected in a higher server-
side processing fraction in overall response time. Figure 13(b) shows the
network-server time ratio in the overall response time. It is higher compared
to the network-server ratio for static pages from the HPL site. One interesting
detail is that the response time spike around the 127 hour mark has a cor-
responding spike in increased server processing time, indicating some server-
side problems at this point. The combination of data provided by EtE moni-
tor can help service providers to better understand site-related performance
problems.

The OV-Support site pages are composed of a large number of embedded
images. Two most popular site pages, which account for almost 50% of all the
page accesses, consist of 32 objects. The caching efficiency for the site is very
high: only 8–9 objects are typically retrieved from the server, while the other
objects are served from network and browser caches. The site server is running
HTTP 1.0 server. Thus typical clients used 7–9 connections to retrieve 8–9

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 377

Fig. 13. OV-Support site during 2 weeks: (a) end-to-end response time for accesses to a main page;
(b) percentage of response time due to network for the main page.

objects. The ConcurrencyCoef (see Section 6), which reflects the overlap portion
of the latency between different connections for this page, was very low, around
1.038 (in fact, this is true for the site pages in general). This indicates that the
efficiency of most of these connections is almost equal to sequential retrievals
through a single persistent connection.

Figure 14(a) shows the connection setup time measured by EtE monitor. This
connection setup time is a part of the latency for each of the 7–9 connections used
to retrieve the corresponding Web page. Thus, the Web access for retrieval of k
objects (let k = 8) at OV-Support site is represented by the following sequence
of activities:

(1) a client sends a connection establishment request; once the connection is
established, the client sends the request for the first object; the server
sends a corresponding object to the client;

(2)–(7) sequential activities for establishing connections with the server for
retrieving objects 2–7 (similar to the activity described in step 1);

(8) a client sends a connection establishment request; once the connection is
established, the client sends the request for the last embedded object;
the server sends a corresponding object to the client.

Clearly, the time for connection establishment at each object retrieval repre-
sents the unnecessary overhead, which can be avoided if the site server would
run an HTTP 1.1 server, allowing clients to use persistent connections.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

378 • L. Cherkasova et al.

Fig. 14. OV-Support site during 2 weeks: (a) connection setup time for the main page; (b) an
estimated percentage of end-to-end response time improvement if the server runs HTTP1.1.

We perform a simple computation: how much of the end-to-end response
time observed by current clients can be improved if the site server would run
an HTTP 1.1 server, allowing clients to use just two persistent connections to
retrieve the corresponding objects from the site?

For example, if a client uses 8 different connections to retrieve 8 objects and
the overlap portion of the latency between these different connections is very
low (ConcurrencyCoef=1.038), then by replacing 8 different connections with 2
persistent connections, each retrieving 4 objects, the latency observed by the
client can be improved by “6 connection setup delays.”

Figure 14(b) shows the estimated percentage of end-to-end response time
improvement available from running an HTTP 1.1 server. On average, during
the observed interval, the response time improvement for url1 is around 20%
(2.6 sec is decreased to 2.1 sec), and for url2 is around 32% (3.3 sec is decreased
to 2.2 sec).

Figure 14(b) reveals an unexpected “gap” between 230–240 hour marks,
when there was “no improvement” due to HTTP 1.1. More careful analysis
shows that during this period, all the accesses retrieved only a basic HTML
page using one connection, without consequent image retrievals. The other
pages during the same interval have a similar pattern. It looks like the image
directory was not accessible on the server. Thus, EtE monitor, by exposing the
abnormal access patterns, can help service providers get additional insight into
service related problems.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 379

Table VI. EtE Monitor Performance Measurements

Duration, Size, and Execution Time HPL site OV-Support site
Duration of data collection 3 days 1 day
Collected data size 7.2 GB 8.94 GB
Transaction Log size 35 MB 9.6 MB
Entries in Transaction Log 616,663 157,200
Reconstructed page accesses 90,569 8,642
Reconstructed pages 5,821 845
EtE Execution Time 12 min 44 sec 17 min 41 sec

Finally, we present a few performance numbers to reflect the execution time
of EtE monitor when processing data for the HPL and OV-Support sites. The
tests are run on a 550Mhz HP C3600 workstation with 512 MB of RAM. Table VI
presents the amount of data and the execution time for processing 10, 000, 000
TCP packets.

