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ABSTRACT
Current intrusion detection and prevention systems seek to
detect a wide class of network intrusions (e.g., DoS attacks,
worms, port scans) at network vantage points. Unfortu-
nately, all the IDS systems we know of keep per-connection
or per-flow state. Thus it is hardly surprising that IDS sys-
tems (other than signature detection mechanisms) have not
scaled to multi-gigabit speeds. By contrast, note that both
router lookups and fair queuing have scaled to high speeds
using aggregation via prefix lookups or DiffServ. Thus in this
paper, we initiate research into the question as to whether
one can detect attacks without keeping per-flow state. We
will show that such aggregation, while making fast imple-
mentations possible, immediately cause two problems. First,
aggregation can cause behavioral aliasing where, for exam-
ple, good behaviors can aggregate to look like bad behav-
iors. Second, aggregated schemes are susceptible to spoofing
by which the intruder sends attacks that have appropriate
aggregate behavior. We examine a wide variety of DoS at-
tacks and show that several categories (bandwidth based,
claim-and-hold, host scanning) can be scalably detected. By
contrast, it appears that stealthy port-scanning cannot be
scalably detected without keeping per-flow state.

Categories and Subject Descriptors: C.2.6 [Com-

puter Communication Networks]: Internetworking –
Routers;

General Terms: Algorithms, Design, Measurement, Per-
formance, Security

Keywords: Security, Scalability, Denial of Service

1. INTRODUCTION
The earliest network security solutions attempted to se-

cure Internet hosts using anti-virus software running at end-
nodes, and firewalls installed at network vantage points (or,
more recently, at hosts themselves). Unfortunately, end-
node based approaches must be widely deployed within a
network to protect against attacks. They also do very little
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to mitigate against bandwidth attacks that may be blocked
at the end-nodes but consume so much internal network
bandwidth that the network is unusable. Similarly, most
Distributed Denial of Service (DDoS) attacks and scans rou-
tinely penetrate firewalls using essential services such as
HTTP or email.

For these reasons, a number of researchers and vendors
have suggested perimeter defenses that sit at the entrance
to networks or subnets. Besides firewalls, a traditional ap-
proach has been to do intrusion detection (and sometimes
mitigation) at such points. Two classical approaches to in-
trusion detection have been anomaly detection and signature
detection. Signature detection [30] is useful to detect an im-
portant class of attacks (e.g., known worms and viruses) but
is not helpful in detecting other attacks (e.g., scans, DDoS
attacks) which are not characterized by a signature within a
single packet, but by unusual behavior across a set of pack-
ets. In this paper, we concentrate on detecting and miti-
gating such attacks (that can only be detected by behavior
across a set of packets) at network vantage points.

While anomaly detection also targets such attacks [8],
anomaly detection is often very general, and works by first
automatically identifying a baseline for “normal” network
behavior (using say wavelets [8] or change point detection [25])
and then flagging deviations from such behaviors as possi-
ble attacks. A difficulty with the most general approaches is
the difficulty of establishing normal behaviors because most
network traffic behaviors evolve in unpredictable ways.

Network based behavioral approaches: A simpler
(but less general) approach to anomaly detection is to look
for violations of specific behaviors, where a description of the
bad behaviors has been preprogrammed into the detection
device. In this paper, we will refer to such techniques as
network based behavioral approaches. Such approaches have
been widely deployed.

For example, in recent years a number of researchers and
vendors have worked on the problem of detecting scans [44,
15], and similarly on detection of distributed denial-of-service
[32, 4, 7, 45]. Detecting scans can be useful as a stepping
stone for detecting various kinds of suspicious behavior in-
cluding worms and attempts to check for backdoors.

Note that to be effective such a device must run at a net-
work vantage point where it sees a lot of traffic. A minimal
deployment would be at the edge of a subnet; a more use-
ful deployment would be at the entrance to a network; a
potential future deployment would be within ISPs. Notice
that for some attacks such as Denial of Service (DoS) it is
helpful to detect the attack as upstream in the attack path
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as possible, to reduce the collateral damage caused to inno-
cent sources that share the attack path until the detection
device.1

Running a detection device at the edge of a network re-
quires that the detection device operate at higher link speeds
of 1 Gbps and higher. Such positions also expose the de-
tection system to a larger number of flows making it more
difficult. But most behavioral based approaches do main-
tain per-flow state. For example to detect port scans, Snort
maintains a large vector per source to count all the ports
and destinations each source talks to. Not only does this
plugin take a large amount of space, but it also slows down
the Snort code considerably when it is enabled. Bro [37] also
maintains per-flow state in order to detect evasion and other
attacks. Similar observations hold for many traditional ap-
proaches to detecting DDoS [45].

To meet the speed challenge, several vendors (e.g., NetScreen,
Fortinet) and researchers are implementing detection in hard-
ware. While signature detection is being done in hardware,
it has proved difficult to speed up network based behavioral
approaches.

Scalable Attack Detection: The main question we examine
in this paper is whether it is possible to scale behavioral
network detection to very high speeds. To begin to grapple
with this question, it is instructive to consider other network
functions that have been made to be scalable. Both in the
case of IP lookups and network QoS, scalability has been
achieved via aggregation to reduce the state used by the
function so as to fit into high speed memory. For example,
Internet lookups in routers use prefix aggregation to store
around 150,000 prefixes for the entire Internet. Similarly,
DiffServ uses class aggregation to avoid per-flow state in
core routers.

Aggregation helps with forwarding performance for the
following reasons. First, the number of connections/flows
at network vantage points can easily scale into the millions,
and this does not scale with the increases in the size of high
speed memory. Second, the highest speed memories (on-chip
and off-chip SRAM or cache) scale far more slowly than the
number of flows.

Thus a central question we ask in this paper is: can we
use aggregation to reduce the state required for behavioral at-
tack detection? While several types of attacks (e.g., evasion,
TCP hijacking) can be proved to be impossible to detect in
scalable fashion[29], we will show in this paper that under
some minimal assumptions, scan detection and DDoS de-
tection (and perhaps several others) can indeed be detected
scalably using aggregation.

The use of aggregation for scalable attack detection im-
mediately creates two fundamental problems:

• Behavioral Aliasing: One form of behavioral aliasing
occurs when a set of well behaved connections aggre-
gate to look like bad behavior, creating a false posi-
tive. For example, when detecting a port scan, if we
aggregate several sources into an aggregate, while each
source may talk to only a few distinct destinations, the
aggregate may look like it is talking to lots of destina-
tions. A rigorous argument [29] can be based on this

1While this might argue for moving detection close to sources,
this does not work well either because often we have little control
over rogue sources and their networks, and source networks may
not provide a sufficient vantage point to detect distributed attacks
in which each source only contributes only a small fraction.

intuition to show that attempts to scalably detect port
scans using such a predicate do not work. A second
form of behavioral aliasing occurs when the aggregate
behavior of several badly behaved connections looks
like good behavior – a false negative.

• Spoofing: Spoofing occurs when an intelligent attacker
subverts the detection mechanisms by suitably spoof-
ing the attack to appear benign. For example, the
SYN-DOG approach to SYN-FLOOD detection[45] does
a first level of aggregation by keeping state only on a
per-destination basis (not sufficient, but a good start)
for the difference between SYNs and FINs going to
each destination. Such a scheme can always be spoofed
by the attacker sending spurious FINs that do not
serve to finish any active connection but only confuse
the detection mechanism.

We believe that any scalable intrusion detection mecha-
nism must deal with these two issues. Thus the contribu-
tions of this paper are as follows:

1. Framework: Our paper initiates the study of scalable
attack detection schemes. We use behavioral aliasing and
spoofing as a framework to analyze such techniques.

2. Technique: As a specific example, we focus on scal-
able DDoS and scan detection, and propose a specific new
scalable technique called Partial Completion Filters (PCFs)
and analyze behavioral aliasing and spoofing characteristics
in different deployment scenarios.

