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Abstract—This paper describes the design and implementation
of protocol scrubbers. Protocol scrubbers are transparent, inter-
posed mechanisms for explicitly removing network scans and at-
tacks at various protocol layers. The transport scrubber supports
downstream passive network-based intrusion detection systems by
converting ambiguous network flows into well-behaved flows that
are unequivocally interpreted by all downstream endpoints. The
fingerprint scrubber restricts an attacker’s ability to determine the
operating system of a protected host. As an example, this paper
presents the implementation of a TCP scrubber that eliminates in-
sertion and evasion attacks—attacks that use ambiguities to sub-
vert detection—on passive network-based intrusion detection sys-
tems, while preserving high performance. The TCP scrubber is
based on a novel, simplified state machine that performs in a fast
and scalable manner. The fingerprint scrubber is built upon the
TCP scrubber and removes additional ambiguities from flows that
can reveal implementation-specific details about a host’s operating
system.

Index Terms—Intrusion detection, network security, protocol
scrubber, stack fingerprinting.

1. INTRODUCTION

S SOCIETY grows increasingly dependent on the Internet

for commerce, banking, and mission-critical applications,
the ability to detect and neutralize network attacks is becoming
increasingly significant. Attackers can use ambiguities in net-
work protocol specifications to deceive network security sys-
tems. Passive entities can only notify administrators or active
mechanisms after attacks are detected. However, the response
to this notification may not be timely enough to withstand some
types of attacks—such as attacks on infrastructure control pro-
tocols. Active modification of flows is the only way to imme-
diately detect or prevent these attacks. This paper presents the
design and implementation of protocol scrubbers—transparent,
interposed mechanisms for actively removing network attacks
at various protocol layers. We describe two instances of pro-
tocol scrubbers in this paper. The transport scrubber addresses
the problem of insertion and evasion attacks by removing pro-
tocol related ambiguities from network flows, enabling down-
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stream passive network-based intrusion detection systems to op-
erate with high assurance [1]. The fingerprint scrubber prevents
a remote user from identifying the operating system of another
host at the TCP/IP layers by actively homogenizing flows [2].

The transport scrubber’s role is to convert ambiguous
network flows—flows that may be interpreted differently
at different endpoints—into well-behaved flows that are
interpreted identically by all downstream endpoints. As an
example, this paper presents the implementation of a TCP
scrubber that eliminates insertion and evasion attacks against
passive network-based intrusion detection systems. Insertion
and evasion attacks use ambiguities in protocol specifications
to subvert detection. This paper argues that passive network
intrusion detection systems (NID systems) can only effectively
identify malicious flows when used in conjunction with an
interposed active mechanism. Through interposition, the trans-
port scrubber can guarantee consistency, enabling downstream
intrusion detection systems to work with confidence. The
specifications for Internet protocols allow well-behaved im-
plementations to exchange packets with deterministic results.
However, sophisticated attackers can leverage subtle differ-
ences in protocol implementations to wedge attacks past the
NID system’s detection mechanism by purposefully creating
ambiguous flows. In these attacks, the destination endpoint
reconstructs a malicious interpretation, whereas the passive
NID system’s protocol stack interprets the flow of packets as a
benign exchange. Examples of these sources of ambiguity are
IP fragment reconstruction and the reassembly of overlapping
out-of-order TCP byte sequences. The role of the transport
scrubber is to pick one interpretation of the protocols and to
convert incoming flows into a single representation that all
endpoints will interpret identically. The transport scrubber’s
conversion of ambiguous network flows into consistent flows
is analogous to that of network traffic shaping. Shapers modify
traffic around the edges of a network to generate predictable
utilization patterns within the network. Similarly, the transport
scrubber intercepts packet flows at the edges of an interior
network and modifies them in such a way that their security
attributes are predictable.

Ambiguities in protocol specifications also allow attackers
to determine a remote host’s operating system. The process
of determining the identity of a host’s operating system by
analyzing packets from that host is called TCP/IP stack fin-
gerprinting. Fingerprinting scans are often preludes to further
attacks, and therefore we built the fingerprint scrubber to block
the majority of stack fingerprinting techniques in a general,
fast, and transparent manner. Freely available tools (such as
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nmap [3]) exist to scan TCP/IP stacks efficiently by quickly
matching query results against a database of known operating
systems. The reason this is called “fingerprinting” is therefore
obvious; this process is similar to identifying an unknown
person by taking his or her unique fingerprints and finding a
match in a database of known fingerprints. A malicious use
of fingerprinting techniques is to construct a database of IP
addresses and corresponding operating systems for an entire
network. When someone discovers a new exploit, the attacker
can now target only those machines running the vulnerable
operating system. This facilitates the systematic installation
of malicious code, such as distributed denial of service tools,
on many machines without detection. Current fingerprinting
techniques provide fine-grained determination of an operating
system. For example, nmap has knowledge of 15 different ver-
sions of Linux. Almost every system connected to the Internet
is vulnerable to fingerprinting, including standard computers
running the major operating systems, routers, switches, hubs,
bridges, embedded systems, printers, firewalls, Web cameras,
and even some game consoles. Many of these systems, such as
routers, are important parts of the Internet infrastructure, and
compromised infrastructure is a more serious problem than
compromised end hosts. Therefore a general mechanism to
protect any system is needed.
The main contributions of this work are:

* Introduction of transport scrubbing: The paper introduces
the use of an active, interposed transport scrubber for the
conversion of ambiguous network flows into well-be-
haved, unequivocally interpreted flows. We argue that
the use of a transport scrubber is essential for correct
operation of passive NID systems. The paper describes
the use of transport scrubbers to eliminate insertion and
evasion attacks on NID systems [4]. The concept of
transport scrubbing can easily be merged with existing
firewall technologies to provide the significant security
benefits outlined in this paper.

* Design and implementation of TCP scrubber: The novel
design and efficient implementation of the half-duplex
TCP scrubber is presented. The current implementation
of the TCP scrubber exists as a modified FreeBSD kernel
[5]. This implementation is shown to scale with raw
Unix-based Ethernet bridging. By keeping the design of
the scrubber general, we plan to migrate the implementa-
tion to programmable networking hardware such as the
Intel IXA architecture [6], [7].

e Design and implementation of fingerprint scrubber:
Building upon the TCP scrubber, we present a tool to de-
feat TCP/IP stack fingerprinting. The fingerprint scrubber
is transparently interposed between the Internet and the
network under protection. We show that the tool blocks
the majority of known stack fingerprinting techniques in
a general, fast, and transparent manner.

The remainder of this paper is organized as follows.
Section II places our work within the broader context of related
work. Section III describes the design, implementation, and
performance characteristics of our TCP transport scrubber.
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Section IV presents our tool for defeating TCP/IP stack finger-
printing. Finally, Section V presents our conclusions and plans
for future work.

II. RELATED WORK

Current network security depends on three main components:
firewalls, intrusion detection systems, and encryption. Firewalls
are designed to restrict the information flowing into and out of a
network. Intrusion detection systems attempt to monitor either
the network or a single host and detect attacks. Encryption of
data over a network attempts to transport data securely through
an untrusted network. While these technologies attempt to pro-
vide a comprehensive security solution, performance consider-
ations limit their effectiveness. Protocol scrubbers complement
these technologies by filling in the gaps without adversely af-
fecting performance.