Reconstruction module performance depends on the complexity of the Web
page composition. For example, the OV-Support site has a much higher per-
centage of embedded objects per page than the HPLabs pages. This “higher
complexity” of the reconstruction process is reflected by the higher EtE mon-
itor processing time for the OV-Support site (17 min 41 sec) compared to the
processing time for the HPLabs site (12 min 44 sec). The amount of incoming
and outgoing packets of a Web server farm that an EtE monitor can handle also
depends on the rate at which tcpdump can capture packets and the traffic of
the Web site.

7.2 IT-Support Case Study

The third site under study is a support site, which provides a variety of tech-
nical information and tools on software, hardware, and the network to help
customers manage their multivendor computing environment. We call it IT-
Support site. The architecture of this site is based on a Web server cluster
with Cisco Distributed Director [Cisco Distributed Director www.cisco.com] for
load balancing, using “sticky connections”. We measured the site performance
at one of the site’s Web servers for 2 weeks, from March 25, 2002 to April 8,
2002.

The IT-Support site also uses Keynote [Keynote Systems, Inc. www.keynote.
com] for performance monitoring. It is especially interesting for us to compare
the Keynote measurements and the EtE monitor measurements to understand
the differences in the two approaches for measuring Web service performance.

The Web pages published on this site are both dynamic and customized.
The pages returned to the clients are dynamically generated based on a set
of preferences and parameters customized to the end clients. For example, a
client may select among 10 different language options for the site content. The
page accessed via the same URL but with different language options might
have a set of differently specialized, embedded objects and images. Thus, the
URL of a particular page access has not only the information about the original
URL of the accessed page but also the client parameters such as the session id,

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

380 • L. Cherkasova et al.

Table VII. At-a-Glance Statistics for IT-Support Site During the Measured Period

Metrics url1 url2 url3 url4
EtE time 3.2 sec 3.5 sec 4 sec 2.6 sec
% of accesses above 6 sec 7% 10.7% 14.3% 3.9%
% of aborted accesses above 6 sec 0.8% 1.9% 1.5% 1.1%
% of accesses from clients-proxies 5.3% 21.9% 6.8% 4.1%
EtE time from clients-proxies 6.4 sec 5.6 sec 7 sec 6.1 sec
% in EtE time due to network 86.1% 69.8% 47.6% 46.4%
Page access size 85.5 KB 62 KB 48.5 KB 58.3 KB
Number of requests 10.3 2 3.5 1.8
Number of connections 8.4 1.7 3.4 1.3

language option, and so on, as shown in the example below:

/x/y/z/doc.pl/sid = 09e5998613f5dba43a | LANGUAGEOPTION = japanese

So, each access to a logically identical URL is defined by a different URL ex-
pression. The service providers of this site provided us with a set of policies
(regular expressions) on how to generate customized URLs, which are used to
aggregate client’s accesses to these URLs and measure the performance.

Table VII summarizes the site performance at-a-glance during the measured
period using the four most frequently accessed pages, which represent four
different support services at this site.

The average end-to-end response time of client accesses to these pages re-
flects good overall performance. However, in the case of url1, url2, and url3, a
significant percentage of accesses take more than 6 sec to complete (7%–14%).
The percentage of accesses issued by clients-proxies varies from 4.1% for url4
to 21.9% for url2. We notice that the average response times for accesses from
clients-proxies are commonly higher than the average response times observed
by all the clients accessing those URLs.

The other distinctive feature for this workload is that the server process-
ing portion in the overall response time is increased significantly compared to
the previous two case studies, and it becomes a dominant component for url3
and url4. For Web sites with dynamic content and complex multi-tier architec-
tures, the latency breakdown to network-related and server-related portions is
necessary for effective service assessment and future optimizations.