3. Evaluation: To evaluate the efficacy of PCFs, we use a
theoretical model later validated by real traces from different
traces. We also show our experiences in monitoring an OC-
48 traffic stream. For example, we were able to identify
about 517 flows out of a total of 30.36 Million in a day.

The organization of this paper is as follows. In Section 2
we describe the kind of scanning and DoS attacks we con-
sider in this paper. Section 3 introduces a scalable mecha-
nism to detect Partial Completion Attacks called PCFs and
describe a theoretical analysis that shows why it is resilient
to behavioral aliasing and (in some deployments) to spoof-
ing. In Section 4, we describe experimental evaluation of
PCFs for scalable monitoring and detection of partial com-
pletion attacks, scanning based attacks. Section 5 contains
related work followed by by conclusions in Section 6.

2. ATTACK CLASSIFICATION
Although, there are many different kinds of network based

attacks, we restrict our focus in this paper to analyzing the
following three different types of attacks with respect to scal-
ability using the framework developed in the previous sec-
tion – Partial Completion Attacks (e.g., TCP SYN Flood
Attacks), Attacks that use Scanning (e.g., TCP Portscans,
Worms such as CodeRed), Bandwidth and Flooding Attacks
(e.g., Fraggle attacks, Reflector attacks). This list is by no
means exhaustive; however, we use these canonical examples
as a first step towards understanding the difficulties of de-
veloping scalable mechanisms for intrusion detection in the
network. In this section, we present an overview of these
attacks in more detail.

2.1 Partial Completion Attacks
Such attacks are also known as Claim-and-hold attacks.

The basic theme in these attacks is to grab a precious re-
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source and not release it thereby denying service to legiti-
mate clients. The classic example of a Partial Completion
attack is Syn-flooding.

In Syn-flooding, the attacker initiates several connections
to the server by sending TCP SYN packets with spoofed IP
addresses and never terminates any of these connections. In
a variant called Naptha[24], the attacker initiates a connec-
tion and finishes the initial three way handshake, but does
not do any further activity forcing the connection to time
out. In both these attacks, we can see that the precious
resource namely, connection memory, is claimed but never
released.

While attackers have undoubtedly moved on to Applica-
tion level DoS attacks such as on Google’s query attacks,
TCP Flood Attacks remain an important class of attacks2.
There are many ways to detect and defend against Syn flood-
ing attacks[9, 28, 11, 34, 41]. These detection mechanisms
usually rely on keeping track of individual connections on a
per-flow basis making them hard to scale.

Most classical solutions are deployed close to the end-host,
and thus assume the ability to observe both directions of
the traffic. In the network (e.g. a core router) however, it
is not often possible to look at both directions of the TCP
connection due to a wide-spread prevalence of assymetric
routing[36]. Hence, detection of even the simplest of known
attacks in the network with access to only one direction of
traffic is a further challenge.

2.2 Attacks that do Scanning
Host scanning represents an important component of sev-

eral attacks including most worm epidemics[44, 47, 43]3.
Thus several recent worms such as Code Red-II[2], Nimda[3]
etc., propagated by scanning other vulnerable hosts in the
Internet. A second example is probing for backdoors in-
stalled on various machines either installed during worm in-
fection or by other means such as viruses. Such activity
also exhibits scanning behavior. Finally, horizontal (multi-
ple hosts and same port) and vertical (one machine, multiple
ports) port scans are often performed by attackers as prelim-
inary reconnaissance to identify a large number of vulnerable
hosts in the Internet. Henceforth, we refer to these myriad
activities as just scanning.

In this paper, we focus on scalable detection of TCP scan-
ning although some attacks use UDP scanning. In scan-
ning for TCP ports, the attacker sends several SYN pack-
ets to various destinations. If that destination has a listen-
ing server on that port, the connection is established and
torn down as with any other connection. However, if either
the destination or the port is non existent, the connection
is never established. Thus watching at a network vantage
point during scanning, the detection device can observe a
number of SYN packets probing a particular port with no
corresponding FIN packets. This requires correlation across
a set of packets.

Note that besides UDP scanning, there are several other
forms of scanning that we do not consider in this paper.
For example, stealthy and slow portscans are much more
difficult to detect. It seems clear that if the scan rate of a

2Recent DoS attacks on SCO[6] for example, used SYN flooding
using spoofed sources[31]
3Note that there exist worms that spread through other means
and hence do not exhibit scanning; for example, MyDoom spread
through email and a Kazaa vector[5].

source is sufficiently slow that is no more than other benign
sources, no scheme can detect such a scan scalably.

2.3 Bandwidth Attacks
Finally, the third kind of attacks we discuss in this paper

are what are commonly called bandwidth attacks. In such
attacks, an attacker or a set of compromised slaves (zom-
bies), continuously pound a victim with a large number of
packets, crippling normal services. In other such attacks,
the attacker can take advantage of other stations to amplify
the magnitude of traffic directed towards a particular desti-
nation. Smurf[1], Fraggle, and Reflector attacks[38] fall into
this category. The common theme in all such attacks is pure
traffic volume.

3. DETECTION OF TCP SCANS AND PAR-
TIAL COMPLETION ATTACKS

It is fairly immediate to see that bandwidth attacks have
scalable solutions using existing techniques such as MUL-
TOPS [18], sketches [12, 17], or multistage filters [13]. Tools
such as Autofocus [14] also detect multi-dimensional heavy
hitters although using off-line analysis of the traces. These
existing techniques rely on hash-based aggregation(Sketches
and Multistage filters) or prefix aggregation (MULTOPS):
for example, in multistage filters, flows are hashed to index
into a set of buckets in different stages using different hash
functions. It is easy to detect such bandwidth attacks in
scalable fashion by restricting carefully the traffic types fed
to these filters. For example, Smurf attacks can be detected
using a multistage filter that finds destinations which have
a large amount of ICMP messages relative to other destina-
tions.

On the other hand, applying techniques such as sketches,
MULTOPS, or multistage filters do not work well to detect
TCP Flood Attacks since the traffic volume of SYNs (espe-
cially early in the attack tree) and scans may not be large
enough compared to the volume of benign traffic. Sampling
[33, 13] is yet another technique that has been traditionally
employed for reducing the memory and processing needs for
traffic monitoring. Fundamentally, sampling also works best
for bandwidth attacks because an attack with a large traffic
footprint is more likely to be sampled. However, it is not at
all clear how sampling can be used to detect partial comple-
tion and scan-based attacks which have much smaller traffic
footprints.

Given the importance of these low traffic attacks, in this
section we introduce a new data structure — Partial Com-
pletion Filters (PCFs) that can detect both scanning attacks
and partial completion attacks even when they correspond
to small traffic volumes.

3.1 Partial Completion Filters
A Partial Completion Filter (PCF) consists of parallel

stages each containing hash buckets (Figure 1) that are in-
cremented for a SYN and decremented for a FIN. The SYN
and FIN packets are presented here just as an example, but
typically it could be increment for any open parenthesis and
decrement for the corresponding closed parenthesis. It is
easy to see that the expected value of each of these counters
is 0. Thus, if a destination (or source) hashes into buckets
with large counters in all stages, it seems plausible that the
destination is being attacked.
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Figure 1: Partial Completion Filters

Unfortunately, this argument ignores random variation.
As in the well known drunkard’s walk (random walk), even
if the average progress after N steps is zero, the standard
deviation is O(

p

(N)). Thus a benign bucket may have
fairly large positive counters (causing false positives) while
a bucket containing an attack may be be pulled down to zero
(causing a false negative). The tricky part is to show that
both false negatives and false positives stay within control
for reasonable parameter values.

One might hastily conclude that PCFs are the same as
multistage filters first proposed in [13] to detect heavy-hitter
flows in the network. This is not true for the following three
reasons:

1. Non-monotonicity: In multistage filters (and in fact in
all Bloom Filter[10] variants), the counters are only incre-
mented and never allowed to be negative.

2. False negatives: Bloom Filters and Multistage filters
have only one-sided errors; there are no false negatives. Un-
fortunately, since PCFs allow counters to decrease, they can
cause false negatives.