Firewalls [8] and protocol scrubbers are both active, inter-
posed mechanisms—packets must physically travel through
them in order to continue toward their destinations—and both
operate at the ingress points of a network. Modern firewalls
primarily act as gate-keepers, utilizing filtering techniques that
range from simple header-based examination to sophisticated
authentication schemes. In contrast, the protocol scrubber’s
primary function is to homogenize network flows, identifying
and removing attacks in real time.

Older firewalls that utilize application-level proxies, such as
the TIS Firewall Toolkit [9], provide similar functionality to pro-
tocol scrubbers. These types of firewalls provide the most se-
curity, but their performance characteristics are not acceptable
for deployment in high-speed environments. Their utility has
decreased as the Internet has evolved. In contrast, the protocol
scrubbers have been designed to achieve maximum throughput
as well as a high level of security.

Firewall technologies changed with the advent of so-called
stateful inspection of networking flows, exemplified by Check-
point’s Firewall-1 [10]. These types of firewalls examine
portions of the packet header and data payloads to determine
whether or not entry should be granted. After the initial check,
a flow record is stored in a table so that fast routing of the
subsequent network packets can occur. These later packets
are not checked for malicious content. The protocol scrubbers
differ in that they continue to remove malicious content for the
lifetime of the flow.

In an attempt to combine the best of stateful inspection and
application level proxies, Network Associates introduced a new
version of their Gauntlet firewall [11]. The approach taken in
this firewall is a combination of application-level proxy and
fast-path flow caching. At the beginning of a flow’s lifetime,
the flow is intercepted by an application-level proxy. Once this
proxy authenticates the flow, it is cached in a lookup table for
fast-path routing. Again, the protocol scrubber differs by al-
lowing detection of malicious content, not only at the beginning,
but throughout the flow’s lifetime.

Protocol scrubbers can also complement the operation of in-
trusion detection systems (ID systems) [12], [13]. There are
two broad categories of intrusion detection systems: network-
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based and host-based. Network-based intrusion detection sys-
tems (NID systems) are implemented as passive network mon-
itors that reconstruct networking flows and monitor protocol
events through eavesdropping techniques [14]-[17]. As passive
observers, NID systems have a vantage point problem [18] when
reconstructing the semantics of passing network flows. This vul-
nerability can be exploited by sophisticated network attacks that
leverage differences between the processing of packets by the
destination host and by an intermediary observer [4]. As an ac-
tive participant in a flow’s behavior, the protocol scrubber re-
moves these attacks and can function as a fail-closed, real-time
NID system that can sever or modify malicious flows.

Protocol scrubbers deal with virtual private networks (VPN)
and header and payload encryption [19] in the same manner as
NID systems. There are two approaches to filtering encrypted
flows: the first assumes that the flow is sanctioned if it is
end-to-end encrypted; an alternative approach is to filter any
flows that do not match a preconfigured list. As an active
mechanism, the protocol scrubber can remove unsanctioned
flows in real time. When placed on the inside of a VPN, the
protocol scrubber can be used to further clean packet streams.
This would apply to scrubbing e-commerce transactions and
sensitive database accesses.

While fingerprinting scans do not pose a direct threat to se-
curity, they are often preludes to further attacks. A NID system
will be able to detect and log such scans, but the fingerprint
scrubber actively removes them. Various tools are available to
secure a single machine against operating system fingerprinting.
The TCP/IP traffic logger iplog [20] detects fingerprint scans
and sends out a packet designed to confuse the results. Other
tools and operating system modifications simply use the kernel
TCP state to drop certain scan types. None of these tools, how-
ever, can be used to protect an entire network of heterogeneous
systems.

Developed simultaneously with our work, the concept
of traffic normalization uses the same basic framework to
solve attacks against NID systems [21], [22]. While we have
focused on extending the idea of protocol scrubbers into other
areas, such as preventing fingerprinting, Paxson, Handley, and
Kreibich have attempted to develop a systematic method for
identifying all possible sources of ambiguity in the TCP/IP
suite of protocols. In addition, they have attempted to minimize
the impact of attacks against the normalizer by minimizing the
state kept for each connection, and actively adapting in real
time. Their novel approach to dealing with packets without
any associated state not only protects the normalizer from
attacks, but also allows it to intelligently deal with preexisting
connections.

Although protocol scrubbing has similarities with current net-
work security mechanisms, we view the idea as a necessary next
step in providing increased network security. Ambiguities in
protocol specifications and differences in protocol implemen-
tations are likely to always exist. Protocol scrubbing provides a
simple solution that could easily be incorporated into the next
generation of firewall design. Not only would these scrubbing
firewalls provide increased protection to end hosts, they would
also enable NID systems to accurately detect attacks that make
it past the firewall.

III. TRANSPORT SCRUBBER

Network-based intrusion detection systems are based on the
idea that packets observed on a network can be used to predict
the behavior of the intended end host. While this idea holds for
well-behaved network flows, it fails to account for easily cre-
ated ambiguities that can render the NID system useless. At-
tackers can use the disparity between reconstruction at the end
host and the passive NID system to attack the end host without
detection. The TCP scrubber is an active mechanism that ex-
plicitly removes ambiguities from external network flows, en-
abling downstream NID systems to correctly predict the end
host response to these flows. Utilizing a novel protocol-based
approach in conjunction with an in-kernel implementation, the
TCP scrubber provides high performance as well as enforce-
ment of flow consistency. By keeping a significantly smaller
amount of state than existing solutions, the scrubber is also
able to scale to tens of thousands of concurrent connections
with throughput performance that is comparable to commercial
stateful inspection firewalls and raw Unix-based IP forwarding
routers. This section describes the overall design and implemen-
tation of the TCP scrubber and provides a comprehensive per-
formance profile using both macro and microbenchmarks.

A. TCP Ambiguities and ID Evasion

Sophisticated attacks can utilize differences in the processing
of packets between a network intrusion detection system and an
end host to slip past the watching NID system completely un-
detected. NID systems rely on their ability to correctly predict
the effect of observed packets on an end host system in order to
be useful. In their paper, Ptacek and Newsham describe a class
of attacks that leave NID systems open to subversion [4]. We
borrow their description of the two main categories of these at-
tacks: insertion attacks, where the NID system accepts a packet
that the end host rejects, and evasion attacks, where the NID
system rejects a packet that the end host accepts.

Fig. 1 provides a simple example of how differences in the
reconstruction of a TCP stream can result in two different in-
terpretations, one benign and the other malicious. In this simple
example an attacker is trying to log into an end host as root,
while fooling the NID system into thinking that it is connecting
as a regular user. The attacker takes advantage of the fact that
the end host and the NID system reconstruct overlapping TCP
sequences differently. In Fig. 1(a), the attacker sends a data
sequence to the end host with a hole at the beginning (repre-
sented by the question mark). Since TCP is a reliable byte-
stream service that delivers data to the application layer in order,
both the end host and NID system must wait until that hole
is filled before proceeding [23]. However, unbeknownst to the
NID system—but not the wily attacker—the end host deals with
overlapping sequences of bytes differently than the NID system.
In Fig. 1(b), when the attacker resends the data with the hole
filled, but with a different username of the same length, the dif-
ference in implementation choice between the two systems al-
lows the attacker to dupe the NID system. Since a correct TCP
implementation would always send the same data upon retrans-
mission, it is not mandated in the specification as to which set
of bytes the endpoint should keep. In this example, the end host
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Fig. 1. Example of ambiguity of transport layer protocol implementation
differences between an interposed agent (NID system) and an end host. (a) Host
and NID system after attacker sends a hole. (b) Attacker filling in the hole
and confusing the NID system. (c) Scrubber enforces single interpretation.
(d) Attacker filling in the hole and sending new data.

chose to keep the new sequence of bytes that came in the second
packet, whereas the NID system kept the first sequence of bytes.
Neither is more correct than the other; just the fact that there is
ambiguity in the protocol specification allows sophisticated at-
tacks to succeed.