As mentioned earlier, the content returned for a particular URL depends on a
language option and a set of other client specific parameters. Thus, each “logical”
URL is an aggregation of many customized pages. In this case, the “size” of a
Web page and the “corresponding set of embedded objects” are not uniquely
identified. EtE monitor identifies a combined set of embedded objects during
the construction of the knowledge base of Web pages, and uses this information
to correctly reconstruct page accesses. As a result, some metrics measured by
EtE monitor become meaningless, such as the average page size, the number
of embedded objects, the file and byte hit ratios. However, service providers
can use their knowledge about specific Web pages of interest to approximate
the corresponding file and byte hit ratios based on the information reported by
EtE monitor, such as the average size of client page accesses and the average
number of requests for objects in a page.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 381

Fig. 15. IT-Support site: response time and number of page accesses to url1 measured by EtE
monitor.

Now, we compare the IT-Support site response time as measured by EtE
monitor with Keynote service performance measurements.

Figure 15(a) shows the average response time (hourly) for page accesses to
url1 as measured by EtE monitor. Figure 15(b) reflects the number of page
accesses to url1.

Figure 16 shows two Keynote graphs for the corresponding time period and
the same server: the top graph represents the average response time (hourly)
measured by Keynote agents probing url1; the bottom graph reflects the site
availability (i.e. the percentage of probes successfully returned by the site).

The average response time reported by Keynote measurements is 4.6 sec
for the corresponding time period. The IT-Support site deploys an additional,
specially designed redirection mechanism for load balancing of the site traffic.
The Keynote measurements of the redirection time was 1.1 sec on average (the
DNS access time is also included in this measurement).5 Thus, the average

5The current version of EtE monitor provides the measurements for successful responses with 200
status. EtE monitor functionality can be extended to measure the redirection time, i.e. the responses
with 302 status. However, for the transactions with redirection, the redirection time constitutes
only a portion of overall response time. A typical transaction with redirection consists of two parts:
1) the original client request with the corresponding redirection response by the site server, and
2) the second client request issued to a designated (by redirection) server. In order to measure the
overall response time for such client requests one needs to correlate both of these transactions,
which is a challenging problem even when the redirection is done within a single site.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

382 • L. Cherkasova et al.

Fig. 16. IT-Support site: response time and site availability as measured by Keynote service for
url1.

response time of the accesses to url1 without redirection is 3.5 sec as measured
by Keynote.

The EtE monitor was deployed on a single node of this cluster. The average
end-to-end response time of client accesses to url1 is 3.2 sec as reported by EtE
monitor. Overall, the results of measurements provided by Keynote and EtE
monitor match well. The slightly higher response time measured by Keynote
may be due to downloading the whole page (with all the embedded images)
from the original server all the time, while the real clients might benefit from
network and browser caches.

The lower Keynote graph in Figure 16 reflects IT-Support site availability.
It has a significant “dip” on April 5, at 3 am. The EtE monitor reflects a similar
“dip” in the number of successful accesses to the site along the corresponding
mark 256 in Figure 15(b).

Figure 17(a) shows the average response time for accesses to url2 together
with the number of resent packets during the corresponding hours. Most of
the time, when the number of resent packets increases, the corresponding EtE
time also increases. Figure 17(b) shows the network/server time ratio along
with the number of resent packets (we scale the number of resent packets by
10 times to stress the similarity of patterns): the networking portion of response
time tends to increase during the intervals when the number of resent packet
increases.

Client population analysis is another area attracting service provider’s spe-
cial interest. Knowledge about the largest client clusters and their response

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 383

Fig. 17. IT-Support site: (a) average response time of accesses to url2 and number of resent packets,
(b) network/server time ratio in response time for url2 and number of resent packets (multiplied
by 10).

Table VIII. Percentage of the Client Accesses from the Asia-Pacific Region
and End-to-End Response Times for these Accesses

Metrics url1 url2 url3 url4
EtE time (All Clients) 3.2 sec 3.5 sec 4 sec 2.6 sec
EtE Time (Asia-Pacific Clients) 3.9 sec 4.7 sec 4.4 sec 6.7 sec
% of Asia-Pacific Clients Accesses 4.8% 6.1% 9.6% 0.3%

times is extremely useful for service providers to make wise decisions on addi-
tional server and cache placement [Krishnamurthy and Wang 2000].

