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Abstract--Attackers can render distributed denial-of- 
service attacks more difficult to defend against by bouncing 
their flooding traffic off of reflectors; that is, by spoofing re- 
quests from the victim to a large set of  Internet servers that 
will in turn send their combined replies to the victim. The 
resulting dilution of locality in the flooding stream compli- 
cates the victim's abilities both to isolate the attack traffic 
in order to block it, and to use traceback techniques for lo- 
cating the source of streams of packets with spoofed source 
addresses, such as ITRACE [Be00a], probabilistic packet 
marking [SWKA00], [SP01], and SPIE [S+01]. We discuss 
a number of possible defenses against reflector attacks, find- 
ing that most prove impractical, and then assess the degree 
to which different forms of reflector traffic will have char- 
acteristic signatures that the victim can use to identify and 
filter out the attack traffic. Our analysis indicates that three 
types of reflectors pose particularly significant threats: DNS 
and Gnutella servers, and TCP-based servers (particularly 
Web servers) running on TCP implementations that suffer 
from predictable initial sequence numbers. We argue in con- 
clusion in support of "reverse ITRACE" [Ba00] and for the 
utility of packet traceback techniques that work even for low 
volume flows, such as SPIE. 

I. INTRODUCTION 

In a distributed denial-of-service (DDOS) attack, the at- 
tacker compromises a number of slaves and installs flood- 
ing servers on them, later contacting the set of servers to 
combine their transmission power in an orchestrated flood- 
ing attack. The use of a large number of slaves both aug- 
ments the power of the attack and complicates defending 
against it: the dilution of locality in the flooding stream 
makes it more difficult for the victim to isolate the attack 
traffic in order to block it, and also undermines the po- 
tential effectiveness of traceback techniques for locating 
the source of streams of packets with spoofed source ad- 
dresses. 

Figure I illustrates the nature of the attack: one host, the 
master, sends control messages to the previously compro- 
mised slaves, instructing them to target a given victim. The 
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slaves then generate high volume streams of traffic toward 
the victim, but with fake or randomized source addresses, 
so that the victim cannot locate the slaves. 

\ 

The problem of tracing back such streams of spoofed 
packets has recently received considerable attention. In 
Bellovin's proposed 1TRACE scheme, routers (or outboard 
processors), with a very low probability, send ICMP mes- 
sages to the destinations of packets they have just for- 
warded [Be00a]. For a high-volume flow, the victim will 
eventually receive ICMPs from all of the ITRACE routers 
along the path back to the slave, revealing its location. 

Savage and colleagues proposed a different scheme, in 
which routers with considerably higher probability mark 
the packets they process with highly compressed informa- 
tion that the victim can decode in order to detect the edges 
(pairs of packet-marking routers) traversed by the pack- 
ets, again enabling recovery of the path back to the slave 
[SWKA00]. This scheme can trace back potentially lower- 
volume flows than required for traceback using ITRACE; 
however, the scheme runs into computational difficulties 
as the number of slaves increases, a problem addressed by 
Song and Perrig by supplementing the scheme with the use 
of network topology maps [SP01]. 

In more recent work, Snoeren and colleagues discuss a 
Source Path Isolation Engine (SPIE) that records sets of 
hashes of packets traversing a given router IS+01]. A vic- 
tim can then locate the path of a given packet by querying 
routers within a domain for the set of hashes corresponding 
to the packet, providing they issue the query soon enough 
after the packet was transmitted that the record of its pres- 
ence is still available. SPIE has a major advantage over 
ITRACE and probabilistic packet marking in that it can 
facilitate traceback of even low volume (including single 
packet) flows. 

The use of hundreds or thousands of slaves can both 
greatly complicate traceback (due to the difficulty of disen- 
tangling partial traceback information relating to different 
sources, and/or having to contact thousands of routers) and 
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Fig. 1. 
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Fig. 2. Using reflectors to render a DDOS attack much more diffuse. 
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greatly hinder taking action once traceback succeeds (be- 
cause it requires installing hundreds of filters and/or con- 
tacting hundreds of administrators). 

Attackers can do considerably better still by structur- 
ing their attack traffic to use reflectors. A reflector is any 
IP host that will return a packet if sent a packet. So, for 
example, all Web servers, DNS servers, and routers are re- 
flectors, since they will return SYN ACKs or RSTs in re- 
sponse to SYN or other TCP packets; as are query replies 
in response to query requests, and ICMP Time Exceeded 
or Host Unreachable messages in response to particular IP 
packets. 