While these attacks do not increase the vulnerability of the
end host, they significantly deteriorate the NID system’s ability
to detect attacks. This can lead to significant, undetected secu-
rity breaches. While there is no evidence that these techniques
are being used in the wild, simple toolkits such as fragroute
[24] make the task easy. In addition, there is ample evidence
that NID systems see ambiguous network flows from benign
TCP/IP stacks [16]. This makes it increasingly difficult for the
NID system to detect real attacks.

To address this problem, we have created the TCP scrubber.
Specifically, the scrubber provides the uniformity that NID
systems need for confident flow reconstruction and end
host behavior prediction. For example, the scrubber stores
in-sequence, unacknowledged data from the TCP sequence
space. When any unacknowledged data is retransmitted, the
original data is copied over the data in the packet to prevent
possible ambiguity. When acknowledged, this stored data is
thrown away and is removed from any subsequent packets. To
prevent attacks against the scrubber, out-of-sequence data is
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thrown away and not retransmitted to the end host. Specifically,
Fig. 1(c) and (d) demonstrates how the active protocol scrubber
interposed between the attacker and the downstream systems
eliminates the ambiguity. By picking a single way to resolve
the TCP reconstruction both the downstream NID system and
end host both see the attacker logging in as root. In this case
the scrubber simply throws away the data after a hole.

In addition to the handling of overlapping TCP segments,
there are many other ambiguities in the TCP/IP specification
that produce different implementations [4]. To begin with, the
handling of IP fragments and their reconstruction varies by im-
plementation. Similar variations are seen with the reconstruc-
tion of TCP streams. End hosts deal differently with respect to
IP options and malformed headers. They vary in their response
to relatively new TCP header options such as PAWS [23]. More-
over, there are vantage point problems that passive NID systems
encounter such as TTL-based routing attacks and TCP creation
and tear-down issues. The large number of ambiguities with
their exponential permutations of possible end host reconstruc-
tions make it impractical for NID systems to model all possible
interpretations at the end host. They must pick some subset, gen-
erally a single interpretation, to evaluate in real time. For this
reason it is impractical to adequately address the problem within
the context of a passive NID system.

B. TCP Scrubber Design and Implementation

The TCP scrubber converts external network flows—se-
quences of network packets that may be interpreted differently
by different end host networking stacks—into homoge-
nized flows that have unequivocal interpretations, thereby
removing TCP insertion and evasion attacks. While TCP/IP
implementations vary significantly in many respects, correct
implementations interpret well-behaved flows in the same
manner. However, flows that are not well-behaved are often
interpreted differently even by correct implementations. The
protocol scrubber’s job is to codify what constitutes well-be-
haved protocol behavior and to convert external network flows
to this standard. To describe all aspects of a well-behaved
TCP/IP protocol stack is impractical. However we will il-
lustrate this approach by detailing its application to the TCP
byte stream reassembly process. TCP reassembly is the most
difficult aspect of the TCP/IP stack and is crucial to the correct
operation of NID systems. Note, however, that we address
more ambiguities of the TCP/IP specification when we discuss
the fingerprint scrubber in Section IV.

The TCP scrubber’s approach to converting ambiguous TCP
streams into unequivocal, well-behaved flows lies in the middle
of a wide spectrum of solutions. This spectrum contains state-
less filters at one end and full transport-level proxies—with a
considerable amount of state—at the other. Stateless filters can
handle simple ambiguities such as nonstandard usage of TCP/IP
header fields with little overhead. However, they are incapable
of converting a stateful protocol, such as TCP, into a nonam-
biguous stream. Full transport-layer proxies lie at the other end
of the spectrum, and can convert all ambiguities into a single
well-behaved flow. However, the cost of constructing and main-
taining two full TCP state machines—scheduling timer events,
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estimating round-trip time, calculating window sizes, etc.—for
each network flow restricts performance and scalability. The
TCP scrubber’s approach to converting ambiguous TCP streams
into well-behaved flows attempts to balance the performance
of stateless solutions with the security of a full transport-layer
proxy. Specifically, the TCP scrubber maintains a small amount
of state for each connection but leaves the bulk of the TCP pro-
cessing and state maintenance to the end hosts. Moreover, the
TCP scrubber only maintains state for the half of the TCP con-
nection originating at the external source. Even for flows origi-
nating within a protected network there is generally a clear no-
tion of which endpoints are more sensitive and need protection;
if bidirectional scrubbing is required, the scrubber can be con-
figured to provide it. With this compromise between a stateless
and stateful design, the TCP scrubber removes ambiguities in
TCP stream reassembly with performance comparable to state-
less approaches.

To illustrate the design of the TCP scrubber, we compare it to
a full transport-layer proxy. TIS Firewall Toolkit’s plug — gw
proxy is one example of a transport proxy [9]. It is a user-level
application that listens to a service port waiting for connections.
When a new connection from a client is established, a second
connection is created from the proxy to the server. The trans-
port proxy’s only role is to blindly read and copy data from one
connection to the other. In this manner, the transport proxy has
fully obscured any ambiguities an attacker may have inserted
into their data stream by forcing a single interpretation of the
byte stream. This unequivocal interpretation of the byte stream
is sent downstream to the server and accompanying network ID
systems for reconstruction. However, this approach has serious
costs associated with providing TCP processing for both sets of
connections.

Unlike a transport layer proxy, the TCP scrubber leaves the
bulk of the TCP processing to the end points. For example,
it does not generate retransmissions, perform round-trip time
estimation, or perform any timer-based processing; everything
is driven by events generated by the end hosts. The TCP
scrubber performs two main tasks: it maintains the current
state of the connection and keeps a copy of the byte stream
that has been sent by the external host but not acknowledged
by the internal receiver. In this way it can make sure that the
byte stream seen downstream is always consistent—it modifies
or drops any packets that could lead to inconsistencies. Fig. 2
graphically represents the reduced TCP state processing that
occurs at the TCP scrubber. This simple combined bidirectional
state machine allows for high scalability by leaving the com-
plex protocol processing to the end points. The scrubber has
only three general states: connection establishment (INIT and
INIT? states), established operation (EST AB), and connection
termination (CLOSE and CLOSED), whereas the endpoint
TCP stack has much more complex state machines that include
states such as fast retransmit and slow start.