EtE monitor can provide information about client clustering by associating
them with corresponding ASes (Autonomous Systems). The service providers
of IT-Support site have a special concern about their clients from the Asia-
Pacific region (AS numbers between 9216-10239 represent Asia-Pacific do-
mains). Table VIII shows the average response times for Asia-Pacific clients (AP
clients) and percentage of their accesses to the four most popular URLs under
study.

As, Table VIII shows, the AP client accesses constitute from 0.3% to 9.6% of all
clients accesses for the four most popular URLs. The end-to-end response times
observed by Asia-Pacific clients for url1—url3 are only slightly higher than the
corresponding average response times observed by all the clients, which was
counter-intuitive.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

384 • L. Cherkasova et al.

Fig. 18. IT-Support site, url1: daily analysis of 100 ASes with the largest client clusters: (a) number
of different clients accessing the main page; (b) corresponding end-to-end response time per AS.

The following two figures, Figure 18 and Figure 19, present a daily snap-
shot of client population of those who accessed url1 and url2 on April 2, 2002
(Tuesday).

Figure 18 (Figure 19) shows the ASes sorted by the number of clients accesses
from them. Note that both the X and Y axes use a log scale. The largest domain
is responsible for 36.7% (12.6%) of accesses to url1 (url2) during this day. We
only show the first 100 domains, which represent 93.7% (95.5%) of all clients,
accesses to this page. The long tail of remaining domains (from 100 to 300
domains) has only a few client accesses. In these figures, the dashed lines show
the accesses from Asia-Pacific domains. Most of the response times for Asia-
Pacific clients are not much different from the other US based clients.

This information provides a useful quantitative view of response times to the
major client clusters. It can be used for site efficiency design to determine if a
geographically distributed Web cluster is needed to improve site performance.
Such information can also be used for content delivery networks to make ap-
propriate decisions on data placement for a given client population.

The ability of EtE monitor to reflect a site performance for different ASes
(and groups of IP addresses) happens to be a very attractive feature for ser-
vice providers. When service providers have special SLA-contracts with certain
groups of customers, EtE monitor provides a unique ability to measure the
response time observed by those clients and to validate QoS targets for those
contracts.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 385

Fig. 19. IT-Support site, url2: daily analysis of 100 ASes with the largest client clusters: (a) number
of different clients accessing the main page; (b) corresponding end-to-end response time per AS.

7.3 Validation Experiments

We performed two groups of experiments to validate the accuracy of EtE mon-
itor performance measurements and its page access reconstruction power.

In the first experiment, we used two remote clients residing at Duke Uni-
versity and Michigan State University to issue a sequence of 40 requests to
retrieve a designated Web page from the HPLabs external Web site, which con-
sists of an HTML file and 7 embedded images. The total page size is 175 Kbytes.
To issue these requests, we use httperf [Mosberger and Jin 1998], a tool that
measures the connection setup time and the end-to-end time observed by the
client for a full page download. At the same time, an EtE monitor measures
the performance of the HPLabs external Web site. From EtE monitor measure-
ments, we filter the statistics about the designated client accesses. Additionally,
in EtE monitor, we compute the end-to-end time using two slightly different ap-
proaches from those discussed in Section 6.1:

—EtE time (last byte): where the end of a transaction is the time when the last
byte of the response is sent by a server;

—EtE time (ACK): where the end of a transaction is the time when the ACK
for the last byte of the response is received.

Table IX summarizes the results of this experiment (the measurements are
given in sec):

The connection setup time reported by EtE monitor is slightly higher (14–
15 ms) than the actual setup time measured by httperf, since it includes the

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

386 • L. Cherkasova et al.