The attacker first locates a very large number of reflec- 
tors, say on the order of 1 million. (This is probably not 
too difficult, as there are at least that many Web servers 
on the Internet; plus, see below on relaxing this require- 
ment.) They then orchestrate their slaves to send to the 
reflectors spoofed traffic purportedly coming from the vic- 
tim, V. The reflectors will in turn generate traffic from 
themselves to V. The net result is that the flood at V ar- 
rives not from a few hundred or thousand sources, but from 
a million sources, an exceedingly diffuse flood likely clog- 
ging every single path to V from the rest of the Interact. 

Figure 2 illustrates this modification to a conventional 
DDOS attack. Note that the victim does not require any 
traceback in order to locate the reflectors; they are readily 
identified as the source addresses in the flooding packets 
received by the victim. The operator of a reflector, on the 
other hand, cannot easily locate the slave that is pumping 
the reflector, because the traffic sent to the reflector does 
not have the slave's source address, but rather the source 
address of the victim. 

In principle the operator can use traceback techniques 
such as those discussed above in order to locate the slaves. 
However, note that the individual reflectors send at a much 
lower rate than the slaves would if they were flooding V 
directly. Each slave can scatter its reflector triggers across 
all or a large subset of the reflectors, with the result being 
that if there are Nr reflectors, Ns slaves, and a flooding rate 
F coming out of each slave, then each reflector generates 
a flooding rate of F ~ = ~-~_b-'. So a local mechanism that 
attempts to automatically detect that a site has a flooding 
source within it could fail if the mechanism is based on 
traffic volume. 

In addition, traceback techniques based on observing 
large volumes of traffic (ITRACE, probabilistic packet 
marking; but not SPIE) will fail to locate any particular 
slave sending to a given reflector. If there are Nr reflec- 
tors, then it will take Nr times longer to observe the same 
amount of traffic at the reflector from a particular slave as 
it would if the slave sent to the victim directly. Thus, us- 
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ing reflectors provides significant protection against these 
forms of traceback even if there aren't more reflectors than 
slaves (or even fewer). Against a low-volume traceback 
mechanism like SPIE, however, reflectors do not yield 
such an advantage~ and indeed the attacker should instead 
confine each slave to a small set of reflectors, so that the 
use of traceback by the operator of a single reflector does 
not reveal the location of multiple slaves. 

Note that unlike some forms of denial-of-service at- 
tacks, the reflectors do not need to serve as amplifiers 
(sending out a la(ger volume of traffic than the attacker 
sends to them). They can even somewhat attenuate the 
volume of traffic isent to them and still serve their pur- 
pose effectively. This latitude on not requiring amplifica- 
tion consequently ~ allows a large number of different net- 
work mechanisms' to serve as reflectors, facilitating the at- 
tacker's task of finding a sufficient number of reflectors to 
launch the attack. 

Finally, note that we do not consider here two quite dif- 
ferent forms of reflectors: social attacks (in which many 
people are duped, into attempting to connect to the vic- 
tim) and viral attacks (in which the attacker acquires a vast 
number of slaves using a virulent virus, and then instructs 
the slaves to directly attack the victim, perhaps with per- 
fectly legitimate requests [Me00]--the use of reflectors is 
basically irrelevant, because the attacker already has such 
an immense number of slaves). 

II. DEFENSES AGAINST REFLECTORS 

There are a number of possible defenses against reflec- 
tor attacks: 
1. If it is impossible to spoof source addresses in packets, 
for example by ubiquitous deployment of ingress filtering 
[FS00], then the threat is significantly diminished. The 
threat does not entirely go away, though, due to the pos- 
sible use of application-level reflectors such as recursive 
DNS queries (Section III-E) or HTTP proxy requests (Sec- 
tion UI-G), as discussed below. However, while an attacker 
can still mount a reflector attack even if the slaves lack the 
ability to spoof source addresses, the victim will be able 
to more quickly locate the slaves, because if a reflector 
server maintains logs of the requests it receives, those logs 
will pinpoint the slave location(s). 
For the remainder of the discussion, we assume that we 
care about preventing attacks in an Interact for which 
source integrity is not guaranteed. 
2. Traffic generated by reflectors may have sufficient reg- 
ularity and semantics that it can be filtered out near the 
victim without the filtering itself constituting a denial-of- 
service to the viclim ("collateral damage"). Here, "filter- 
ing" refers to the general notion of packet classification; 
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the filtered traffic could then be rate-limited, delayed, or 
dropped. We will usually, however, presume that filtering 
means dropping the traffic, and assess the dangers of col- 
lateral damage in that context. 
3. Bogus reflector requests used to pump reflectors may 
have sufficient regularity and semantics to enable sites to 
deploy filtering to prevent their network elements from 
serving as reflectors. 
4. In principle it could be possible to deploy traceback 
mechanisms that incorporate the reflector end-host soft- 
ware itself in the traceback scheme, allowing traceback 
through the reflector back to the slave. 
5. Traffic patterns resulting from a slave pumping a dis- 
parate set of reflectors may be discernible to intrusion de- 
tection systems monitoring a site's Internet access link. 