The TCP scrubber scales significantly better than a full
transport proxy because the amount of state kept by the
scrubber is much less than that kept by a transport proxy. TCP
is a reliable byte stream service, therefore a sender must keep
a copy of any data it has sent until it receives a message from
the receiver acknowledging its receipt. Fig. 3 illustrates a data
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Fig. 2. TCP scrubber’s state transition diagram for a single connection.
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Fig. 3. Example of TCP data transfer messages between endpoints and
interposed mechanism.

transfer operation from an external client to an internal service
using TCP. The circled portions at the center timeline represent
the amount of time that data from either the client or server is
buffered at the transport proxy or scrubber. Notice that both
the scrubber and the transport proxy must buffer the incoming
external request until its receipt is acknowledged by the internal
server. However, the server’s reply is not modified or buffered
by the TCP scrubber, whereas the transport proxy must buffer
the outbound reply until it is acknowledged. This is a somewhat
subtle point; the outbound reply will generally be held for much
longer than the incoming request by an interposed mechanism.
This is because the distance—measured as round-trip time and
packet losses—from the scrubber to the server will be short
relative to the long distance to an external client. It is fair to
assume that the scrubber and services it protects are collocated
on a fast enterprise network while the scrubber and external
client are separated by a wide area network with widely varying
loss and latency characteristics. The TCP scrubber’s approach
to homogenization of TCP flows improves scalability in the
number of simultaneous connections it can service.

In addition to a novel protocol processing design, the TCP
scrubber’s in-kernel implementation provides for even greater
performance advantages over a user-space transport proxy. Cur-
rently, the TCP scrubber is implemented within the FreeBSD 4.5
kernel’s networking stack, which is a derivative of the BSD 4.4
code [25].
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C. TCP Scrubber Security

The goal of the TCP scrubber is to improve the overall se-
curity of the protected network without significantly impacting
the function or performance of the network. For this reason, it
is important to consider the security of the scrubber itself.

First, the TCP scrubber is designed to be fail safe; any attacks
that disable the scrubber will make the protected network un-
reachable. This prevents attackers from disabling the scrubber
and then attempting to evade detection. Unfortunately, this fea-
ture creates a denial of service vulnerability—any successful at-
tack against the scrubber will shut down the protected network.
Standard techniques such as watchdogs would limit the severity
of such attacks.

Another denial of service consideration of the TCP scrubber
is the problem of preexisting connections. When the scrubber
is first started it knows nothing about the state of existing
connections. The current design forces all connections to
go through the three-way handshake before data packets are
allowed through. This means that any established connections
will be shut down when the scrubber is initially added to
the network or restarted. While this conservative approach
prevents an attacker from gaining access to a protected host,
it creates a severe denial of service vulnerability. One simple
approach to this problem, as described in [21], would be to use
the asymmetric design of the scrubber to construct state for
existing connections. Any packets originating from a trusted
host imply that a connection has already been established. By
using modified packets from untrusted hosts, the scrubber can
determine if they are part of an already established connection
without allowing potential attacks through. If the end host
responds, the scrubber can set up state for the connection and
proceed. If the end host sends a reset or fails to respond, the
scrubber will continue to block packets from the untrusted host.
This solution would not only prevent the scrubber from being
used by attackers, but would also prevent benign restarts of the
scrubber from disrupting the network.

By forcing the TCP scrubber to keep large amounts of unnec-
essary state, an attacker can exhaust the memory of the scrubber,
forcing it to block new connections. The scrubber’s asymmetric
design reduces the amount of state by keeping track of TCP data
for only one half of the connection. The amount of state kept
by the scrubber can be further reduced by actively limiting the
amount of TCP data kept for each connection. If the buffer for a
particular connection is full, new packets will be dropped. This
might slow down legitimate connections, but it will not cause
any of them to be disconnected. Another solution involves mon-
itoring the amount of memory available to the scrubber and in-
telligently dropping connections. Since most attempts to estab-
lish a large number of connections are easily distinguished from
legitimate traffic, it is simple to drop these connections first.

Other possible attacks against the scrubber include resource-
based attacks such as CPU overloading. We expect that attempts
to improve the performance of the TCP scrubber are the best de-
fense against these attacks. Current tests with the scrubber show
that with relatively inexpensive hardware, the current scrubber
design is not the bottleneck on even gigabit-speed networks.
While this hardware will not scale to high-speed links used in
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TABLE 1
LATENCY OF TCP/IP FORWARDING AND TCP SCRUBBING (IN MICROSECONDS)

Forwarding Type Mean | Std Dev
IP Forwarding 8.00 291
TCP Scrub (1 byte payload) 13.19 3.38
TCP Scrub (> 1000 byte payload) | 31.85 5.72

large backbone networks, we expect it to be usable on any net-
work supporting end hosts.

D. TCP Scrubber Performance

This section presents the results from a series of experiments
that profile the TCP scrubber’s performance characteristics.
They show that, in general, the current implementation of the
TCP scrubber can match the performance of both commercial
stateful inspection firewalls and raw Unix-based Ethernet
bridging routers.

The first set of experiments attempted to compare the raw
overhead of scrubbing packets to simple IP forwarding. These
microbenchmarks measured the amount of time it took for a
packet to complete the kernel’s ip_input routine. For an IP
forwarding kernel, the time spent in ip_input corresponds to
the amount of time needed to do IP processing and forwarding,
including queuing at the outbound link-level device (Ethernet).
For the TCP scrubber it represents the time to scrub the packet
and queue it on the outbound link-level device. Due to the
difficulty of tracing packets through user space, we were not
able to measure any proxying solutions. Table I shows the
results from this experiment. These numbers were measured on
older hardware (a 300-MHz Pentium II CPU), but we expect
that these numbers accurately reflect the relative performance.
IP forwarding requires a minimal amount of work for each
packet independent of the packet size. As expected, it imposes a
minimal amount of overhead. The scrubber, on the other hand,
copies the data from the packet into an internal buffer. As we
would expect, with small payloads the scrubber adds a small
amount of overhead beyond forwarding. For larger payload
packets, copying the TCP data into memory adds a significant
amount of overhead. The results from these experiments would
seem to indicate that with large payload packets, TCP scrubbing
will perform poorly compared to IP forwarding. However,
as further experiments will show, this portion of processing
packets in the kernel is not the dominant factor determining
actual throughput.

Initial attempts to measure the performance of the TCP
scrubber found that on a traditional 100-Mb/s Fast Ethernet net-
work, the bottleneck for all forwarding options was the network
itself [1]. In order to get a better picture of the real performance
of the scrubber, we performed a new series of experiments
on a gigabit-speed network. These experiments attempted to
determine the performance of the TCP scrubber using realistic
tests. Fig. 4 shows the experimental configuration used in these
experiments. The clients and servers were each connected to
their own Intel Express Gigabit Switch. The clients and servers
were all running FreeBSD 4.5, had 500-MHz Pentium III
processors, 128-MB main memory, and used Intel PRO/1000
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Trusted Clients

Switch B)

Untrusted Servers

Fig. 4. Experimental apparatus for measuring the protocol scrubber’s
performance.

TABLE 11
THROUGHPUT FOR A SINGLE EXTERNAL CONNECTION TO
AN INTERNAL HOST (Mb/s, +2.5% AT 99% CI)

TCP Scrubber
322.30

Crossover
359.13

Bridge
333.81

Gigabit Server Adapters (em driver). The two switches were
then connected by different mechanisms: a patch cable, and a
computer acting as an Ethernet bridge, Squid proxy, and TCP
scrubber. The computer used to connect the two switches, S,
was a 733-MHz computer, with 1.6 Gb of memory and two
gigabit adapters. For one set of experiments, another computer,
D, was added to simulate loss. It is important to note that these
are all fiber connections, and that the maximum throughput of
the system is 2 Gb/s, since everything is running in full-duplex
mode. In addition, the maximum number of sockets and the
maximum segment length on the servers and Squid proxy were
modified to deal with the large number of connections left in the
TIME_WAIT state. Specifically, the kern.ipc.maxsockets
variable was set to 65536 and the net.inet.tcp.msl variable
was set to 1000, or 1 s.

