
for
An analysis of using reflectors

distributed denial-of-service attacks
Vern Paxson

AT&T Center for Internet Research at ICSI
International Computer Science InstitUte

Berkeley, CA U S A
v ern @ aciri, org ',

Abstract--Attackers can render distributed denial-of-
service attacks more difficult to defend against by bouncing
their flooding traffic off of reflectors; that is, by spoofing re-
quests from the victim to a large set of Internet servers that
will in turn send their combined replies to the victim. The
resulting dilution of locality in the flooding stream compli-
cates the victim's abilities both to isolate the attack traffic
in order to block it, and to use traceback techniques for lo-
cating the source of streams of packets with spoofed source
addresses, such as ITRACE [Be00a], probabilistic packet
marking [SWKA00], [SP01], and SPIE [S+01]. We discuss
a number of possible defenses against reflector attacks, find-
ing that most prove impractical, and then assess the degree
to which different forms of reflector traffic will have char-
acteristic signatures that the victim can use to identify and
filter out the attack traffic. Our analysis indicates that three
types of reflectors pose particularly significant threats: DNS
and Gnutella servers, and TCP-based servers (particularly
Web servers) running on TCP implementations that suffer
from predictable initial sequence numbers. We argue in con-
clusion in support of "reverse ITRACE" [Ba00] and for the
utility of packet traceback techniques that work even for low
volume flows, such as SPIE.

I. INTRODUCTION

In a distributed denial-of-service (DDOS) attack, the at-
tacker compromises a number of slaves and installs flood-
ing servers on them, later contacting the set of servers to
combine their transmission power in an orchestrated flood-
ing attack. The use of a large number of slaves both aug-
ments the power of the attack and complicates defending
against it: the dilution of locality in the flooding stream
makes it more difficult for the victim to isolate the attack
traffic in order to block it, and also undermines the po-
tential effectiveness of traceback techniques for locating
the source of streams of packets with spoofed source ad-
dresses.

Figure I illustrates the nature of the attack: one host, the
master, sends control messages to the previously compro-
mised slaves, instructing them to target a given victim. The

ACM SIGCOMM 38

slaves then generate high volume streams of traffic toward
the victim, but with fake or randomized source addresses,
so that the victim cannot locate the slaves.

\

The problem of tracing back such streams of spoofed
packets has recently received considerable attention. In
Bellovin's proposed 1TRACE scheme, routers (or outboard
processors), with a very low probability, send ICMP mes-
sages to the destinations of packets they have just for-
warded [Be00a]. For a high-volume flow, the victim will
eventually receive ICMPs from all of the ITRACE routers
along the path back to the slave, revealing its location.

Savage and colleagues proposed a different scheme, in
which routers with considerably higher probability mark
the packets they process with highly compressed informa-
tion that the victim can decode in order to detect the edges
(pairs of packet-marking routers) traversed by the pack-
ets, again enabling recovery of the path back to the slave
[SWKA00]. This scheme can trace back potentially lower-
volume flows than required for traceback using ITRACE;
however, the scheme runs into computational difficulties
as the number of slaves increases, a problem addressed by
Song and Perrig by supplementing the scheme with the use
of network topology maps [SP01].

In more recent work, Snoeren and colleagues discuss a
Source Path Isolation Engine (SPIE) that records sets of
hashes of packets traversing a given router IS+01]. A vic-
tim can then locate the path of a given packet by querying
routers within a domain for the set of hashes corresponding
to the packet, providing they issue the query soon enough
after the packet was transmitted that the record of its pres-
ence is still available. SPIE has a major advantage over
ITRACE and probabilistic packet marking in that it can
facilitate traceback of even low volume (including single
packet) flows.

The use of hundreds or thousands of slaves can both
greatly complicate traceback (due to the difficulty of disen-
tangling partial traceback information relating to different
sources, and/or having to contact thousands of routers) and

Computer Communication Review

Fig. 1.

/ \ \~
/ \ \
Control \ [olave,~ }

I traffic \
I directs \
slaves at " ~

'~victim " \

""7 Z / /
a . t = v i e t t = ~ /Slaves send

/ streams of ~ [~°%~'f" 'r"'°

Structure of a distributed denial-of-service (DDOS) attack.

/ \ \

Fig. 2. Using reflectors to render a DDOS attack much more diffuse.

ACM SIGCOMM 39 Computer Communication Review

greatly hinder taking action once traceback succeeds (be-
cause it requires installing hundreds of filters and/or con-
tacting hundreds of administrators).