Of these, we argue that only (2) is potentially viable. 
We regard (1) as out of scope for the entire discussion of 
DDOS attacks that utilize spoofed source addresses. (3) 
requires widespread deployment of filtering, on a scale 
nearly comparable with that required for widespread de- 
ployment of anti-spoof filtering, and of a more compli- 
cated nature. (4) has enormous deployment difficulties, 
requiring incorporation into a large number of different ap- 
plications developed and maintained by a large number of 
different software vendors, and requiring upgrading of a 
very large number of end systems, many of which lack 
any direct incentive to do so. In addition, (4) may not help 
with traceback in practice if the traceback scheme cannot 
cope with a million separate Internet paths to trace back to 
a smaller number of sources; neither ITRACE nor proba- 
bilistic packet marking appears amenable to doing so. (5) 
requires widespread deployment of security technology at 
sites which fail to provide such basic security precautions 
as anti-spoof mechanisms, not a likely combination. 

In Section III we examine the viability of (2) in detail, 
finding that most, but not all, reflector-generated traffic can 
be filtered without grievously impairing the functionality 
of most sites. In Section IV we then look at the impli- 
cations of reflector attacks for traceback, focussing on a 
modification to ITRACE proposed by Barros [Ba00] and 
the use of SPIE [S+01]. 

III. FILTERING OUT REFLECTOR REPLIES 

We now turn to an assessment of the practicality of a 
victim site being able to attain relief from a DDOS reflec- 
tor flood by filtering out specific types of traffic. To do so, 
we need to attempt to catalog the different types of reflec- 
tors that an attacker might employ. 

We assume that the victim (or an upstream provider as- 
sisting the victim) can only afford to deploy stateless ill- 
tering, given the potentially immense volume of (bogus) 
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state that a flooding attack generates. In principle this 
could be relaxed to allow some stateful filtering when ei- 
ther the state is highly aggregatable, such as pertaining to 
particular pairs of interfaces and address prefixes, or the 
state is instantiated only by traffic from the victim, and 
hence will not scale disproportionately (unless the attacker 
can manipulate the victim into violating this assumption). 
We also assume that the victim, with the cooperation of 
their service provider, can have such filters installed suffi- 
ciently far away from the victim's links that a DDOS attack 
that targets the access link bandwidth rather than the vic- 
tim's servers directly can still be throttled, if enough of it 
matches a particular small set of filters. 

Finally, we assume that success in terms of defending 
the victim is that the filtering allows a significant propor- 
tion of the victim's service to continue; we do not require 
that the filtering leave the service completely unimpaired. 

Table I summarizes the analysis developed in the re- 
mainder of this section. 

A. IP packets 

We begin by analyzing how the elements of the IP 
header [Po81a] in amving traffic might relate to a reflector 
attack. 

The first fields in the header are the version and the 
header length (presence of options). Clearly, the version 
field provides no traction, as the packet won't even make 
it to the victim unless it corresponds to a version of IP that 
the victim cares about, and the field is too narrow to likely 
provide useful filtering. (We confine our subsequent treat- 
ment of IP and ICMP to IPv4.) The presence of options 
similarly does not provide any traction: options are almost 
never used due to their performance impact, so they won't 
show up in either legitimate or reflector traffic; even if the 
attacker can induce their presence, the victim will almost 
certainly be able to filter out the traffic without impairing 
themselves. 

The type of service field in some scenarios could in 
the future be quite helpful. If traffic to the victim nor- 
mally arrives with a particular Diffserv Code Point (DSCP) 
[NBBB98], then likely a static filter allowing only such 
traffic would help screen out reflector traffic, though at a 
cost of screening out legitimate auxiliary traffic to the vic- 
tim, too. This latter could be quite expensive, if it includes 
things like replies to the victim's DNS queries, or the vic- 
tim's outbound Web surfing. (Whether the attacker can 
manipulate a reflector into having a particular DSCP at- 
tached to its traffic will depend on the classifiers that wind 
up being deployed at different points in the network. If 
Diffserv traffic in general is premium traffic, then it ap- 
pears plausible that often the attacker will not be able to 
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Protocol~element 

IP version 
IP options 
IP TOS / DSCP 
IP length 
IP ID 
IP fragments 
IP TTL 
IP protocol 
IP checksum 
IP source 
IP destination 

Filtering notes 

Insignificant. 
Insignificant. 
Could aid victim if attack traffic non-premium. 
Insignificant. 
Insignificant. 
No cost to filter out unless victim uses fragment-inducing protocols (NFS, AFS, GRE). 
None. 
None. 
None. 
Only filterable if victim can identify as uninteresting. 
Only filterable if victim can identify as uninteresting. 