3. Different Analysis: The analysis of PCFs using the
Central Limit theorem (Section 3.2) is very different from
the simple counting argument for multistage filters.

3.2 PCFs and Behavioral Aliasing: A Theo-
retical Analysis

In this section, we provide a theoretical analysis that al-
lows us to predict the behavior of PCFs in real network
settings. The first goal of such a model is to show that
PCFs exhibit very little behavioral aliasing — i.e., attacks
cannot aggregate to cause either false positives or false neg-
atives. A second and no less important goal of the analysis
is to determine appropriate parameter values (e.g., number
of stages, memory in each stage, threshold etc.).

The analysis is in four parts. In Part 1, we will present
the abstract model of PCFs using generalized up-down coun-
ters. In Part 2, we will use the Central Limit theorem and
tail bounds on Gaussian distributions to bound the false
negative and false positive probabilities, which in turn de-
termines the operating range of PCFs. In Part 3, we identify
how to use PCFs to detect flows that greater than a given
threshold. Finally, in Part 4, we analyze the false positives
and false negatives in the presence of other bad flows.

Part 1, Generalized Counter Model: In the Gener-
alized Increment-Decrement Counter model, on every trial,
an event (a set of fields in a packet) is hashed using differ-
ent (perfectly random) hash functions to choose one counter
for each stage. An unbiased coin is tossed and if it is a
head(tail), the counter is incremented(decremented) by one.

x
Long Lived Connection

SYN 
Re−Transmissions Re−Transmissions

FIN 

Interval 2 Interval 3 Interval 4

SYNy zFIN
FIN

x
SYN

Interval 1 Interval 2 Interval 3 Interval 4

Figure 2: Part 1 of the Analysis argues that Benign but

Malformed Connections contribute a FIN or SYN to an

interval with equal probability.

At the end of the experiment, events that hash to buckets
(that are over a specified threshold in all stages) must be
output. Detection of a partial completion attack such as
SYN-flooding represents an instance of this model with an
increment(decrement) for SYN(FIN) and output those flows
with larger number of SYNs than FINs.

In the case of SYN-FIN correlation to detect SYN-floods,
an event is the combination of the Destination (or Source)
IP address and Destination (or Source) Port. This event
is hashed using multiple hash functions to index the coun-
ters corresponding to different stages. In case of a SYN,
the counter is incremented; in case of a FIN(or RST), the
counter is decremented. At the end of a sufficiently large
amount of time called a measurement interval, flows that
hash to “large” counters in all stages are passed to a further
level of processing for more careful examination. Clearly, if
too many flows are passed for further examination the filter
is not working well and memory needs will grow commensu-
rately. Note also that at the start of an interval all counters
are set to zero.

Benign but Malformed Connections: Clearly, the buck-
ets of bad flows (i.e., destinations subject to DoS attacks or
sources doing scans) will have a large positive value. How-
ever, we have to worry about benign but malformed connec-
tions (Figure 2) that can add spurious “noise” to counters.
There are three important cases.

First, a connection may be long-lived, in which case it con-
tributes (see Figure 2) its SYN to one measurement interval,
and its FIN to another measurement interval.

Second, a connection may retransmit its FIN. However, as
a first-order approximation, we can assume that a connec-
tion is equally likely to retransmit its SYN. In practice, TCP
has a built-in asymmetry that makes SYN retransmissions
happen slightly more often than that of FIN retransmissions.
After using our first-order model (with equal retransmission
probabilities), we show how this small bias can easily be
corrected for as shown later in Section 4.1.

Third, route churn may cause the SYN to be seen but
not the FIN, but in that case, during another interval due
to another route churn, it might see the FIN but not the
SYN. On average, a set of measurement intervals should
be able to smooth out this noise. In [50], the authors have
experimentally verified that the routes are stable on the scale
of a few minutes. So, we believe that the noise generated
due to route churn is not really significant. Nevertheless,
our analytical model captures this effect as well.

Observe that in each of these malformed but benign cases,
the anomaly is equally likely to add an extra SYN as it is
to add an extra FIN to an interval. (Well-formed benign
connections that add both a SYN and a FIN to an interval
have a net contribution of zero.) Given that each interval
is a random experiment in time (and this can be enforced

190



−3σ 3σ−6σ 6σ

Probability 
of False Positives

= 0.0013

Probability
of False Negatives

= 0.0013 

Greater than 
Dos Attack

6σ

Mean Value for all counters = 0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0

Figure 3: Part 2 of the Analysis uses the Gaussian ap-

proximation.

by some random dithering of interval start times), we claim
that benign connections can be modeled as contributing, in
the general-case, either a SYN or FIN with probability 0.5.
This allows benign but malformed connections to be reduced
to the generalized counter model.

Part 2, Estimating Noise range of PCFs: Without
loss of generality, since the counters are chosen at random,
let us consider one particular counter. Let Xi represent
the random variable that represents the value added to the
counter in the ith trial. Xi is 1 with probability 0.5 and is -1
with same probability. The expectation of Xi say µ is 0, and
standard deviation σ is 1. After n trials, we are interested
in what the final value of X =

Pn
i=0

Xi is. This represents
the current counter value assuming that the counter started
at zero. In the case of SYN-FIN correlation, this number
represents the number of excess SYNs or FINs that have
arrived for this bucket.

The exact distribution for counter values follows a bino-
mial for which it is difficult to estimate tail probabilities in
closed form. Fortunately, for sufficiently large values of n4,
the Central Limit theorem assures us that the binomial dis-
tribution can be approximated using a normal distribution.
Thus we can use cookbook Normal tables to obtain confi-
dence bounds on the probability that the counter value is
above a particular threshold. If X =

Pn
i=0

Xi,

Pr

»

a ≤ X − n · µ
σ · √n

≤ b

–

=
1√
2π

Z b

a

e−z2/2dz

As if we choose, a = −3, b = 3, also, µ = 0, σ = 1, then

Pr
ˆ

|X| ≤ 3
√

n
˜

= 0.9987

Note that these bounds can be found in statistical tables
for Z-ratios (e.g., [26]). Therefore, counters of buckets con-
taining only unattacked destinations should approximately
lie within 3 times the standard deviation times

√
n. For

example, in a measurement interval suppose there are 10
Million SYN/FIN packets. Also, let the number of buckets
be 3000. The expected number of trials per bin would be
10 Million divided by 3000 which is approximately 3300 i.e,
n = 3300.

From the above probability calculation, the probability
that the counter value is less than 3 ·

√
3300 = 172 is rather

large, and in fact 0.9987. So, even if all the connections
were benign, the counters can be between -172 and 172 with
very high probability. This determines the operating range
of PCFs. Note that we can build more sensitive PCFs by

4And for reasonably large measurement intervals on real traffic,
n is indeed large enough

choosing a larger number of buckets so that the noise range
becomes smaller. In fact the noise range of PCF is inversely
proportional to

√
n, where n is the number of buckets in

PCF.
The probability that a benign flow maps to any counter

greater than the calculated noise of 3σ is 0.0013. In order
to reduce this even further, we add s stages to the PCF.
The probability that in s stages the counter value is greater
than 3500 (as in the previous example) becomes 0.0013s.
For s = 3, the probability is 2.197x10−09 which is extremely
small. This bounds the noise range of the filter to 3σ with
very high probability.

Another reason to add stages is to reduce the probability
of false positives that occur because an unattacked destina-
tion hashes into a bucket containing an attacked destina-
tion. If there are c concurrent destinations being attacked,
this probability is c/B, where B is the number of buckets.
For example, if c = 3 and B = 3000, the probability of this
happening at one stage is 1/1000. However, the probability
that this happens in say 3 stages is 10−9. We will discuss
this in more detail in Part 4 of our analysis.

Therefore, if the number of stages increases, the probabil-
ity that a benign flow maps to all counters greater than 3σ
drops exponentially. However, false negatives, i.e, the prob-
ability that a flow greater than 3σ goes undetected increases
linearly. This is because the flow can map to counters all of
which have negative noise that cancels out the contribution
of this flow thereby appearing benign. The more stages we
use, the more likely is it that at least one counter stage falls
below threshold for a particular attack flow thereby going
undetected.