Attackers can do considerably better still by structur-
ing their attack traffic to use reflectors. A reflector is any
IP host that will return a packet if sent a packet. So, for
example, all Web servers, DNS servers, and routers are re-
flectors, since they will return SYN ACKs or RSTs in re-
sponse to SYN or other TCP packets; as are query replies
in response to query requests, and ICMP Time Exceeded
or Host Unreachable messages in response to particular IP
packets.

The attacker first locates a very large number of reflec-
tors, say on the order of 1 million. (This is probably not
too difficult, as there are at least that many Web servers
on the Internet; plus, see below on relaxing this require-
ment.) They then orchestrate their slaves to send to the
reflectors spoofed traffic purportedly coming from the vic-
tim, V. The reflectors will in turn generate traffic from
themselves to V. The net result is that the flood at V ar-
rives not from a few hundred or thousand sources, but from
a million sources, an exceedingly diffuse flood likely clog-
ging every single path to V from the rest of the Interact.

Figure 2 illustrates this modification to a conventional
DDOS attack. Note that the victim does not require any
traceback in order to locate the reflectors; they are readily
identified as the source addresses in the flooding packets
received by the victim. The operator of a reflector, on the
other hand, cannot easily locate the slave that is pumping
the reflector, because the traffic sent to the reflector does
not have the slave's source address, but rather the source
address of the victim.

In principle the operator can use traceback techniques
such as those discussed above in order to locate the slaves.
However, note that the individual reflectors send at a much
lower rate than the slaves would if they were flooding V
directly. Each slave can scatter its reflector triggers across
all or a large subset of the reflectors, with the result being
that if there are Nr reflectors, Ns slaves, and a flooding rate
F coming out of each slave, then each reflector generates
a flooding rate of F ~ = ~-~_b-'. So a local mechanism that
attempts to automatically detect that a site has a flooding
source within it could fail if the mechanism is based on
traffic volume.

In addition, traceback techniques based on observing
large volumes of traffic (ITRACE, probabilistic packet
marking; but not SPIE) will fail to locate any particular
slave sending to a given reflector. If there are Nr reflec-
tors, then it will take Nr times longer to observe the same
amount of traffic at the reflector from a particular slave as
it would if the slave sent to the victim directly. Thus, us-

ACM SIGCOMM 40

ing reflectors provides significant protection against these
forms of traceback even if there aren't more reflectors than
slaves (or even fewer). Against a low-volume traceback
mechanism like SPIE, however, reflectors do not yield
such an advantage~ and indeed the attacker should instead
confine each slave to a small set of reflectors, so that the
use of traceback by the operator of a single reflector does
not reveal the location of multiple slaves.

Note that unlike some forms of denial-of-service at-
tacks, the reflectors do not need to serve as amplifiers
(sending out a la(ger volume of traffic than the attacker
sends to them). They can even somewhat attenuate the
volume of traffic isent to them and still serve their pur-
pose effectively. This latitude on not requiring amplifica-
tion consequently ~ allows a large number of different net-
work mechanisms' to serve as reflectors, facilitating the at-
tacker's task of finding a sufficient number of reflectors to
launch the attack.

Finally, note that we do not consider here two quite dif-
ferent forms of reflectors: social attacks (in which many
people are duped, into attempting to connect to the vic-
tim) and viral attacks (in which the attacker acquires a vast
number of slaves using a virulent virus, and then instructs
the slaves to directly attack the victim, perhaps with per-
fectly legitimate requests [Me00]--the use of reflectors is
basically irrelevant, because the attacker already has such
an immense number of slaves).

II. DEFENSES AGAINST REFLECTORS

There are a number of possible defenses against reflec-
tor attacks:
1. If it is impossible to spoof source addresses in packets,
for example by ubiquitous deployment of ingress filtering
[FS00], then the threat is significantly diminished. The
threat does not entirely go away, though, due to the pos-
sible use of application-level reflectors such as recursive
DNS queries (Section III-E) or HTTP proxy requests (Sec-
tion UI-G), as discussed below. However, while an attacker
can still mount a reflector attack even if the slaves lack the
ability to spoof source addresses, the victim will be able
to more quickly locate the slaves, because if a reflector
server maintains logs of the requests it receives, those logs
will pinpoint the slave location(s).
For the remainder of the discussion, we assume that we
care about preventing attacks in an Interact for which
source integrity is not guaranteed.
2. Traffic generated by reflectors may have sufficient reg-
ularity and semantics that it can be filtered out near the
victim without the filtering itself constituting a denial-of-
service to the viclim ("collateral damage"). Here, "filter-
ing" refers to the general notion of packet classification;

Computer Communication Review

the filtered traffic could then be rate-limited, delayed, or
dropped. We will usually, however, presume that filtering
means dropping the traffic, and assess the dangers of col-
lateral damage in that context.
3. Bogus reflector requests used to pump reflectors may
have sufficient regularity and semantics to enable sites to
deploy filtering to prevent their network elements from
serving as reflectors.
4. In principle it could be possible to deploy traceback
mechanisms that incorporate the reflector end-host soft-
ware itself in the traceback scheme, allowing traceback
through the reflector back to the slave.
5. Traffic patterns resulting from a slave pumping a dis-
parate set of reflectors may be discernible to intrusion de-
tection systems monitoring a site's Internet access link.