ICMP request/reply Likely not difficult to filter out. Includes smurf attacks. 
ICMP problem Likely not difficult to filter out. : 
TCP source port 
TCP SYN ACK 
TCP RST 
TCP guessable seq. no. 
T f r c P  

If filtered, no general access to remote server of given type. 
If filtered, no general access to remote servers. 
If filtered, state will accumulate over time. 
Major  threat .  
Would be significant threat but easily filtered due to  limited deployment. 

UDP No threat due to no inherent reply mechanism. 
UDP length Insignificant. 
UDP checksum Insignificant. 
DNS query/response Can be filtered by opening up holes to specific remote servers. 
Recursive DNS queries Major  threat  to name servers. 
SNMP request/response Generally can be filtered out with little impact on victim. 
HTTP proxy caches A significant threat, but likely easily traced back to slave. 
Gnutella "push" Major  threat.  

t 

Other TCP applications Will in general be traceable to slave if applicatio n server keeps logs. 
Other UDP applications Unknown. 
Other overlay networks Unknown. i 

TABLE I 
SUMMARY OF DIFFERENT REFLECTOR THREATS AND THE EFFICACY OF COMBATTING THEM USING FILTERING. 

force the marking, because to do so they will have to dupe 
a classifier upon which billing for the premium traffic re- 
lies. Presumably this will be difficult to do, given the fi- 
nancial motivations to secure use of the premium traffic.) 

It is hard to see what filtering benefit can be had from 
the length field, since few forms of reflectors will be lim- 
ited to sending only particular-length replies, and, even if 
they did, filtering them out would also filter out legitimate 
traffic. However, if the traffic to a victim tends to come 
only in particular sizes, such as small DNS requests, then 
the victim can possibly filter out any reflector traffic that 
does not come in that size. 

The IP ID field is very difficult for the attacker to ma- 
nipulate, and carries only a smidgen of useful semantic 
information. Thus, it is very hard to see how it could be 
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usefully filtered on. 

It is likewise difficult to see how the attacker can take 
much advantage of fragments .  It will only be possible 
to generate them for reflectors that send large replies us- 
ing TCP/IP stacks that do not implement PMTU discov- 
ery [Mo90], or for reflectors that have paths to the vic- 
tim that transit GRE tunnels [F+00]. Fragments offer the 
benefit to the attacker of making it difficult for the victim 
to filter on TCP or UDP header information, since it will 
only be present in the initial fragments. (Also, that header 
might itself be split across multiple fragments; some stacks 
have been observed to do this as part of their normal op- 
eration [Pa99].) But due to the limited use of fragments 
in the Intemet, the victim could likely filter out all frag- 
mented traffic and suffer little degraded service, other than 
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for some implementations of protocols like NFS and AFS 
that frequently send high volumes of fragmented traffic, or 
for sites that rely on GRE tunnels. 

The TTL field is easier for the attacker to manipulate 
(by choosing the distance from the reflector to the victim, 
and choosing reflectors according to their particular stacks, 
and hence their particular initial TTLs). But it is hard to 
see how the TTL can be used for any useful filtering, un- 
less the only legitimate communication the victim partakes 
in comes from a small set of remote sites that can be char- 
acterized with a narrow TTL range. 

The protocol field will determine the next layer of filter- 
ing, as discussed below for particular protocols. Clearly, 
protocols unimportant to the victim can be filtered out 
based on this field, so the attacker will need to select re- 
flectors that have one of the same protocol fields as the 
victim's desired traffic. But this will usually be very easy 
to do, because the desired traffic will almost certainly in- 
clude TCP and UDE 

The checksum field should provide no traction. It is 
expensive for a filter to verify, but also appears impossible 
for the attacker to usefully manipulate. 

The final two fields are the source and destination ad- 
dresses. Obviously, the same filtering traction applies to 
these as does for ordinary DDOS floods: if either can be 
identified as an uninteresting address, then the victim can 
filter out the traffic; the attacker attempts to ensure that this 
is not the case. Also note that with a reflector attack, the 
source address will always be legitimate (Figure 2), unlike 
with the usual direct-spoofing attack (Figure 1). 