Choosing the appropriate threshold and number of stages
represents a trade-off between false positives and false neg-
atives. For example, in Figure 3 for one stage of the filter,
we assume that if the attack flow is at least 6 standard devi-
ations from zero in its imbalance between SYNs and FINs,
then the balancing strategy suggests placing the threshold at
3 standard deviations. Thus false positives would require, a
shift of 3 standard deviations to the right of zero (Figure 3),
while false negatives would require the same shift to the left.

Due to exponential decrease in the false positive proba-
bility and linear increase in the false negative probability, a
small number of stages can drastically decrease the false pos-
itive probability without causing the false negative probabil-
ity go too high. For example, we show later (in Section 4.1)
that choosing 3-4 stages often reduces false positive proba-
bility while keeping false negative probability low enough.

Dynamic setting of Threshold T: As we have seen, the
noise range of the filter is dependent on the number of pack-
ets in the given measurement interval. How then can we
dynamically adapt this threshold ? There are many ways
we can approximate the exact count of packets in a given
interval. One way is to use the count of number of packets
in the previous interval as a means to estimate the thresh-
old. If the traffic does not exhibit drastic change in different
intervals (if the intervals are suitably small), then this es-
timate of the threshold remains correct. One other way to
choose this threshold is based on past history of this par-
ticular link. However, if we explicitly set the threshold to a
reasonably large value, as we show in the next part of the
analysis, there would be no need to dynamically adjust the
threshold.

In the next part of the analysis, we discuss the analysis of
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PCFs when they are used to detect flows which have SYN-
FIN imbalance greater than a particular given threshold T .

Part 3, Using PCFs to detect flows greater than a

threshold T: Earlier, we have obtained a theoretical bound
on the noise that PCFs are susceptible to. Any flow that
hashes to a counter which has higher than expected noise
could potentially be malicious. In real life, we are often
interested in flows that are much greater than this noise.
PCFs cannot be used to identify flows that lie in the noise
range without having too many false positives. Hence the
threshold T, at the minimum has to lie outside the noise
range.

The noise arising from other benign flows is additive with
that of a malicious flow that hashes to these buckets. Hence,
a flow of size s can hash to buckets that lie between s− 3σ,
and s + 3σ with high probability. Hence, if we choose the
PCF threshold to be T , then false negatives, whereby a flow
of size greater than T goes undetected increases. So, we
should choose the PCF threshold to be at least T − 3σ.
However, this increases the false positives since now, a flow
of size T − 6σ can, due to the positive noise, appear as a
malicious flow with high probability.

From this analysis, we can see that if we are interested
in flows greater than size T, choosing a threshold value of
T − 3σ allows us to guarantee two properties. Firstly, PCF
flags all flows with greater than T with high probability.
Secondly, if PCF flags a flow, the flow is at least of size
T − 6σ with high probability.

Part 4, Estimating False Positives and False Nega-

tives in the presence of attacks: So far, we have analyzed
those cases where we found the false positive and false neg-
ative probability in the presence of one malicious flow. In
the presence of more number of attack flows, a portion of
the buckets appear large increasing the chances of false pos-
itives. We now estimate false positives in the presence of a
number attack flows.

For the analysis, let us assume that there are b bad flows.
It is easy to prove that the expected number of buckets to
which these b bad flows hash to is b (assuming that n, the
total number of buckets, is much larger than b).

Any flow that hashes to one of these b buckets in all the
three stages is deemed a bad flow. The probability that a
flow hashes to one of these bad buckets is given by b/n. For k

stages, the probability is
`

b
n

´k
. The expected false positives

now is given by
`

b
n

´k · f where f is the total number of
benign flows, namely the bad flows subtracted from total
flows.

For example, suppose the total number of flows were say
250,000 out of which 500 of them were genuinely bad flows.
Let us assume that the total number of buckets is 1000 per
stage and there are three stages. The expected number of
buckets into which these 500 bad flows hash to is approx-
imately 500. Therefore the expected number of false posi-
tives is (500/1000)3 ∗ 249, 500 = 31, 187. If there were only
100 bad flows, then the number of false positives is only
about 250. As we can see from this analysis, the number of
false positives increases super-linearly with the number of
bad flows. In cases where the number of bad flows is only
around 20, the number of false positives decreases to close
to one.

A similar analysis applies to false negatives. In the pres-
ence of a reasonable number of flows with larger negative

SYN-FIN differences, a portion of buckets become unrea-
sonably small. Any flow that maps to these buckets would
not be detected. However, this case is less often, since SYN
packets usually dominate FIN packets for any flow.

The bottom line from the analysis is that one can tune the
architecture appropriately to obtain reasonably high prob-
abilities of catching a partial completion attack or a TCP
scan, while making sure there are not too many false pos-
itives. Note that despite the small chance of missing an
attack, if several routers in the attack path are using this
scheme, then it becomes increasingly likely that one of them
will catch the attack.

3.3 Applying PCFs to detect Partial Comple-
tion and Scanning Detection

Notation: We use PCF(A, B, C) to denote a PCF that
increments(decrements) on a TCP packet with flags A(B),
and uses C as the field(s) on which the packet is hashed.

1. Partial Completion Detection: For the detection de-
vice, the key abstract behavior that signals a SYN Flood
to a destination is the presence of a destination that re-
ceives a large number of SYNs from various sources.5 Thus
a PCF(SYN, FIN, <DIP,DP> can be used to scalably detect
a TCP SYN Flood attack by hashing based on destination
IP address, port pairs.

In the network, if we assume that the detection mechanism
cannot see both directions of the traffic, once again it is
easily spoofed. We show how to make SYN Flood detection
spoof resilient using reverse path deployments in next section
(Section 3.5), though this will require an inversion: the trick
is to hash source addresses (as opposed to destinations) in
the reverse path to identify victims. This is because, without
collusion from inside the network, the attacker cannot force
the victim to send FIN packets.

2. TCP Scanning Detection: At a network vantage point,
during TCP scanning activity such as portscan, a detection
device can observe a large number of SYN packets to a par-
ticular port but with no corresponding FIN packets that
correspond to legal tearing down of the connection.

Therefore, for the detection device the key abstract be-
havior that signals a TCP scan is the presence of a source
that sends a large number of SYNs to various destinations
and destination ports without sending a corresponding FIN.
Thus, a PCF(SYN, FIN, <SIP>) can be used to scalably
detect a TCP scan by hashing based on source IP addresses
and zeroing in on such sources that have a large SYN-FIN
imbalance.

In the network, if we assume that the detection mechanism
cannot see both directions of the traffic as we have assumed,
then PCF methods are easily subject to spoofing. One ap-
proach is to ignore spoofing because most attackers employ
tools such as NMAP[16] that do not spoof today; however,
we will show to make detection spoof-resilient using bidi-
rectional deployments (in scenarios where we can see both
directions of traffic) in Section 3.5. Next, we apply PCFs
for scalable monitoring of partial completion and scanning
attacks in the network.

5Note that unlike a number of other approaches like backscat-
ter[32] our approaches work regardless of whether the attacker
employs address spoofing. Thus we can detect DDoS attacks that
use a large army of zombies (increasingly common today) and at-
tacks via reflectors, all of which often use true IP addresses.
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3.4 Applying PCFs for Attack Monitoring
PCFs can be applied to characterize attack flows in an

online fashion, in contrast to current approaches that rely
on passive traces. Using PCFs, we can identify attack flows
(sources and destinations using different PCFs or can be
combined into one by hashing each packet twice), count the
estimated size and duration of attacks in a scalable fashion.
We will show in Section 4.2.2 our experiences with PCFs
in scalable characterization of attack flows. Note that the
attack flows triggered by PCFs can also be routed to a sink-
hole[19] for further forensics, traceback and so on.