As a baseline measurement, we used the Netperf benchmark
[26] to measure the maximum TCP throughput for a single con-
nection. Tests were run for 60 s using the TCP Stream test,
between two and ten iterations, a confidence interval of 99%
+2.5%, a local send size of 32768 bytes, and remote and local
socket buffers of 57344 bytes. Table II summarizes these re-
sults: a crossover cable provides the highest throughput, and the
scrubber the worst. These numbers reflect the amount of pro-
cessing power required by each of these techniques. However,
the differences between the different methods is relatively small.

To better test the performance of the TCP scrubber, we
ran a set of experiments designed to simulate fetching pages
from a Web server. Each client machine was running a custom
client designed to sequentially request the same Web page.
Similarly, each server machine ran a custom single-threaded
single-process Web server. In order to remove the performance
impact of a traditional Web server the servers were designed to
return a static Web page for every connection without parsing
the HTTP request. While these servers are not realistic, they
simulate the performance of a highly optimized Web server
cluster. This best case server performance represents a worst
case scenario for the TCP Scrubber. Another interesting point
is that we made the servers untrusted, the reverse of what we
described in previous sections. This was done to further stress
the performance of the TCP scrubber. Since much more data is
sent from the servers to the clients than vice versa, this scenario

1000 [y T T T
r G—© Crossover
[3—£1 Bridge
800 — &—< Scrubber —
A—A Squid

400 -

Throughput (Mb/s)
T

200 —

Ll L

1000

Ll L
1 10 100
File size (KB)

Fig. 5. Gigabit TCP scrubber performance results.

forces the scrubber to perform much more work sanitizing the
data in the packets. Since the primary bottleneck in this system
is the bandwidth of the half-duplex link from the servers to the
clients, we only report this measurement. Another computer
was connected to an out-of-band management port to measure
the throughput of the inter-switch connection using the statistic
counters maintained by the switch.

Fig. 5 shows the results of these experiments. The x-axis mea-
sures the size of the simulated Web pages. The y-axis measures
the throughput of the data entering the client switch from the
server switch. This is the half of the full-duplex connection that
is carrying all the data from the servers. The top line in the
graph represents the performance when the two switches are
connected using a (crossover) patch cable. For large file sizes,
we approach the absolute maximum of 1 Gb/s. At lower file
sizes, the interrupt overhead of processing a large number of
small packets limits the possible throughput. The next line down
measures the impact of adding a computer into the link. The
computer was connected to both switches and configured to act
as an Ethernet bridge. This involves copying an incoming packet
into the kernel, looking up the correct destination, and copying
the packet to the correct outgoing interface. With the minimal
processing involved we would expect this to represent the max-
imum throughput of any computer-based solution. The third line
measures the performance of the scrubber. The scrubber appears
to mirror the performance of the Ethernet bridge, with a rela-
tively small performance hit. The fourth line represents the per-
formance of a Squid proxy. Since we were attempting to com-
pare the scrubber to a general purpose proxying solution, we
configured Squid not to cache any pages. In addition, we turned
off as much logging as possible, and redirected the rest of the
logging to /dev/null.

The results of these experiments show that under the condi-
tions that we tested, the TCP scrubber does not add a signif-
icant amount of overhead compared to other computer-based
solutions. While we did not test any commercial firewalls, we
expect that they would be unable to exceed the performance
of the Ethernet bridge. For that reason, we feel that the TCP
scrubber is very comparable to existing in-line security mecha-
nisms. In addition, the common techniques that allow commer-
cial firewalls to scale to high-speed networks, such as checksum
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Fig. 6. TCP scrubber connections-per-second results.

offloading, pooling, and zero-copy techniques, would equally
benefit scrubbing. For environments where we needed to scrub
links and achieve performance beyond the capabilities of PC
hardware, we could implement the scrubber on specialized hard-
ware. Intel’s IXA architecture is one solution that provides easy
maintainability while permitting processing on high-speed links
(6], [7].

In addition to showing that the TCP scrubber does not add
significant overhead to the throughput of TCP connections, we
also wanted to show that the scrubber can handle a large number
of small connections. Since setting up the state for each TCP
connection is resource intensive, a large number of small con-
nections tests this portion of the TCP scrubber code. The setup
for this set of experiments was identical to the throughput tests,
except we fix the file size to 1 K and vary the number of simul-
taneous connections. This was accomplished by running mul-
tiple clients on each client machine and multiple servers on
each server machine. Fig. 6 shows the results of these experi-
ments. The x-axis represents the number of simultaneous con-
nections, which is the number of client processes on each client
machine times four. The left y-axis shows the throughput of the
half-duplex connections from the servers to the clients, as be-
fore. Since we were using all ten of our gigabit Ethernet cards,
we were unable to directly measure the number of successful
connections per second. Instead, the right y-axis uses the results
of measuring the bandwidth consumed by a single connection
to estimate the number of successful connections. As before,
we measured the performance of a crossover cable, an Ethernet
bridge, the TCP scrubber, and a Squid proxy. The most notice-
able result is that the top three methods are essentially iden-
tical at 40 simultaneous connections and above. We were able
to verify that the bottleneck in this situation was the processing
capacity of the servers, something we were unable to remedy
with our limited hardware. Beyond the server bottleneck, the
results are very similar to the throughput tests. The Ethernet
bridge and the TCP scrubber have similar performance, and the
Squid proxy performs significantly worse. The latter result is not
a surprise—we expect any user-level proxy to be slow. The mul-
tiple data copies and context switching will always doom any
user-space implementation to significantly worse performance
than the two in-kernel approaches [27], [28]. While we were un-
able to remove the server bottleneck from this experiment, the
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Fig. 7. TCP scrubber lossy results.

results show that the TCP scrubber can handle large numbers of
very short connections.

Finally, we conducted a set of experiments to determine the
effects of a lossy link between the external clients and the inter-
posed machine. Because these experiments are not bandwidth
limited, we performed them on a 100-Mb/s link. In these exper-
iments, the number of Web clients was fixed at 480, while artifi-
cial packet loss was forced on each network flow by a dummynet
router [29], labeled D in Fig. 4. The results of this experiment
are shown in Fig. 7. The vertical axis represents the number of
HTTP requests serviced per second; the horizontal axis repre-
sents the proportion of bidirectional packet loss randomly im-
posed by the dummynet router. The pairs of lines represent the
99% confidence intervals for the mean sustained connections
per second. The most significant result from this experiment is
that the TCP scrubbed flows behave comparably to the raw IP
forwarded flows.

IV. FINGERPRINT SCRUBBER

We created a second protocol scrubber to remove TCP/IP fin-
gerprinting scans. While fingerprinting does not pose an imme-
diate threat, it is a precursor to further attacks. We based the
fingerprint scrubber on the TCP scrubber to leverage the perfor-
mance of the in-kernel implementation and the architecture of
the TCP state reassembly. The scrubber removes further ambi-
guities from the TCP and IP protocol layers to defeat attempts
at scanning a host for operating system fingerprints.