Summary:  assuming the attacker picks source and des- 
tination addresses of interest to the victim, the only angle 
the victim might try at the IP level is filtering on the DSCP. 

B. ICMP 

There are two different ways to elicit ICMP re- 
flector replies: using ICMP protocols designed as re- 
quest/response (such as ICMP echo), or sending traffic that 
will generate an ICMP message because of some problem 
associated with the traffic [Po81b]. 

In the first category are the ping ICMPs (echo, 
timestamp, address mask, router solicitation, information 
request/reply). Of these, only the first is widely used, and 
presumably the victim can get by with little difficulty if 
replies to all of these are filtered out. (We note, though, 
that smurf attacks, in which the attacker sends ICMP echo 
requests to subnet broadcast addresses, are essentially a 
form of reflector DDOS attack.) 

In the second category (unreachable, source quench, 
redirect, time exceeded, parameter problem), the most sig- 
nificant for the victim will be the unreachables, which 
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include host unreachable (useful for tearing down state 
in some circumstance) and need fragmentation (necessary 
for PMTU discovery), and time exceeded (needed to run 
t r a c e r o u t e ) .  It appears plausible that the victim would 
be willing to forgo these as a means to suppress a flooding 
attack. 

Summary:  reflectors generating ICMP messages can 
likely be filtered out. 

C. TCP 

Rather than walk the TCP header [Po81c], we consider 
the types of packets that an attacker can coax from a TCP 
reflector, as these have a great impact on filtering opportu- 
nities. 

For most victims, what the attacker really wants is a 
packet that looks like one sent by a true client of the vic- 
tim: an initial SYN packet, a packet containing data, an 
acknowledgment, or a FIN. (An additional type, RST, is 
discussed shortly.) 

However, we first note that any packet from a reflec- 
tor will have a source port corresponding to the port on 
which the reflector runs. In particular, for Web servers (the 
most widely available TCP reflector), this will usually be 
port 80. Accordingly, the victim can filter out any incom- 
ing traffic with a source port of 80 (say), and eliminate any 
threat from TCP-based reflectors. Naturally, this prevents 
the victim from access to the same service remotely, which 
may be a significant difficulty; but perhaps an acceptable 
one during a time of flooding, 

Putting that limitation aside, inspecting the TCP state 
diagram in [Po81c] shows that there is no way to trigger 
a reflector into sending an initial SYN packet unless it has 
an application-level means to do so (e.g., FTP "bounce" 
attack [Ce97]). Furthermore, since the reflector will not 
have an existing connection open to the victim, the only 
packets it can send in response to receiving a packet pur- 
portedly from the victim are either a RST or a SYN ACK 
(though see below). If the victim filters out RST packets, 
this will over time cause its servers to hold more state than 
they need to, eventually clogging them with stale connec- 
tions. (However, depending on the service, these connec- 
tions may be amenable to manual garbage collecting.) If 
the victim filters out SYN ACKs, then they lose access to 
remote services (if there isn't more specific port filtering 
they can employ, per the above); this may or may not be 
acceptable, depending on the specifics of the victim's op- 
eration. 

There is, however, another possibility. If the reflector's 
stack has guessable TCP sequence numbers [Be96], then 
the attacker can potentially drive the stack through the en- 
tire TCP state machine, tricking it into sending data seg- 
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ments, acknowledgments, etc. This is a disaster for the 
victim. But it is so even without delving into DDOS in- 
cluding slaves and the l ike--a recently discovered attack 
exploits such stacks to realize major amplification by dup- 
ing Web servers into transmitting large items to the victim, 
and exploiting "ACK splitting" techniques [SCWA99] to 
greatly enhance the sending rate [Gu01]. Other applica- 
tions such as FTP or streaming media servers could like- 
wise be exploited. If done as part of a reflector attack, then 
the attacker gains both the benefits of amplification and a 
highly diffuse flood at the victim, a lethal combination. 

Another way an attacker can trick a remote server 
into sending data packets towards the victim is by forg- 
ing a T/TCP connection request [BI94] from the victim. 
T/TCP was designed to resist inadvertent confusion of old 
network segments with new ones, via the CC/CCECHO 
mechanism, but the only requirement placed upon the se- 
quence numbers used by the mechanism is simply that 
they be monotone-increasing. Consequently, it is simple 
to pick a sequence number in the initial, spoofed T/TCP 
SYN packet such that the server's stack will find it accept- 
able. If the SYN packet also contains an expensive request 
like "GET h u g e ± m a g e ,  j pg" ,  then the server will begin 
transmitting the data to the victim immediately. 