As we have seen earlier, PCF(SYN, FIN, <DIP,DP>)
based on destination IP address, port pairs can detect the
destinations under attack in a scalable fashion. We call this
the forward path of the attack since we infer DoS activity
based on the attack packets going towards a victim.

PCF(SYN, FIN, <SIP,SP>), based on source IP address,
port pair can be effective in monitoring based on the re-
verse path of the attack. This follows the fact that a victim
under attack generates several SYN-ACK packets but no
corresponding FIN packets (since connection is never really
established, even if it did doesn’t terminate). Together, the
forward and reverse path PCFs can aid in scalable monitor-
ing and characterization of partial completion based DoS ac-
tivity with an ISP network domain. The forward path PCF
however is spoofable, but the reverse path PCF is spoof-
resistant as we discuss later in Section 3.5.

Network Telescopes[32] based on “Backscatter analysis”
are currently employed to infer world-wide DoS activity in a
scalable fashion. Network Telescopes however cannot detect
certain types of attacks such as those that do not employ
random spoofed source IP Addresses. For example, reflector
attacks[38] where a large number of attackers send packets
to listening servers with source IP address spoofed with that
of a victim thus generating a flood of responses from these
listening servers directed to victim, can never be detected
using a Network Telescope. PCFs on the other hand can
easily detect such attacks.

A quick comparison between Backscatter Analysis and re-
verse path PCFs is given below, while actual trace driven
comparisons between the two schemes are presented later in
Section 4.2.3.

Reliance on Source Address Spoofing: Network Telescopes
can only detect attacks that employ spoofed source addresses.
PCFs, on the other hand, do not depend on this feature.
Thus PCFs are capable of detecting Reflector based attacks,
and other attacks using “zombies” that do not employ source
address spoofing.

Reliance on TCP: Network Telescopes can observe source
address spoofed attacks using a wide variety of protocols
including TCP, UDP, ICMP as opposed to PCFs that are
designed only for TCP.

Reserved IP Space: Network Telescopes have an inherent
tradeoff between detection time and the size of the unused
private address space they watch: the larger the space, the
faster the detection. PCFs on the other hand, do not require
any reserved IP space.

Geographical Scope: Network Telescopes receive the ag-
gregate traffic sent from any source under attack that uses
address spoofing towards the private IP space reserved for
it. Hence, Network Telescopes have much wider geographi-
cal scope in contrast to PCFs that have only local scope.

As we can see from the comparison, PCFs can be a viable
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Figure 4: Deployment Options

and scalable complementary solution for general (i.e., no as-
sumptions about the use of address spoofing, no need for a
large unused address space) TCP-imbalance detection that
passes through the detection device. It can be widely de-
ployed without any issues. On the other hand, backscatter
is invaluable for the global detection of DoS attacks (based
on fake source addresses) at a few monitoring points. A
combination of Network Telescopes and PCFs can scalably
detect Partial Completion Attacks in the network.

3.5 Deployment and Spoofability of PCFs
In this section, we apply PCFs to Partial completion at-

tacks and scanning attacks and discuss their spoofability
properties.

Partial Completion Detection: Since spoofing is de-
pendent on the particular instance of deployment, we first
discuss briefly various network deployment options of inter-
est, and discuss the spoof resistance of each option. Figure 4
shows these deployment options.

• Near sources: A PCF(SYN, FIN, <SIP>), where SIP
is the Source IP Address, can easily identify those
sources that are generating many SYN packets but no
FIN packets. This deployment scenario could poten-
tially be used to monitor sources of attacks. However
this is subject to spoofing using a variety of mecha-
nisms. Sample spoofing mechanisms include the send-
ing of fake FIN packets, the use of carefully crafted
TTLs for FIN messages that only crosses the moni-
tor but never reaches the victim. Attempting to de-
fend against the dazzling variety of spoofing options
is a virtual impossibility; we choose instead to finesse
this issue by espousing reverse path PCFs because it
is harder for the attacker to control the reverse path.

• Outgoing/Incoming Edge of an ISP or Customer Net-
work: A PCF(SYN,FIN, <DIP,DP>), DIP, DP being
the destination IP address and port respectively, could
be deployed at the edge of an an ISP network or a
large customer network to detect attacks to destina-
tions that originate or are directed towards their do-
main. This constitutes the forward path of the attack
(which is controlled by the attacker). The attacker
can again spoof using either FINs before SYNs, or us-
ing FINs with TTLs that expire early. Note that this
particular spoofability arises from uni-directionality of
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traffic. If we assume a bi-directional model, then PCF
(incoming SYN, outgoing FIN, <DIP,DP>) is not spoofa-
ble since it is hard to forge a packet in the opposite
direction.

• Outgoing Edge of an ISP or Customer Network: PCF
(SYN, FIN, <SIP,SP>) can detect destinations in the
domain under attack. This follows the fact that a vic-
tim under attack generates several SYN-ACK packets
but no corresponding FIN packets (since connection is
never really established, even if it did doesn’t termi-
nate). This is spoof-resistant 6 since the attacker can-
not force the victim to generate a FIN packet without
legally tearing down the connection. We call this the
reverse path of attack. Later in Section 4.2.3 we fo-
cus on this particular deployment of PCF to scalably
detect backscatter in the network

• Near destinations: This case is similar to that of the in-
coming edge of an ISP or customer network and hence
spoofable in uni-directional but not spoofable in bi-
directional detection model.

Fundamentally, any approach which observes only the for-
ward direction (Active SYN-FIN(ACK)) of TCP traffic (as
is often the case in the network) to a particular destination
is susceptible to spoofing. This is because an attacker can
always manufacture packets in the forward path (some of
which can die before they reach the victim via low TTLs
etc.) that look exactly like valid TCP connections.

Scanning Detection: PCF(SYN,FIN,<SIP>) can de-
tect attacks that involve scanning hosts for vulnerabilities.
However, a clever scanning approach can easily spoof the
PCF (or any other full state approach) that only sees one
direction of the traffic. On the other hand, by assuming a
bidirectional model (where PCF sees both directions of traf-
fic, usually true at the edge), we can scalably detect hosts
that are scanning for other hosts.

In the bi-directional model, the PCF increments for the
SYN packet going out and a FIN packet coming in to de-
tect scanners inside the network. In order to detect a scan-
ner outside the network, PCF correlates between in-bound
SYN packet and out-bound FIN packet. Note that this de-
ployment of PCF is not susceptible to spoofing since, the
originator of the scan cannot force a non-existent host to
generate a FIN packet in the opposite direction. Similarly,
PCF(SYN, FIN, <SIP, DP>) can detect horizontal scans
for specific ports in a scalable fashion too and can be made
spoof-resistant.

4. MEASUREMENT ON REAL TRACES
We evaluated PCFs on a set of real traces that we ob-

tained from two different ISPs A and B7. The traces are
named ISP-A Dir-0, ISP-A Dir-1, ISP-B Dir-0, ISP-B Dir-1
corresponding to two different directions of traffic. All these
links have OC-48 capacity.

The main aim of these experiments is two-fold. Firstly,
we wanted to validate the theoretical analysis of PCFs when

6More accurately, to spoof this scheme the attacker will need to
have machines under its control in the victim domain that can
send fake FIN packets. If the attacker already has such power, it
is unclear why the attacker needs to stop at simple DoS attacks
of victims.
7For anonymity, we do not present the actual names of the ISPs

applied in real settings; any deviations from analysis can
be used to tune and modify PCFs. Secondly, we wanted
to gather experience using PCFs to scalably detect attacks
(in the categories we restricted ourselves to earlier) on real
network traces.

We follow the following terminology in the experiments.
Firstly, a “flow” is any unique tuple over a subset of packet
contents. For example, if the aggregation is over fields SIP
and SP, all packets that bear (say) <192.168.10.1, 80> as
the Source IP, Port pairs (perhaps with different Destination
IP addresses or ports) is termed a flow. Note that the word
flow in the usual sense is often referred to as a 4-tuple; for
the lack of a better word, we used this somewhat loaded
term in a different way.