The most complete and widely used TCP/IP fingerprinting
tool today is nmap. It uses a database of over 500 fingerprints
to match TCP/IP stacks to a specific operating system or hard-
ware platform. This database includes commercial operating
systems, routers, switches, and many other systems. Any system
that uses TCP/IP is potentially in the database, which is up-
dated frequently. Nmap is free to download and is easy to use.
For these reasons, we are going to restrict our talk of existing
fingerprinting tools to nmap.

Nmap fingerprints a system in three steps. First, it performs a
port scan to find a set of open and closed TCP and UDP ports.
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Second, it generates specially formed packets, sends them to
the remote host, and listens for responses. Third, it uses the re-
sults from the tests to find a matching entry in its database of
fingerprints.

Nmap uses a set of nine tests to make its choice of operating
system. A test consists of one or more packets and the responses
received. Eight of nmap’s tests are targeted at the TCP layer and
one is targeted at the UDP layer. The TCP tests are the most im-
portant because TCP implementations vary significantly. Nmap
looks at the ordering of TCP options, the pattern of initial se-
quence numbers, IP-level flags such as the do not fragment bit,
the TCP flags such as RST, the advertised window size, as well
as other elements that may differ depending on the implemen-
tation of the sender. For more details, including the specific op-
tions set in the test packets, refer to [3].

Fig. 8 is an example of the output of nmap when scanning our
EECS department’s Web server, http://www.eecs.umich.edu,
and one of our department’s printers. The TCP sequence
prediction result comes from nmap’s determination of how
a host increments its initial sequence number for each TCP
connection. Many commercial operating systems use a random,
positive increment, but simpler systems tend to use fixed in-
crements or increments based on the time between connection
attempts.

While nmap does a good job of performing fine-grained fin-
gerprinting, there are other methods for fingerprinting remote
machines. For example, various timing-related scans could de-
termine whether a host implements TCP Tahoe or TCP Reno by
imitating packet loss and watching recovery behavior. We dis-
cuss this threat and potential solutions in Section IV-B4. Also,
a persistent person could also use methods such as social en-
gineering or application-level techniques to determine a host’s
operating system. Such techniques are outside the scope of this
study.

In this section, we discuss the goals and intended use of the
scrubber as well as its design and implementation. We demon-
strate that the scrubber blocks known fingerprinting scans in a
general, transparent manner. By transparent we mean that the
active modification of flows is accomplished without requiring
the fingerprint scrubber to have explicit knowledge about fin-
gerprinting scans or end hosts’ TCP/IP stack implementations.
We also show that the performance is comparable to that of a
standard IP forwarding gateway.

A. Goals and Intended Use of the Fingerprint Scrubber

The goal of the fingerprint scrubber is to block known stack
fingerprinting techniques in a general, fast, and transparent
manner. The tool should be general enough to block classes
of scans, not just specific scans by known fingerprinting tools.
The scrubber must not introduce much latency and must be
able to handle many concurrent TCP connections. Also, the
fingerprint scrubber must not cause any noticeable performance
or behavioral differences in end hosts. For example, it is
desirable to have a minimal effect on TCP’s congestion control
mechanisms by not delaying or dropping packets unnecessarily.

We intend for the fingerprint scrubber to be placed in front
of a set of systems with only one connection to a larger net-
work. We expect that a fingerprint scrubber would be most ap-

TCP Sequence Prediction:
Class=truly random
Difficulty=9999999 (Good luck!)
Remote operating system guess:
Linux 2.0.35-37

(a)

TCP Sequence Prediction:
Class=trivial time dependency
Difficulty=1 (Trivial joke)
Remote operating system guess:
Xerox DocuPrint N40

(W]

Fig. 8. Output of an nmap scan against a Web server running Linux and a
shared printer. (a) Web server running Linux. (b) Shared printer.

propriately implemented in a gateway machine from a LAN of
heterogenous systems (i.e., computers running a variety of op-
erating systems, along with printers, switches) to a larger cor-
porate or campus network. A logical place for such a system
would be as part of an existing firewall. Another use would be
to place a scrubber in front of the control connections of routers.
Because packets traveling to and from a host must travel through
the scrubber, the network under protection must be restricted to
having one connection to the outside world.

B. Fingerprint Scrubber Design and Implementation

To meet our goals, the fingerprint scrubber is based on the
TCP scrubber described earlier and operates at the IP and
TCP levels to cover a wide range of known and potential
fingerprinting scans. The TCP scrubber provides quick and
scalable reassembly of TCP flows and enforcement of the
standard TCP three-way handshake (3WHS). Instead of using
the TCP scrubber, we could have simply implemented a few
techniques discussed in the following sections to defeat nmap.
However, the goal of this work is to stay ahead of those de-
veloping fingerprinting tools. By making the scrubber operate
generically for both IP and TCP, we feel we have raised the bar
sufficiently high.

1) IP Scrubbing: In addition to the TCP ambiguities we dis-
cussed when talking about the TCP scrubber, there are IP-level
ambiguities that facilitate fingerprinting. IP-level ambiguities
arise mainly in IP header flags and fragment reassembly algo-
rithms. We can easily modify the IP header flags to remove these
ambiguities without restricting functionality. This involves little
work in the scrubber, but does require adjustment of the header
checksum. To defeat IP-level insertion and evasion attacks, we
are forced to reassemble the fragments. This requires keeping
state in the scrubber to store the waiting fragments. Once a com-
pleted IP datagram is formed, it may require additional pro-
cessing to be re-fragmented when it leaves the scrubber.

The fingerprint scrubber normalizes IP type-of-service and
fragment bits in all IP packets. Uncommon and generally un-
used combinations of TOS bits are removed. If these bits need
to be used (e.g., an experimental modification to IP) an admin-
istrator could easily remove this functionality. All of the TCP/IP
implementations we tested ignore the reserved fragment bit and
reset it to zero if it is set, but we wanted to be safe so we mask
it out explicitly. The do not fragment bit is reset if the MTU of
the next link is large enough for the packet.
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Modifying the do not fragment bit could break MTU dis-
covery through the scrubber. One could argue that the reason one
would put the fingerprint scrubber in place is to hide information
about the systems behind it. This might include topology and
bandwidth information. However, such a modification is con-
troversial. We leave the decision on whether or not to clear the
do not fragment bit up to an administrator by allowing the op-
tion to be turned off.

IP reassembly is desired for exactly the same reason TCP
stream reassembly is done in the TCP scrubber—to prevent in-
sertion and evasion attacks. The fragment reassembly code is a
slightly modified version of the standard implementation in the
FreeBSD 2.2.7 kernel. It keeps fragments on a set of doubly
linked lists. It first calculates a hash to determine the corre-
sponding list. A linear search is done over this list to find the
correct IP datagram and the fragment’s place within the data-
gram. Old data in the fragment queue is always chosen over new
data, providing a consistent view of IP data at the downstream
hosts.

2) ICMP Scrubbing: As with the IP layer, ICMP messages
also contain distinctive characteristics that can be used for fin-
gerprinting. In this section we describe the modifications the
fingerprint scrubber makes to ICMP messages. We only modify
ICMP messages returning from the trusted side back to the un-
trusted side because fingerprinting relies on ICMP responses
and not requests. Specifically, we modify ICMP error messages
and rate limit all outgoing ICMP messages.