Three factors limit the severity of the T/TCP attack. 
First, the T/TCP server will begin in slow start (the specifi- 
cation suggests an initial sending window of 4 KB [Br94], 
but this is for the client initiating the connection, not the 
server replying to it). Unless the server's stack has guess- 
able sequence numbers as discussed above, the attacker 
can't exploit ACK-splitting techniques to move the server 
out of slow start. 

Second, the packets sent from the server to the victim 
will have CCECHO options in their TCP headers, which 
makes them amenable to stateless packet filtering, though 
the filter is potentially somewhat complicated, because due 
to the use of other TCP options, the location of the CCE- 
CHO option in the header will not always be the same. (In 
addition, such filtering will prevent the victim from access- 
ing external servers using T/TCP; not a significant limita- 
tion, however, as they can disable their own use of T/TCP 
and then the external servers will not use it in reply.) 

Third, TfFCP is not widely deployed, so it will be diffi- 
cult for an attacker to find a large number of TfFCP reflec- 
tors. Furthermore, if such reflectors were used in a high- 
profile DDOS attack, likely many servers would soon be 
configured to no longer use T/TCP. 

Summary :  if a site can endure loss of contact to exter- 
nal servers, and can tolerate failing to tear down legitimate 
connections that the remote peer has reset, then filtering of 
SYN ACKs and RSTs will protect against the main form 
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of general TCP-based reflector attacks. One exception is if 
the attacker can find large numbers of remote servers with 
guessable initial sequence numbers; in addition, due to the 
amplification of this form of reflection, such servers con- 
stitute a potential DDOS threat by themselves, without the 
attacker even having to coordinate a collection of slaves. 

D. UDP 

Like IP, UDP is ia generic carrier for higher-level pro- 
tocols [Po80], and by itself does not constitute a reflector 
threat because there is no inherent "reply" mechanism built 
into UDP reception, As with TCP above, the port numbers 
in the header may provide for filtering when an attack is 
based on reflecting off of UDP servers running on well- 
known ports. The!length and checksum fields appear to 
provide the same traction as for IP, i.e., essentially none. 

E. DNS 

DNS servers offer two possibilities for reflection. The 
first is a reflector simply sending a DNS reply in response 
to a spoofed DNS request. This form may be recognized 
because the reply will arrive at the victim from source 
port 53. Consequently, the victim can filter it out, but at 
some cost. First, this will impede the victim's own access 
to the DNS via external DNS servers. Probably the vic- 
tim can cope with this by opening up holes in the filtering 
to provide access to a specific set of remote DNS servers, 
and reconfiguring their local DNS to send queries to them. 
Second, some DNS queries are made using a source port 
of 53 as well as a destination port of 53. If the victim 
provides DNS service, then any such incoming requests 
would be filtered out. However, by adding filtering on the 
QR bit in the DN8 header [Mo87], such requests can be 
properly distinguished from the reflector replies. 

The second form of DNS reflection concerns DNS 
servers that in turn recursively query other servers to re- 
solve a request. If the victim is a name server for a partic- 
ular zone, then the attacker can issue a stream of queries to 
a large number of name servers that will in turn cause those 
name servers to bombard the victim server with recur- 
sive queries. The queries needn't even be spoofed, which 
would enable the attacker to launch them in the presence of 
anti-spoof filtering, though this would reveal the slaves' lo- 
cations to any monitoring or logging done at the reflectors. 
But if the queries are spoofed, then the attacker could even 
use the victim's address as the purported source, such that 
when the reflector DNS server supplies a reply of some 
form, that too goes to the victim, a form of amplification 
(though one that can be filtered out). 

Note that caching at the reflector server does not help 
to ameliorate the attack; the attacker simply keeps chang- 
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ing the domain name used in the bogus query, forcing the 
reflector to go to the primary name server each time. 

Summary:  DNS reflection appears to be a serious 
threat for denial-of-service attacks on name servers. The 
full degree of the threat depends on whether enough 
servers support recursion that the second form of reflec- 
tion is a true threat. Anecdotally, it appears that the an- 
swer is yes: a large number of servers do indeed support 
recursive queries. The only apparent solution to this threat 
appears to be to include filtering in name servers so that 
they will only process recursive queries coming from local 
addresses, coupled with filtering at the site's border to en- 
sure that incoming packets with local source addresses are 
dropped. 

E SNMP 

Another widely deployed UDP-based request/reply ser- 
vice is SNMP [CFSD90]. Sites that fail to block off-site 
access to SNMP will often provide a large number of pos- 
sible reflectors, potentially much greater than the number 
of Web servers or DNS servers with recursion enabled. 