A flow is said to be correctly identified if both the full
state approach and PCFs identify that the flow has a value
greater than the threshold. A flow on the other hand is
a false positive if PCF indicates that the flow has a value
greater than the threshold but using the full state approach
we find that the flow does not have a value greater than the
threshold. Similarly, a false negative refers to those flows
that have not been identified using PCFs but were detected
using a full state approach.

4.1 Part I: Validation and Tuning of the model
The generalized up-down counter model with randomized

events that we introduced earlier in the theoretical analysis
is an approximation of reality. So how accurate is it really?
There are a set of issues that warrant adjustment to the
model. In this section, we briefly discuss these issues and
discuss how to correctly adjust the behavior of PCFs for real
traffic.

In the first part of our results, we validate and tune the
model to possible deviations from these assumptions. These
potential idiosyncrasies in real traffic determines the oper-
ating range and usefulness of Partial Completion Filters.
Unless explicitly stated otherwise, we used a measurement
interval of one minute, and used a total of 5000 buckets for
our evaluations.

Starting with a review of these assumptions, we now ad-
dress a series of questions about the theoretical analysis and
parameter settings (e.g., number of stages, measurement in-
tervals etc.).

Q1. What is the effect of Popular Buckets? An obvious
deviation (from uniformity) is that the number of packets
that hash to a particular bucket is not exactly (as we as-
sumed above) the total number of trials divided by the num-
ber of buckets. The distribution is clearly not uniform due
to the existence of popular sites like Yahoo! etc, which have
a large number of packets destined to them. Also, depend-
ing on the deployment location, this distribution can often
get skewed. The number of such large buckets however, is
typically small. Flows that map to these buckets might be
falsely classified as attack thus increasing the number of flow
records that need to be maintained to monitor these flows.
In other words, the number of false positives increases due
to these kind of flows, however, if we were to account for
it. In the traces we have used however, the distribution was
more or less uniform and hence, we do not address this in
more detail in this paper.

Q2. How does the asymmetry between SYNs and FINs af-
fect the results? In the theoretical model, we assumed that
the expected value of each counter is 0 since the packet can
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be a SYN or a FIN with equal probability. However, in re-
ality, this is not true. The expected value of the counters
is close to zero but not quite zero. This is primarily due to
the fact that there are potentially a larger number of SYN
retransmissions than that of FIN retransmissions in a con-
nection. This is plausibly because the round-trip delay has
not been calculated when a SYN is sent (as opposed to a
fairly accurate value when the FIN is sent); thus estimates
that are too low will lead to more unnecessary SYN retrans-
missions.

Also, note that some connections are torn down by RSTs
as opposed to FIN packets. One way to take into account
this bias is to decrement for the RSTs along with FINs. We
decided however to capture all these effects into a single
parameter called “bias”. This positive bias accounts for all
irregularities that arise from SYN-FIN differences and can
be appropriately set.

The problem with this positive bias is that, even a rea-
sonable number of these flows with the positive bias can
now aggregate to look like a bad bucket. Hence, in actual
practice, the mean µ has to be set to a positive value. The
analysis however remains the same, except that the thresh-
old for detection has to be tuned based on the positive bias.

Figure 5 shows the number of <DIP,DP> pairs (any other
kind yields similar results) for different SYN-FIN difference
values ranging from -10 to 10. We chose 10 as our cut-off
point since beyond this value, it is reasonable to expect that
they are outliers. From Figure 5, we can observe that the
area under the right half of graph (x=0 to x=10) is higher
than that on the left side (x=-10 to x=0). The amount of
positive bias that needs to applied to each counter per flow
is equal to the weighted mean of the SYN-FIN differences.

Suppose all flows (e.g <DIP,DP> pairs) on an average
have a positive bias of x (average SYN-FIN difference for
all flows = x). Then we have to modify the threshold to
take into account this positive bias. In our counter model,
suppose f were the total number of flows, and b be the total
number of buckets. Then, the expected number of flows
that map to a particular bucket is going to be f

b
. But since,

these flows have a genuine positive bias, the expected value
of each counter is µ = f

b
· x.

Therefore, instead of an expected value of 0 used in the
normal approximation, if we use the new expected value (the
standard deviation remains same), the probabilities would

still remain the same. In other words,

Pr

"

a ≤ X − f
b
· x

σ · √n
≤ b

#

=
1√
2π

Z b

a

e−z2/2dz

Now again, for a = 3, b = −3, µ = 1, σ = 1,

Pr

»

|X| ≤ f

b
x + 3

√
n

–

= 0.9987

Our new threshold value has to be modified to include this
positive bias, resulting in a new term equal to f

b
x + 6

√
n.

Recall that f is the number of flows, and n is the total
number of events per bucket (SYN-FIN packets in the case
of partial completion attacks).

The theory above suggests that the model can be ad-
justed to account for this bias we observe in real life. In
the next experiment, we evaluate the significance of this
bias. Figure 6(a) shows the relationship between the bias
and the false positive ratio. Note that the y-axis is on a
log scale. For the traces we used in this Figure, we can see
that a reasonable bias of 0.5 reduces the number of false
positives dramatically, although we calculated empirically
that the actual estimated bias for the ISP A and B traces
was less than 1. Choosing a high value of the bias increases
the threshold but the operating range of the filter becomes
smaller.

Summary: We see that for some traces more than the
others, bias effects the number of false positives significantly.
Hence, this factor must be appropriately set (we assume
henceforth a threshold of 0.5) to a reasonable value. For the
set of traces we considered, a bias value of 0.5 worked well
in all cases.

Q3. How many stages are necessary in PCF ? In this
experiment, we evaluate empirically the number of stages
required in the PCF to sustain a reasonable false positive
rate. Figure 6(b) shows the variation of False Positives and
Negatives with increase in the number of stages from 1 to
10. Again, the y-axis represents the average proportion of
false positives to the total number of flows. From the figure
as well as our theoretical analysis, 3 stages represents a good
trade-off to reduce the false positives while keeping the false
negatives to a minimum.

Beyond 3 stages, we can see that there is really little gain
in the false positive rate. In addition, false negatives begin
to increase. In fact, from the figure, 3 stages represent the
“knee” of the false positives curve with diminishing returns
from adding more stages. Henceforth, we operate with 3
stages for the rest of the paper for our evaluations.

Q4. How good is the threshold we calculated ? The
threshold we calculated from the theoretical analysis only
gives us a lower bound on the threshold beyond which the
false positive probability becomes extremely small. This as
we have pointed out before, represents the noise range of
the filter. In this experiment, we wish to identify how good
this lower bound is. We varied the threshold in proportion
to the threshold calculated by the theoretical analysis from
0 to 2 in steps of 0.1. Figure 6(c) shows the variation in the
false positives for different traces on log scale with different
threshold values. Note that increasing the threshold auto-
matically reduces the number of flows that we identify and
hence correspondingly the false positives. However, when
the threshold was moved from the left, exactly at the theo-
retical bound (that corresponds to an x-value of 1), we see
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Figure 6: Model validation, adjustment and tuning: We accommodate SYN-FIN assymetries using bias (a bias of 0.5

works well in practice). Three stages can reducing the false positives without giving up too much on false negatives.

Finally, the calculated theoretical threshold value results in low false positives (determines the noise range of the filter).

much smaller number of false positives as we have analyzed
using the Gaussian approximation.

This empirically verifies that the threshold value we cal-
culated using the theoretical analysis works well in practice
keeping the false positives to a lower value.

Q5. Why is the false positive rate still high? A curious
reader can immediately notice that in the earlier plots, even
for the theoretical threshold, the false positive rate is much
higher than that calculated theoretically in Section 3.1 for
three stages i.e.2 ·10−9. In the presence of a large number of
flows that have a high imbalance in the counters, the num-
ber of false positives increases thereby translating into more
memory requirements to monitor these flows. We found that
the number of flows that were anomalous was close to 100.
Using our analysis in Section 3.2, the estimated number of
false positives in proportion to the total number of flows
is about (100/5000)3 which is close to 10−5. We can see
that the false positive proportion is close to this value in the
plots.