Table IX. Experimental Results Validating the Accuracy of EtE
Monitor Performance Measurements

httperf EtE monitor
Conn Resp. Conn EtE time EtE time

Client Setup time Setup (last byte) (ACK)
Michigan 0.074 1.027 0.088 0.953 1.026
Duke 0.102 1.38 0.117 1.28 1.38

Table X. Experimental Results Validating the Accuracy of EtE Monitor Reconstruction Process
for HPL and OV-Support Sites

HPL HPL OV-Support OV-Support IT-Support IT-Support
Metrics url1 url2 url1 url2 url1 url2
Reconstructed page
accesses (filtered logs)

36,402 17,562 17,601 11,310 109,553 31,844

EtE time (filtered logs) 3.3 sec 4.1 sec 2.4 sec 3.3 sec 3 sec 2.8 sec
Reconstructed page
accesses (masked logs)

33,735 14,727 15,401 8,890 108,620 28,592

EtE time (masked logs) 3.2 sec 4.1 sec 2.3 sec 3.6 sec 2.9 sec 2.6 sec

time to establish a TCP connection as well as to receive the first byte of a
request. The EtE time (ACK) coincides with the actual measured response time
observed by the client. The EtE time (last byte) is slightly lower than the actual
response time by exactly a round trip delay (the connection setup time measured
by httperf represents the round trip time for each client, accounting for 74–
102 ms). These measurements correctly reflect our expectations for EtE monitor
accuracy (see Section 6.1). Thus, we have some confidence that EtE monitor
accurately approximates the actual response time observed by the client.

The second experiment was performed to evaluate the reconstruction power
of EtE monitor. The EtE monitor with its two-pass heuristic method actively
uses the referer field to reconstruct the page composition and to build a Knowl-
edge Base about the Web pages and objects composing them. This information
is used during the second pass to more accurately group the requests into page
accesses. The question to answer is: how dependent are the reconstruction re-
sults on the existence of referer field information. If the referer field is not set in
most of the requests, how is the EtE monitor reconstruction process affected?
How is the reconstruction process affected by accesses generated by proxies?

To answer these questions, we performed the following experiment. To reduce
the inaccuracy introduced by proxies, we first filtered the requests with via
fields, which are issued by proxies, from the original Transaction Logs for all
of the sites under study. These requests constitute 24% of total requests for
the HPL site, 1.1% of total requests for the OV-Support site, and 7% for the
IT-Support site. We call these logs filtered logs. Further, we mask the referer
fields of all transactions in the filtered logs to study the correctness of recon-
struction. We call these modified logs masked logs, which do not contain any
referer fields. We notice that the requests with referer fields constitute 56% of
the total requests for the HPL site, 69% for the OV-Support site, and 35% for
the IT-Support site in the filtered logs. Then, EtE monitor processes the filtered
logs and masked logs. Table X summarizes the results of this experiment.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 387

The results of masked logs in Table X show that EtE monitor does a good job of
page access reconstruction even when the requests do not have any referer fields.
However, with the knowledge introduced by the referer fields in the filtered
logs, the number of reconstructed page accesses increases by 8–21% for the
considered URLs in Table X. Additionally, we also find that the number of
reconstructed accesses increases by 5.3–19.8% for all the considered URLs if
EtE monitor processes the original logs without filtering either the via fields
or the referer fields. The difference of EtE time between the two kinds of logs
in Table X can be explained by the difference of the number of reconstructed
accesses. Intuitively, more reconstructed page accesses lead to higher accuracy
of estimation. This observation also challenges the accuracy of active probing
techniques considering their relatively small sampling sets.

8. LIMITATIONS

There are a number of limitations to our EtE monitor architecture. Since EtE
monitor extracts HTTP transactions by reconstructing TCP connections from
captured network packets, it is unable to obtain HTTP information from en-
crypted connections. Thus, EtE monitor is not appropriate for sites that encrypt
much of their data (e.g., via SSL). In the case where the encryption is not di-
rectly conducted by the Web server (e.g., by specialized hardware running on a
dedicated node in “front” of Web server), the EtE monitor can be deployed ei-
ther between the server and the encrypting hardware or directly at the server
to overcome this problem.