However, this attack will be identifiable because it 
comes from the well-known SNMP port (161). In addi- 
tion, it seems quite plausible that most victims can survive 
just fine if external SNMP traffic is filtered out and fails to 
reach them. On the other hand, this could potentially be 
a major problem for service providers who rely on SNMP 
to manage their network. However, they can likely allow 
replies from their own hosts to pass through the filter, as- 
suming their hosts are numbered out of only a few network 
prefixes, and thus are easy to express as filter exceptions. 

Another question regarding this attack is how many sites 
do in fact fail to block incoming SNMP requests. The con- 
cern is that many "open" environments such as educational 
institutes may fall into this category. 

Summary:  likely not a threat. 

G. HTTP 

While the typical operation of an HTTP session is to 
transfer data items between the client and the server, HTTP 
proxy caches provide a way that an HTTP client can ma- 
nipulate a server into initiating a connection to a victim 
web server. Most proxies will happily attempt to fetch 
whatever URL you request from them. These fetches look 
to the victim like legitimate requests; it cannot filter them 
out without losing all of its legitimate clients, too. 

There are three limitations/defenses against proxy re- 
flector attacks. First, it is not clear that there are enough 
proxy caches (as opposed to Web servers themselves) to 
constitute a truly large pool of possible reflectors, though 
with the rise of content distribution networks (CDNs) this 
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may change (and, as noted above, even a fairly modest 
number of reflectors can still serve well to complicate 
traceback). 

Second, in principle proxies can be configured to only 
serve a particular set of clients. However, CDN proxies 
likely cannot do any such restricting, because by their na- 
ture they're meant to serve the Internet public at large. On 
the other hand, the proxies could be configured to only 
serve the pages of their customers. Anecdotally, they do 
not appear today to have this restriction. 

Third, the connection between the slave and the reflec- 
tor cannot be spoofed (unless the reflecting proxy has pre- 
dictable sequence numbers), and hence monitoring or log- 
ging at the proxy will identify the slave's location. 

This last is a major shortcoming. It means that the at- 
tack might be quickly traced back--all  it requires to ex- 
pose the slave is one alert administrator among the many 
off of which a slave is reflecting. 

Summary :  would be a significant threat were it not 
for the likely quick traceback due to the non-spoofed con- 
nection from the slave to the proxy. Definitely a signif- 
icant threat if servers running on stacks with predictable 
sequence numbers are widely deployed. 

H. Other TCP applications / Gnutella 

There are a vast number of different TCP-based applica- 
tions, and certainly some of them will provide some form 
of relaying, implicit or otherwise, that can be exploited 
by an attacker to serve as a reflector (e.g., SMTP relays 
[Po82]; FTP servers and PORT directives [PR85]). 

For nearly all of these, however, the same limitation ap- 
plies as stated above for HTTP reflectors: triggering the re- 
flection requires a non-spoofed connection from the slave 
to the reflector, which then exposes the slave to traceback. 

An exception, however, is Gnutella [Gn00]. As ex- 
plained in [Be00b], Gnutella includes a "push" facility 
analogous to an FTP PORT directive that instructs the 
server to connect to a given IP address and port in order 
to deliver the Gnutella item. However, the key difference 
between this form of reflection and that for FTP is that 
the Gnutella "push" directive can first propagate through 
the Gnutella network, becoming separated from the client 
(in our case, the slave) that injected the request. Thus, 
while the victim can readily trace back to the Gnutella 
server that is attempting to connect to the victim, the next 
step of tracing back to the slave is essentially impossible: 
the request has lost its origin, and there is no information 
that the Gnutella server can log, other than its immediate 
neighbor who passed along the request. While in principle 
with enough logging one could trace back the chain from 
neighbor to neighbor to (eventually) the requesting client, 
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it seems certain that this will prove administratively impos- 
sible. The only apparent fix would be to modify the pro- 
tocol to include propagation path information with "push" 
directives. 

Finally, other large overlay networks (IRC, distributed 
games) may have similar functionality that can be ex- 
ploited. 

Summary: Gnutella could be a major problem. 

L Other UDP applications 

To our knowledge, there are no other UDP applications 
sufficiently widespread to serve as a major potential pool 
of reflectors. If there were, however, and they did not re- 
side on a well-known port (such as UDP port 19 for char- 
gen [RP94]), then they could be used to attack UDP-based 
victim servers such as DNS servers by forging the victim's 
source address and well-known port. While the reflection 
generated by the application would be a junk request as 
far as the victim server was concerned, unless the request 
had a set of characteristics that permitted filtering it out, 
the victim would have to spend resources determining that 
the request was indeed invalid, and the attack would be 
effective. 