One way to reduce the false positives in this case is to add
an extra threshold (beyond the theoretical threshold value
including that calculated taking into account bias). This
can potentially restrict the number of attacks of interest to
a low value (only the heavier attacks will be identified –
in fact maybe desirable) but it also reduces the number of
flows that will monitored. We can even adaptively vary the
threshold based on the amount of flow memory available. In
[13], the authors suggest a heuristic algorithm that adjusts
the threshold based on the amount of flow memory in the
context of heavy hitter detection using multistage filters.

Summary: The false positive rate is higher in the presence
of a large number of bad flows. A way to decrease the false
positive rate to a reasonable value is to increase the thresh-
old beyond our current theoretical value. This remains a
compromise between the available memory resources, ex-
pected number of attacks and so on.

Q6. How big should the measurement interval be ? The
next important issue is how to choose the measurement in-
terval. A plausible first guess could be to choose a very
small measurement interval. In any scheme, a small mea-
surement interval, while facilitating fast detection, lacks a
clear signature to infer an attack. A large measurement in-

terval on the other hand increases the time of detection.
Usually the choice of the measurement interval is dependent
on the scenario of application. We choose one minute as
our measurement interval for all our experiments. However,
we hasten to add that this can be varied depending on the
situation.

4.2 Part II : Experience with PCFs:
In this section, we present our experience (attack identifi-

cation and characterization) with PCFs in realistic settings.
First, we deployed PCFs on an OC-48 link trace to identify
malicious flows followed by other traces we have obtained.
Thirdly, we compare our scheme with the Network Tele-
scopes approach for scalable monitoring, after proceeding
to detect scanning activity in our traces.

4.2.1 Experience with PCF on ISP-A OC-48 link
Through this experiment, we discuss briefly our experi-

ence with PCFs over large time periods (1 day). We set the
PCF threshold to 150 (theoretical threshold is 60) , which
allowed us to identify attacks of size greater than 2.5 SYNs
per second. Recall once again that we use the term “flow” to
represent any unique tuple over a subset of packet contents.

The total number of unique Destination IP addresses in
the full trace was about 5.16 Million over the entire day. The
total number of unique <DIP, DPort> pairs was over 30.36
Million. Similarly, the number of unique Sources, <SIP,
SPort> pairs were found to be approximately 1.9 Million
and 30.9 Million respectively.

We characterize our findings in three parts. First in Fig-
ure 7(a) , we show the per-interval summary of number of
flows (unique destinations) found, correctly identified flows,
false positives and false negatives In all, we have observed
a total of 517 flows that were detected by PCF in the for-
ward path. We had 6 false positives and 0 false negatives
reflecting the efficacy of PCFs.

Secondly, in Figure 7(b), we summarize the cumulative
number of attacks that PCFs found over a set of intervals
including removing any flows that were identified in previous
intervals (entire day consists of 1440 intervals, each interval
with a duration of 1 minute). As we can see from the fig-
ure, initially the number of attack destinations is high after
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Figure 7: For a full day ISP-A trace, we show the detected flows, false positives and false negatives in every time bin

(1 minute) in Sub-Figure (a). The number of false negatives in Sub-Figure (b) was 0 and false positives was very small

(about 6). Further attack characterization using a CDF of durations, average size, and total size of these attacks in

Sub-Figure (c)

which the number grows slowly. This is because most at-
tacks (about 60%) last for more than 1 minute. This means
on an average very small number of new attacks originate in
any particular interval. Initially however, history is empty,
therefore any flow detected is going to be new.

Finally, we show the CDF characterization of the dura-
tion, average size, and total size of the attacks identified in
this trace. About 40% of the attacks found lasted for less
than a minute and 85% less than 10 minutes. A similar
observation has been made by the authors in [21].

Summary: These plots are illustrative of the fact that
the number of “interesting” destinations and sources that
exhibit anomalous behavior are like needles in a haystack.
PCFs help pick these needles scalably and accurately. Such
continuous monitoring to identify flows in the network also
helps us understand the prevalence and dynamics of these
kinds of attacks (at least on a smaller scale). Operationally,
it appears that the total number of destinations or sources
that need further monitoring has been brought down to an
extremely small number with a negligible number of false
positives.

4.2.2 Attack Characterization using PCFs on other
traces

We now present the characterization of Partial Comple-
tion attacks that we detected using PCFs on both directions
of ISP-A and B traces. Table 1 shows the number of attacks
identified for each trace and the corresponding false positives
and false negatives using both forward path and reverse path
PCFs. As before, we have used a PCF threshold of 150 to
identify these attacks.

Due to space limitations, we only show the characteri-
zation of the attack flows obtained using the reverse path
PCFs. Figure 8 shows CDF plots that show the relative
distribution of the attack flows PCFs identified in both di-
rections. From the figure, we observe that in ISP-A traces,
30% of the attacks identified lasted through the complete
duration of the trace (60 minutes). We have observed sim-
ilar behavior in the forward path (not shown here) as well.
A monitoring system based on PCFs would be able to char-
acterize such attack statistics continuously. About 20% of
attacks discovered in ISP-A trace had more than 1200 SYNs

per minute, roughly 20 SYNs per second constituting much
heavier attacks.

4.2.3 Comparison of DoS Detection with state-of-
the-art Network Telescopes

As promised earlier in Section 3.4, we conducted an ex-
periment that provides empirical comparison between PCFs
and backscatter analysis using Network Telescopes. We used
a trace, BACKSCATTER obtained on Jan 22nd,2004 at
2pm from the CAIDA Network Telescope. Simultaneously,
we obtained a trace from ISP A Direction 0 and Direction
1. The main intuition in comparison with the backscat-
ter approach is that PCFs should be able to detect sources
that are generating a lot of SYN-ACK packets in response
to a SYN-Flood and hence should be aggregated based on
sources.

On ISP-A direction 0 and 1, PCFs detected about 19 and
33 flows in the reverse path as shown in Table 1. At the
same time, the telescopes detected about 776990 different
flows. However, only three destinations were detected by
both PCFs and Telescopes, that too in only one direction of
the traffic.

Table 2 shows further description of these attacks (which
have been referred to as A, B and C). The table shows the
average number of SYN packets received in an interval du-
ration of 5 minutes over 12 intervals (corresponding to one
hour). Clearly, part of the issue is that the backscatter re-
ceived a large number of SYN packets while the router trace
showed a much smaller set of SYNs. We believe this oc-
curred because the scope of any one router especially if it
is a transit router (as in our case) is much smaller than
that of the total backscatter. However, a set of these PCFs
in all the peering routers would be able to capture all the
backscatter originating from the domain. Unfortunately, we
cannot verify this hypothesis with the traces available to us.

A second observation is that for <IP, port> pair C (as
shown in Table 2), clearly, the backscatter could only see a
very small portion, while the router could observe a much
larger portion of the attack. This, we believe, is due to the
fact that the telescope heavily depends on IP address spoof-
ing in order to detect attacks. The higher the amount of ad-
dress spoofing involved, the higher the amount of backscat-
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Figure 8: CDF of average attack size, total attack size, and duration of the set of attacks detected using PCFs on

different traces in the Reverse Path.

Trace Code Attacks identified False Positives False Negatives
Fw. Path Rev. Path Fw. Path Rev. Path Fw. Path Rev. Path

ISP-A Dir-0 68 19 2 0 1 0
ISP-A Dir-1 39 33 1 1 0 0
ISP-B Dir-0 34 12 0 0 0 0
ISP-B Dir-1 41 47 0 0 0 1

Table 1: Summary of flows we identified using Forward and Reverse path PCFs on various traces using a threshold

of 150.

SYNs (ISP-A Dir 1) SYNs (Backscatter)
<IP,Port> A 359 12196
<IP,Port> B 309 14577
<IP,Port> C 498 0.09

Table 2: Description of the three <IP addresses, Port>

Pairs, that were commonly detected by both PCF as well

as Backscatter.

ter. We conjecture that this attack directed towards address
port pair C did not employ enough spoofing.