In principle, EtE monitor must capture all traffic entering and exiting a par-
ticular site. Thus, our software must typically run on a single Web server or a
Web server cluster with a single entry/exit point where EtE monitor can cap-
ture all traffic for this site. If the site “outsources” most of its popular content
to CDN-based solutions then EtE monitor can only provide the measurement
information about the “rest” of the content, which is delivered from the orig-
inal site. For sites using CDN-based solutions, the active probing or page in-
strumentation techniques are more appropriate solutions to measure the site
performance. A similar limitation applies to pages with “mixed” content: if a
portion of a page (e.g., an embedded image) is served from a remote site, then
EtE monitor cannot identify this portion of the page and cannot provide corre-
sponding measurements. In this case, EtE monitor consistently identifies the
portion of the page that is stored at the local site, and provides the correspond-
ing measurements and statistics. In many cases, such information is still useful
for understanding the performance characteristics of the local site.

The EtE monitor does not capture DNS lookup times. Only active probing
techniques are capable of measuring this portion of the response times. While
DNS resolution time may not be negligible in some cases, it is only experienced
when a client first contacts the server and the resolution result is not cached
locally. Subsequent page accesses do not experience any additional delay due
to DNS.

Further, for clients behind proxies, EtE monitor can only measure the re-
sponse times to the proxies instead of to the actual clients.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

388 • L. Cherkasova et al.

As discussed in Section 3, the heuristic we use to reconstruct page content
may determine incorrect page composition. Although the statistics of access
patterns can filter invalid accesses, it works best when the sample size is large
enough.

Dynamically generated Web pages introduce another issue with our sta-
tistical methods. In some cases, there is no consistent content template for a
dynamic Web page if each access consists of different embedded objects (for
example, some pages use a rotated set of images or are personalized for client
profiles). In this case, there is a danger that metrics such as the server file hit
ratio and the server byte hit ratio introduced in Section 6 may be inaccurate.
However, the end-to-end time will be computed correctly for such accesses.

There is an additional problem (typical for server access log analysis of e-
commerce sites) about how to aggregate and report the measurement results
for dynamic sites where most page accesses are determined by URLs with client
customized parameters. For example, an e-commerce site could add some client
specific parameters to the end of a common URL path. Thus, each access to
the logically same Web page has a different URL expression. However, service
providers may be able to provide the policy of how these URLs are generated.
With the help of the policy description, EtE monitor is still able to aggregate
these URLs and measure server performance.

9. CONCLUSIONS AND FUTURE WORK

Today, Internet services are delivering a large array of business, government,
and personal services. Understanding the performance characteristics of Inter-
net services is critical to evolving and engineering Internet services to match
changing demand levels, client populations, and global network characteristics.
From a client’s perspective, Web site responsiveness corresponds to Web page
download times. Typically, a Web page is composed of multiple objects: a main
HTML file and several embedded objects such as images. However, HTTP does
not provide any means to delimit the beginning or the end of a Web page to
effectively measure the overall response time for Web page retrieval.

Existing tools for evaluating Web service performance typically rely on active
probing to a fixed set of URLs or on Web page instrumentation that monitors
download performance to a client and transmits a summary back to a server.
The first approach does not provide a representative sample of current client
access patterns while the second approach cannot breakdown the various net-
work and server components associated with Web page retrieval. This paper
presents EtE monitor, a novel approach to measuring Web site performance.
Our system passively collects packet traces from the server site to determine
service performance characteristics. We introduce a two-pass heuristic method
and a statistical filtering mechanism to accurately reconstruct composition of
individual page and performance characteristics integrated across all client
accesses.

Relative to existing approaches, EtE monitor offers the following benefits: i) a
breakdown between the network and server overhead of retrieving a Web page,
ii) longitudinal information for all client accesses, not just the subset probed by

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 389

Fig. 20. General framework for passive monitoring and measurements.

a third party, iii) characteristics of accesses that are aborted by clients, iv) an un-
derstanding of the performance breakdown of accesses to dynamic, multi-tiered
services, and v) quantification of the benefits of network and browser caches
on server performance. Our initial implementation and performance analysis
across three sample sites confirm the utility of our approach. The three case
studies performed in this article cover the most typical Web site arrangements:
from sites comprised of static content to the sites represented by highly dynamic
and personalized pages. One important contribution of our work is a demonstra-
tion of our tools generality to dynamically-generated content. For such services,
active probing techniques cannot determine a representative workload while
techniques using Web-page instrumentation cannot break down the location
of access bottlenecks, for example, between the server CPU (an increasingly
important component for dynamic content) and the wide-area network.