ICMP error messages are specified to include at least the IP
header plus 8 bytes of data from the packet that caused the error.
According to [30], as many bytes as possible are allowed, up to
a total length ICMP packet length of 576 bytes. However, nmap
takes advantage of the fact that certain operating systems send
different amounts of data. To counter this, we force all ICMP
error messages coming from the trusted side to have data pay-
loads of only 8 bytes by truncating larger data payloads. Alter-
natively, we could look inside of ICMP error messages to deter-
mine if IP tunneling is being used. If so, then we would allow
more than 8 bytes. We will revisit ICMP when we discuss the
larger problem of timing attacks in Section IV-B4.

3) TCP Scrubbing: Even though a significant number of fin-
gerprinting attacks take place at the TCP level, the majority
of them are removed by the TCP protocol scrubber. The TCP
scrubber provides quick and scalable reassembly of flows and
enforces the standard TCP 3WHS. This allows the fingerprint
scrubber to block TCP scans that do not begin with a 3WHS.
In fact, the first step in fingerprinting a system is typically to
run a port scan to determine open and closed ports. Stealthy
techniques for port scanning do not perform a 3WHS and are
therefore blocked. While the TCP scrubber defeats a significant
number of fingerprinting attempts, there are others that must be
addressed by the fingerprint scrubber.

One such scan involves examining TCP options, a signifi-
cant source of fingerprinting information. Different operating
systems will return the same TCP options in different orders.
Sometimes this order is enough to identify an operating system.
We did not want to disallow certain options because some of
them aid in the performance of TCP (i.e., SACK) yet are not
widely deployed. Therefore, we restricted our modifications
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to reordering the options within the TCP header. We simply
provide a canonical ordering of the TCP options known to us.
Unknown options are included after all known options. The
handling of unknown options and ordering can be configured
by an administrator.

We also defeat attempts at predicting TCP sequence numbers
by modifying the normal sequence number of new TCP connec-
tions. The fingerprint scrubber stores a random number when a
new connection is initiated. Each TCP segment for the connec-
tion traveling from the trusted interface to the untrusted interface
has its sequence number incremented by this value. Each seg-
ment for the connection traveling in the opposite direction has
its acknowledgment number decremented by this value.

4) Timing Attacks: The scans we have discussed up to now
have all been static query-response style probes. Another pos-
sible form of fingerprinting relies on timing responses. For ex-
ample, the scanning could determine the difference between a
TCP Tahoe and TCP Reno implementation by opening a TCP
connection, simulating a packet loss, and watching the recovery
behavior. The existence or lack of Reno’s fast recovery mecha-
nism would be apparent.

It would be very difficult to create a generic method for
defeating timing-related scans, especially unknown scans. One
approach would be to add a small, random delay to packets sent
out the untrusted interface. The scrubber could even forward
packets out of order. However, this approach would introduce
an increased amount of queuing delay and probably degrade
performance. While this might be fine when the scrubber is
placed in front of a single host, the scrubber was designed to
handle an entire network of hosts. In addition, these measures
are not guaranteed to block scans. For example, even with
small amounts of random delay, it would be relatively easy
to determine if a TCP stack implements TCP Tahoe or TCP
Reno based on simulated losses since a packet retransmitted
after a retransmission timeout has a much larger delay than one
retransmitted because of fast retransmit.

We implemented protection against one possible timing-re-
lated scan. Some operating systems implement ICMP rate lim-
iting, but they do so at different rates, and some do not do any
rate limiting. We added a parameter for [CMP rate limiting to the
fingerprint scrubber to defeat such a scan. The scrubber records
a timestamp when an ICMP message travels from the trusted
interface to the untrusted interface. The timestamps are kept in
a small hash table referenced by the combination of the source
and destination IP addresses. Before an ICMP message is for-
warded to the outgoing, untrusted interface, it is checked against
the cached timestamp. The packet is dropped if a certain amount
of time has not passed since the previous ICMP message was
sent to that destination from the source specified in the cache.

Fig. 9 shows the fingerprint scrubber rate limiting ICMP
echo requests and replies. In this instance, an untrusted host is
sending ICMP echo requests once every 20 ms using the —f
flag with ping (flooding). The scrubber allows the requests
through unmodified since we are not trying to hide the identity
of the untrusted host from the trusted host. As the ICMP echo
replies come back, however, the fingerprint scrubber makes
sure that only those replies that come at least 50 ms apart are
forwarded. Since the requests are coming 20 ms apart, for every
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Fig. 9. ICMP rate limiting of returning ICMP echo replies captured using
tcpdump.

three requests one reply will make it through the scrubber.
Therefore, the untrusted host receives a reply once every 60 ms.

We chose 50 ms for convenience because ping — f gen-
erates a stream of ICMP echo requests 20 ms apart, and we
wanted the rate limiting to be noticeable. The exact value for
a production system would have to be determined by an admin-
istrator or based upon previous ICMP flood attack thresholds.
The goal was to homogenize the rate of ICMP traffic traveling
from the untrusted interface to the trusted interface because op-
erating systems rate limit their [CMP messages at different rates.
Another method for confusing a fingerprinter would be to add
small, random delays to each ICMP message. Such an approach
would require keeping less state. We can add delay to ICMP
replies, as opposed to TCP segments, because they will not af-
fect network performance.

C. Evaluation of Fingerprint Scrubber

This section presents results from a set of experiments to de-
termine the validity and throughput of the fingerprint scrubber.
They show that our current implementation blocks known fin-
gerprint scan attempts and can match the performance of a plain
IP forwarding gateway on the same hardware. The experiments
were conducted using a set of kernels with different fingerprint
scrubbing options enabled for comparison. The scrubber and
end hosts each had 500-MHz Pentium IIT CPUs and 128 MB of
main memory. The end hosts each had one 3Com 3c905B Fast
Etherlink XL 10/100BaseTX Ethernet card (x1 device driver).
The gateway had two Intel EtherExpress Pro 10/100B Ethernet
cards (fxp device driver). The network was configured as shown
in Fig. 4.

1) Defeating Fingerprint Scans: To verify that our finger-
print scrubber did indeed defeat known scan attempts, we in-
terposed our gateway in front of a set of machines running dif-
ferent operating systems. The operating systems we ran scans
against under controlled conditions in our lab were FreeBSD
2.2.8, Solaris 2.7 x86, Windows NT 4.0 SP 3, and Linux 2.2.12.
We also ran scans against a number of popular Web sites, and
campus workstations, servers, and printers.

Nmap was consistently able to determine all of the host oper-
ating systems without the fingerprint scrubber interposed. How-
ever, it was completely unable to make even a close guess with
the fingerprint scrubber interposed. In fact, it was not able to dis-
tinguish much about the hosts at all. For example, without the
scrubber nmap was able to accurately identify a FreeBSD 2.2.8
system in our lab. With the scrubber nmap guessed 14 different

Remote operating system guess:
FreeBSD 2.2.1 - 3.2

(a)

Remote OS guesses:
AIX 4.0 - 4.1, AIX 4.02.0001.0000,
AIX 4.1, AIX 4.1.5.0, AIX 4.2,
AIX 4.3.2.0 on an IBM RS/*,
Raptor Firewall 6 on Solaris 2.6,
Solaris 2.5, 2.5.1, Solaris 2.6 - 2.7,
Solaris 2.6 - 2.7 X86,
Solaris 2.6 - 2.7 with tcp_strong_iss=0,
Solaris 2.6 - 2.7 with tcp_strong_iss=2,
Sun Solaris 8 early acces beta (5.8)

Beta_Refresh February 2000

(®)

Fig. 10. Operating system guess before and after fingerprint scrubbing for an
nmap scan against a machine running FreeBSD 2.2.8. (a) Before fingerprint
scrubbing. (b) After fingerprint scrubbing.