We also found that a large percentage of attacks that we
observed in the router trace were not observed by the tele-
scope. This could be due to either of two reasons. One
is that the attacks were mostly reflector attacks which did
not employ spoofing as a method to bombard the victim.
In these cases, the telescope cannot detect any backscat-
ter. The other reason could be the presence of DoS attacks
which are single or multiple source attacks that do not em-
ploy spoofing. We have manually verified the existence of
both in our trace.

Summary: Comparison of the reverse path PCF reveals
that both telescopes and PCFs can identify attacks the other
can not. The telescope observes worldwide DoS activity that
primarily employs packet spoofing. Any attacks such as re-
flector attack, or a DDoS attack with a set of zombies with
no spoofing never reach the telescope. On the other hand,
reverse path PCF is oblivious to address spoofing but suffers
from a much smaller scope. The intersection set is rather
small, making PCFs a complementary solution to backscat-
ter for scalable attack monitoring. In fact, these two ap-
proaches can be combined to detect a wide variety of DoS
activity.
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4.2.4 Scanning Detection
In this section, we use PCFs to scalably detect scanning in

the network. We conducted two sets of experiments to val-
idate our findings – one based on aggregation using Source
IP Addresses, and the other using Source IP Address, Des-
tination Port combinations as discussed in Section 2.2. In
order to validate whether the sources we have found are
indeed scanners, we counted the number of unique destina-
tions found. Any source which generated SYNs but no FINs
for more than a particular number of destinations we posit
as being a true port scan for our comparison. The question
at hand is whether PCFs can scalably detect such scanners.
Note that PCFs based on <SIP>, fundamentally observe
sources which are generating too many failed connections
generating SYNs but no FINs. This counting of destina-
tions is only a step we can use to ascertain ourselves that
these sources are indeed scanners.
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This approach combines two traditional approaches of scan
detection – counting events in a given time interval[20, 30],
and observing failed connections[40, 37]. PCFs identifies
sources that generate many SYNs but no corresponding FINs
(corresponds to failed connections) in a given time interval.
Note that in situations where there are a limited number
of end-hosts such as in an enterprise, heavy weight schemes
such as [23] might be practical. PCFs allow scalable and
efficient detection of scans in situations where scalability is
important (hence heavy weight approaches are impractical).

In order to establish that the sources identified by PCFs
were really portscans, we plot the number of identified sources
with increasing number of destinations in Figure 9. In other
words, on the x-axis we vary the number of destinations in
steps of 100, and we plot on the y-axis the number of sources
identified by PCF that have sent SYN packets (but no cor-
responding FIN) to more than x destinations. From these
figures, we can observe that a large number of the sources
that have been identified by PCFs have failed connections
to more than 500 destinations – portscans.

Due to lack of space, we only showed the results using
a PCF on <SIP>. Results obtained using <SIP,DP> for
horizontal portscans were similar.

5. RELATED WORK
The general notion of scalable attack detection has been

addressed independent of our work, recently by Yaar et.al
in [49]. However, their work requires routers to implement
marking along with some header changes to support marking
of packets. In [48], the authors also propose a Path Identi-
fication scheme for efficient identification of the sources of
DDoS attacks. Their work builds on other traceback related
schemes (see [48, 49] for further references on Traceback).

In [45] and [46], the authors propose simple stateless SYN-
FIN and SYN-SYNACK counters in the last hop IDS solu-
tions to detect the presence of SYN flooding presence. While
their approach does a preliminary level of aggregation, it
does not aggregate across destinations (or sources). They
also do not consider the issue of spoofing or suggest solu-
tions to this problem.

For SYN Flooding defense, there are several end-host so-
lutions that have been proposed before. These include SYN-
Cookies[9] and SYN-Cache[28]. These have been helpful but
have not been universally deployed. “BackScatter Analysis”
was proposed in [32]. This technique uses the reverse path
attack properties of SYN-Floods to infer Denial of Service
activity around the world. Since it is relevant to our work,
we provided a comparison earlier in the paper.

Vendor based solutions such as SynKill[41], Netscreen[35]
or free open source IDS tools such as Bro[37], Snort[30] can
be used to detect SYN floods, port scans, but they (as far
we can ascertain) employ per-flow state. A clever hop-count
based method to detect spoofing in general has been pro-
posed in [22]. Here, the main intuition is that spoofed pack-
ets typically have a wrong TTL value and hence should be
identified by a previously detected TTL value for a particu-
lar IP address. This technique is fairly resilient to spoofing.
MULTOPS[18] is a data-structure maintained by each net-
work device that detects bandwidth attacks by the signifi-
cant, disproportional imbalance between packet rates going
to and coming from the victim or attacker.

Most scan detection techniques[20, 30] in the literature
are based on detecting N events in T seconds. Another ap-

proach[40, 37] relies on failed connections as a better indi-
cator of a scan. Leckie et.al[27] use probabilistic approaches
to estimate the degree to which a given local IP address is
unusual. SPICE[42] is an offline analysis algorithm to de-
tect stealthy scans (scans which are of low rate) and cannot
be performed scalably in the network. A recent paper by
Jung et.al[23] apply threshold based random walks for fast
portscan detection. The need to track for each remote host
the different local hosts to which it has connected to makes
the scheme unscalable.

6. CONCLUSIONS
It appears to be widely perceived that detecting intrusions

scalably within the network is a bad idea. Unfortunately,
that causes security devices to choose between performance
(which requires low memory) and completeness (which ap-
pears to require per-flow state). This paper is a gentle first
step towards suggesting that this tradeoff may not be as Dra-
conian as is commonly thought. While the general problem
is still very hard (and indeed for attacks such as evasion
attacks, we believe that aggregated solutions cannot work
without causing unacceptably high false positives), our pa-
per shows some progress for bandwidth-based and partial
completion DoS attacks, and scan-based attacks including
worms.

This is fortunate because market researchers [39] have al-
ready begun to warn that increases in total ownership costs
for end node and edge solutions require the network to play
a proportionately larger share in detecting and combating
network intrusions. This paper explores this possibility in
the specific context of DoS attacks and scan attacks. While
we have not harped on this point, doing DoS detection in
the network also finesses the need for traceback and/or man-
ual intervention, and allows enterprise networks and ISPs to
automatically filter out attacks before they enter (or leave)
their networks.

After quickly arguing that DoS attacks based on traffic
volumes can be detected by existing techniques, we focused
on the task of detecting TCP scans and partial completions
attacks such as TCP Flood Attacks. The naive technique is
to maintain state for each connection which is infeasible in
the network. Instead, we show that using a new data struc-
ture that we call Partial Completion Filters (PCFs), that the
state needed is small enough to be efficiently implemented
in vanilla ASICs and FPGAs.

We believe that PCFs are of independent interest because
they provide a solution to the general problem of detecting
imbalanced parentheses in a streaming environment. The
analysis strategy, while simple, appears novel at least in the
context of streaming algorithms. We also suggest various
deployment options, including bidirectional and reverse path
options which appear to be the most resilient to spoofing.

More fundamental than the specific techniques discussed
in this paper is the general question of scalable behavior-
based detection of attacks within the network. We believe
this question is interesting because many other network func-
tions (forwarding, classification, QoS) have already received
considerable attention in the research and product litera-
ture, and solutions that scale to 40 Gbps already exist. As
security functions become more prevalent in the edge first
and then the core, it is natural to expect the same attention
to be paid to scalable security solutions.

More than just introducing the question and suggesting a
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specific mechanism for some problems, our paper shows that
the issues of behavioral aliasing and spoofing are key ques-
tions that must be addressed in any scalable solution, even
if the only response is to simply ignore the problem. For
example, it may be reasonable to ignore spoofing until the
bar is raised. These two provide a simple lens to view ex-
isting and future work in attack detection, and can perhaps
suggest new solutions to an even broader class of attacks.
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