We are currently investigating the use of our tool to understand client perfor-
mance on a per-network region. This analysis can aid in the placement of wide-
area replicas or in the choice of an appropriate content distribution network.
Finally, our architecture is general to analyzing the performance of multi-tiered
Web services. For example, application-specific log processing can be used to
reconstruct the breakdown of latency across multiple tiers for communication
between a load balancing switch and a front-end Web server, or communication
between a Web server and the storage or database tier. One of the challenging
directions for future research is in using the performance data provided by EtE
monitor for intelligent decision making for active management of Web sites.
In recent work [Krishnamurthy and Wills 2002; Krishnamurthy et al. 2002],
authors classify Web site clients by using the response time these clients expe-
rience. Then authors the demonstrate how the server can alter the delivered
content/policy/caching decisions in order to improve the response time observed
by clients.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

390 • L. Cherkasova et al.

The other opportunity we plan to investigate is whether our approach can
be extended to design a more general framework for passive monitoring and
measurements of a broader set of network services such as Web services and
media services as shown in Figure 20.

Most of the network services use application-specific protocols, for example,
SOAP or RTSP, and use TCP/IP for their transport services. Some of the basic
modules designed in EtE monitor, such as the TCP connection reconstruction
module, can be reused in the protocol/application specific extraction modules.
The notion of transaction might be defined accordingly in an application-specific
reconstruction module (for example, in EtE monitor, the unit of such a trans-
action is a Web page while it might be a series of RPCs in another service).
Correspondingly, the performance analysis module would extract the service-
specific metrics of interest. We believe such a “plug-and-play” modular frame-
work might lead to a monitoring and measurement utility service general to a
broad range of network services.

ACKNOWLEDGMENTS

Both the tool and the study would not have been possible without the gener-
ous help of our HP colleagues: Mike Rodriquez, Steve Yonkaitis, Guy Mathews,
Annabelle Eseo, Peter Haddad, Bob Husted, Norm Follett, Don Reab, and Vin-
cent Rabiller. Their help is highly appreciated. Our special thanks to Claude
Villermain who helped to identify and to correct a subtle bug for dynamic page
reconstruction. Our sincere thanks to Jason Nieh and Craig Wills for useful
remarks and numerous suggestions during several thorough revisions of the
paper. We would like to thank the anonymous referees for insightful questions
and constructive criticism, which helped to significantly improve the content
and presentation of the paper.

REFERENCES

BARFORD, P. AND CROVELLA, M. 2000. Critical Path Analysis of TCP Transactions. In Proceedings
of SIGCOMM.

CACERES, R., DUFFIELD, N., FELDMANN, A., FRIEDMANN, J., GREENBERG, A., GREER, R., JOHNSON, T.,
KALMANEK, C., KRISHNAMURTHY, B., LAVELLE, D., MISHRA, P., RAMAKRISHNAN, K., REXFORD, J., TRUE, F.,
AND VAN DER MERWE, J. 2000. Measurement and Analysis of IP Network Usage and Behaviour.

CANDLE CORPORATION: EBUSINESS ASSURANCE. http://www.candle.com/.
CARDWELL, N., SAVAGE, S., AND ANDERSON, T. 2000. Modeling TCP Latency. In INFOCOM.
CISCO DISTRIBUTED DIRECTOR. http://www.cisco.com/.
FELDMANN, A. 2000. BLT: Bi-Layer Tracing of HTTP and TCP/IP. In Proceedings of WWW-9.
FIELDING, R., GETTYS, J., MOGUL, J., NIELSEN, H., AND BERNERS-LEE, T. 2001. Hypertext Transfer

Protocol—HTTP/1.1. Tech. Rep. RFC 2616, IETF. June.
GOMEZ, INC. http://www.gomez.com.
HELLERSTEIN, J. L., MACCABEE, M. M., III, W. N. M., AND TUREK, J. J. 1999. ETE: A Customizable

Approach to Measuring End-to-End Response Times and Their Components in Distributed Sys-
tems. In International Conference on Distributed Computing Systems.