Summary: while UDP applications could be a threat in 
principle, no immediate threat is apparent. 

IV. IMPLICATIONS OF REFLECTOR ATTACKS FOR 

TRACEBACK 

A major advantage to attackers in using reflectors in 
DDOS attacks is the degree to which they complicate 
traceback. First, instead of the victim being able to trace 
back the attack traffic from themselves directly to the 
slave, they must induce the operator of one of the reflector 
sites to do so on their behalf, which can be administratively 
cumbersome or difficult. Furthermore, if that traceback is 
then done using a scheme that relies on observing a high 
volume of spoofed traffic, such as ITRACE or probabilis- 
tic packet marking, then the attacker can undermine the 
traceback by spreading each slave's trigger traffic across 
many reflectors, greatly increasing the amount of time re- 
quired by the traceback scheme to gather sufficient traffic 
to analyze. 

However, if traceback is done using a scheme that also 
works for low volume flows, such as SPIE, then this ad- 
vantage disappears, and the attacker should not spread out 
each slave's trigger traffic, as doing so will increase the 
chances that the slave will be detected by one of the differ- 
ent cooperating operators. 

Another facet of the analysis in the previous section to 
keep in mind is that some forms of reflector attacks require 
legitimate (non-spoofed) connections from the slave to the 
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reflector, such as exploiting HTTP proxies. Such reflec- 
tor attacks will expose the slave to potentially immediate 
traceback. 

For reflectors running on TCP stacks with guessable se- 
quence numbers, the attacker may well be able to estab- 
lish the necessary slave-to-reflector connection without ex- 
posing the slave's IP address; however, guessing sequence 
numbers generally requires establishing a series of legiti- 
mate connections beforehand, in order to infer the pattern 
of sequence number generation. If the logs at the reflec- 
tor include these initial probes, then the slave may still be 
exposed. That said, for application-level logs, the attacker 
may be able to escape having the probes logged by fail- 
ing to complete the 3-way TCP connection establishment 
handshake, in which case the application running at user 
level will generally never see the connection. 

Finally, we note that Barros independently discovered 
DDOS reflector attacks, and proposed an elegant modifi- 
cation to ITRACE to address them [Ba00]. Barros' refine- 
ment is for ITRACE routers to sometimes send the ICMP 
message to the soUrce of the just-processed packet rather 
than its destination. The net effect is that if a slave is forg- 
ing traffic from a victim in order to dupe a server into act- 
ing as a reflector, Occasionally touters on the path between 
the slave and the reflector will send ITRACE messages to 
the victim, enabling the victim to trace back the attack to 
the slave(s). 

Note that the efficacy of Barros' "reverse ITRACE" 
mechanism does not depend on Nr, the number of reflec- 
tors, but only on Ns, the number of slaves. From our anal- 
ysis above, it is clear that this appealing scaling property 
makes the mechanism helpful for defending against many 
forms of reflector attacks. 

V. SUMMARY 

The above analysis indicates that there are several sig- 
nificant reflector attack threats: 

• Victims must be able to cope with loss of general access 
to remote services, due to the need to filter out SYN ACKs. 
Such filters could, however, include holes to allow access 
to a small number of particular remote servers. 
• DNS servers can be attacked by reflectors serving re- 
cursive queries. Damage is limited only by the size of 
the reflector pool, i.e., how many name servers there are 
that support recursion and accept requests from arbitrary 
clients. 
• TCP-based servers are for the most part somewhat pro- 
tected against application-level reflection assuming that 
enough of the application servers keep sufficient logs that 
the non-spoofed connection between the slave and the re- 
flector can be used to trace back the attack to the slave. 
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Without this assumption, Web servers can be attacked 
by requests chained through proxies serving as reflectors, 
SMTP servers by mail sent through relays, and any TCP-  

[Pa99] 
based server by requests reflected through mechanisms 

such as FTP PORT directives. 
• TCP-based servers running on TCP stacks with guess- [Po80] 

able sequence numbers are a severe threat. Not  only do 
[Po81a] 

they allow application-level reflection without easy iden- [Po81b] 
tification of  the slave (unless the precursor traffic probing 
the sequence-number progression is logged), but they also [Po81c] 

can provide major  amplification of  the attack traffic due to 
the use o f  ACK-split t ing techniques [SCWA99].  [Po82] 

• Gnutella's "push" facility appears to be a significant [PR85] 
threat. 

[RP941 
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