TABLE 1II
THROUGHPUT FOR A SINGLE UNTRUSTED HOST TO A TRUSTED HOST
USING TCP (Mb/s, £2.5% AT 99% CI)

IP Forwarding 87.06
Fingerprint Scrubbing 86.86
Fingerprint Scrub. + Frag. Reas. | 87.00

TABLE IV
THROUGHPUT FOR A SINGLE TRUSTED HOST TO AN UNTRUSTED HOST
USING TCP (Mb/s, £2.5% AT 99% CI)

IP Forwarding 87.06
Fingerprint Scrubbing 86.79
Fingerprint Scrub. + Frag. Reas. | 86.84

operating systems from three vendors. Each guess was wrong.
Fig. 10 shows a condensed result of the guesses nmap made
against FreeBSD before and after interposing the scrubber.

The two main components that aid in blocking nmap are
the enforcement of a three-way handshake for TCP and the
reordering of TCP options. Many of nmap’s scans work by
sending probes without the SYN flag set so they are discarded
right away. Similarly, operating systems vary greatly in the
order that they return TCP options. Therefore, nmap suffers
from a large loss in available information. Even though nmap
can be confused by these simple techniques, we intend this
tool to be general enough to block new scans. We believe that
the inclusion of IP header flag normalization and IP fragment
reassembly aid in that goal even though we do not know of any
existing tool that exploits such differences.

2) Throughput: We measured both the throughput from the
trusted side out to the untrusted side and from the untrusted
side into the trusted side using the Netperf benchmark [26].
This was to take into account our asymmetric filtering of the
traffic. We ran experiments for TCP traffic to show the effect of
a bulk TCP transfer and for UDP to exercise the fragment re-
assembly code. We used three kernels on the gateway machine
to test different functionality of the fingerprint scrubber. The IP
forwarding kernel is the unmodified FreeBSD kernel, which we
use as our baseline for comparison. The fingerprint scrubbing
kernel includes the TCP options reordering, IP header flag nor-
malization, ICMP modifications, and TCP sequence number
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TABLE V
THROUGHPUT FOR A SINGLE UNTRUSTED HOST TO A TRUSTED HOST USING UDP (Mb/s, +2.5% AT 99% CI)

Forwarding Type 64 bytes | 1472 bytes | 2048 bytes | 8192 bytes
IP Forwarding 14.39 89.39 92.76 90.11
Fingerprint Scrubbing + Frag. Reas. 14.48 89.35 92.76 90.11
TABLE VI

THROUGHPUT FOR A SINGLE TRUSTED HOST TO AN UNTRUSTED HOST USING UDP (Mb/s, +2.5% AT 99% CI)

Forwarding Type 64 bytes | 1472 bytes | 2048 bytes | 8192 bytes
IP Forwarding 14.39 89.39 92.76 90.11
Fingerprint Scrubbing + Frag. Reas. 14.40 89.37 92.76 90.12

TABLE VII
THROUGHPUT FOR A SINGLE UNTRUSTED HOST TO AN UNTRUSTED HOST
USING TCP ON A GIGABIT SPEED NETWORK (Mb/s, +2.5% AT 99% CI)

Crossover 359.13
Bridge 33381
Fingerprint Scrubbing | 333.45

modification, but not IP fragment reassembly. The last kernel
is the full fingerprint scrubber with fragment reassembly code
turned on.

Table IIT shows the TCP bulk transfer results for an untrusted
host connecting to a trusted host. Table IV shows the results for
a trusted host connecting to an untrusted host. The first result is
that both directions show the same throughput. The second, and
more important, result is that even when all of the fingerprint
scrubber’s functionality is enabled we are seeing a throughput
almost exactly that of the plain IP forwarding. The bandwidth
of the link is obviously the limiting factor.

We ran the UDP experiment with the IP forwarding kernel
and the fingerprint scrubbing kernel with IP fragment re-
assembly. Again, we measured both the untrusted to trusted
direction and vice versa. To measure the affects of fragmen-
tation, we ran the test at varying sizes up to the MTU of the
Ethernet link and above. Note that 1472 bytes is the maximum
UDP data payload that can be transmitted since the UDP
plus IP headers add an additional 28 bytes to get up to the
1500-byte MTU of the link. The 2048-byte test corresponds
to two fragments and the 8192-byte test corresponds to five
fragments. At a size of 64 bytes, the scrubber spends most of
its time handling device interrupts.

Table V shows the UDP transfer results for an untrusted
host connecting to a trusted host. Table VI shows the results
for a trusted host connecting to an untrusted host. Once again,
both directions show the same throughput. We also see that
the throughput of the fingerprint scrubber with IP fragment
reassembly is almost exactly that of the plain IP forwarding.
This is even true in the case of the 8192-byte test where
the fragments must be reassembled at the gateway and then
refragmented before being sent out.

We also ran the fingerprint scrubber experiments on a
gigabit-speed network. As with the TCP scrubber, we found
that the fingerprint scrubber added a small performance penalty
compared to simple computer-based forwarding techniques.
Table VII shows the results from using Netperf to test the
bulk transfer throughput. The results are very similar to the

100-Mb/s tests: the fingerprint scrubber adds very little over-
head to simple forwarding tests.

V. CONCLUSION AND FUTURE WORK

This paper presented the design and implementation of
protocol scrubbers, which are active interposed mechanisms
for transparently removing attacks from protocol layers in real
time. The key contributions of this work are the identification
of transport scrubbing as a mechanism that enables passive NID
systems to operate correctly, the design and implementation
of the high performance half-duplex TCP/IP scrubber, and the
creation of a TCP/IP stack fingerprint scrubber. The transport
scrubber converts ambiguous network flows into well-behaved
flows that are interpreted identically at all downstream end-
points. While the security community has examined application
proxies, the concept of removing transport level attacks through
a transport scrubber is new. The fingerprint scrubber removes
clues about the identity of an end host’s operating system to
successfully and completely block known scans. Because of
its general design, it should also be effective against any evo-
lutionary enhancements to fingerprint scanners. By protecting
networks against scans, we block the first step in an attacker’s
assault, increasing the security of a heterogeneous network.

Our future work will involve improving the protocol
scrubbers’ performance. Specifically, we plan to incorporate
zero-copying techniques into the TCP scrubber’s data handling
routines, bringing the performance even closer to high-speed
networking levels—1 Gb/s and beyond. To achieve such
speeds, we would like to implement core components of the
protocol scrubbers in hardware. One possible approach would
be to implement the minimal TCP state machine on a platform
such as Intel’s Internet Exchange Architecture (IXA) [6], [7].
We believe that integrating these solutions within the context
of existing security devices, specifically firewalls, will provide
significant benefits to network security.
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