HP CORPORATION. OpenView Products: Web Transaction Observer. http://www.openview.hp.com.
IBM CORPORATION. Tivoli Web Management Solutions. http://www.tivoli.com/products/demos/
twsm.html.

IBM RESEARCH. Page Detailer. http://www.research.ibm.com/pagedetailer/.
JAVASERVER PAGES. http://java.sun.com/products/jsp/technical.html.

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

Measuring and Characterizing End-to-End Internet Service Performance • 391

JAVASERVLET TECHNOLOGY. http://java.sun.com/products/servlet/.
KEELEY, T. 2000. Thin, High Performance Computing over the Internet. Eight International Sym-

posium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS 2000).

KEYNOTE SYSTEMS, INC. http://www.keynote.com.
KRISHNAMURTHY, B. AND REXFORD, J. 1998. Software Issues in Characterizing Web Server Logs.
KRISHNAMURTHY, B. AND REXFORD, J. 1999. En Passant: Predicting HTTP/1.1 Traffic.
KRISHNAMURTHY, B. AND REXFORD, J. 2001. Web Protocols and Practice: HTTP/1.1, Networking

Protocols, Caching, and Traffic Measurement. Addison Wesley.
KRISHNAMURTHY, B. AND WANG, J. 2000. On Network-Aware Clustering of Web Clients. In Proceed-

ings of ACM SIGCOMM 2000.
KRISHNAMURTHY, B., WILLS, C. E., , ZHANG, Y., AND VISHWANATH, K. 2002. Design, Implementation,

and Evaluation of a Client Characterization Driven Web Server. In Proceedings of WWW.
KRISHNAMURTHY, B. AND WILLS, C. E. 2000. Analyzing Factors That Influence End-to-end Web

Performance. In Proceedings of WWW.
KRISHNAMURTHY, B. AND WILLS, C. E. 2002. Improving Web performance by client characterization

driven server adaptation. In Proceedings of WWW.
MOSBERGER, D. AND JIN, T. 1998. Httperf—A Tool for Measuring Web Server Performance. Perfor-

mance Evaluation Review 26, 3 (December).
NETMECHANIC, INC. http://www.netmechanics.com.
NETQOS INC. http://www.netqos.com.
NIELSEN, H. F., GETTYS, J., BAIRD-SMITH, A., PRUD’HOMMEAUX, E., LIE, H. W., AND LILLEY, C. 1997.

Network Performance Effects of HTTP/1.1, CSS1, and PNG. In Proceedings of SIGCOMM.
OLSHEFSKI, D. P., NIEH, J., AND AGRAWAL, D. 2001. Inferring Client Response Time at the Web

Server. In Proceedings of USITS.
PORIVO TECHNOLOGIES, INC. http://www.porivo.com.
RAJAMONY, R. AND ELNOZAHY, M. 2001. Measuring Client-Perceived Response Times on the WWW.

In Proceedings of the Third USENIX Symposium on Internet Technologies and Systems (USITS).
SESHAN, S., STEMM, M., AND KATZ, R. H. 1997. SPAND: Shared Passive Network Performance

Discovery. In Proceedings of USITS.
SMITH, F. D., CAMPOS, F. H., JEFFAY, K., AND OTT, D. 2001. What TCP/IP Protocol Headers Can Tell

Us About the Web. In Proceedings of ACM SIGMETRICS.
SOFTWARE RESEARCH INC. http://www.soft.com.
STEMM, M., KATZ, R. H., AND SESHAN, S. 2000. A Network Measurement Architecture for Adaptive

Applications. In Proceedings of IEEE INFOCOM.
TCPDUMP. http://www.tcpdump.org.

Received July 2002; revised January 2003; accepted March 2003

ACM Transactions on Internet Technology, Vol. 3, No. 4, November 2003.