Of these, we argue that only (2) is potentially viable.
We regard (1) as out of scope for the entire discussion of
DDOS attacks that utilize spoofed source addresses. (3)
requires widespread deployment of filtering, on a scale
nearly comparable with that required for widespread de-
ployment of anti-spoof filtering, and of a more compli-
cated nature. (4) has enormous deployment difficulties,
requiring incorporation into a large number of different ap-
plications developed and maintained by a large number of
different software vendors, and requiring upgrading of a
very large number of end systems, many of which lack
any direct incentive to do so. In addition, (4) may not help
with traceback in practice if the traceback scheme cannot
cope with a million separate Internet paths to trace back to
a smaller number of sources; neither ITRACE nor proba-
bilistic packet marking appears amenable to doing so. (5)
requires widespread deployment of security technology at
sites which fail to provide such basic security precautions
as anti-spoof mechanisms, not a likely combination.

In Section III we examine the viability of (2) in detail,
finding that most, but not all, reflector-generated traffic can
be filtered without grievously impairing the functionality
of most sites. In Section IV we then look at the impli-
cations of reflector attacks for traceback, focussing on a
modification to ITRACE proposed by Barros [Ba00] and
the use of SPIE [S+01].

III. FILTERING OUT REFLECTOR REPLIES

We now turn to an assessment of the practicality of a
victim site being able to attain relief from a DDOS reflec-
tor flood by filtering out specific types of traffic. To do so,
we need to attempt to catalog the different types of reflec-
tors that an attacker might employ.

We assume that the victim (or an upstream provider as-
sisting the victim) can only afford to deploy stateless ill-
tering, given the potentially immense volume of (bogus)

ACM SIGCOMM 41

state that a flooding attack generates. In principle this
could be relaxed to allow some stateful filtering when ei-
ther the state is highly aggregatable, such as pertaining to
particular pairs of interfaces and address prefixes, or the
state is instantiated only by traffic from the victim, and
hence will not scale disproportionately (unless the attacker
can manipulate the victim into violating this assumption).
We also assume that the victim, with the cooperation of
their service provider, can have such filters installed suffi-
ciently far away from the victim's links that a DDOS attack
that targets the access link bandwidth rather than the vic-
tim's servers directly can still be throttled, if enough of it
matches a particular small set of filters.

Finally, we assume that success in terms of defending
the victim is that the filtering allows a significant propor-
tion of the victim's service to continue; we do not require
that the filtering leave the service completely unimpaired.

Table I summarizes the analysis developed in the re-
mainder of this section.

A. IP packets

We begin by analyzing how the elements of the IP
header [Po81a] in amving traffic might relate to a reflector
attack.

The first fields in the header are the version and the
header length (presence of options). Clearly, the version
field provides no traction, as the packet won't even make
it to the victim unless it corresponds to a version of IP that
the victim cares about, and the field is too narrow to likely
provide useful filtering. (We confine our subsequent treat-
ment of IP and ICMP to IPv4.) The presence of options
similarly does not provide any traction: options are almost
never used due to their performance impact, so they won't
show up in either legitimate or reflector traffic; even if the
attacker can induce their presence, the victim will almost
certainly be able to filter out the traffic without impairing
themselves.

The type of service field in some scenarios could in
the future be quite helpful. If traffic to the victim nor-
mally arrives with a particular Diffserv Code Point (DSCP)
[NBBB98], then likely a static filter allowing only such
traffic would help screen out reflector traffic, though at a
cost of screening out legitimate auxiliary traffic to the vic-
tim, too. This latter could be quite expensive, if it includes
things like replies to the victim's DNS queries, or the vic-
tim's outbound Web surfing. (Whether the attacker can
manipulate a reflector into having a particular DSCP at-
tached to its traffic will depend on the classifiers that wind
up being deployed at different points in the network. If
Diffserv traffic in general is premium traffic, then it ap-
pears plausible that often the attacker will not be able to

Computer Communication Review

Protocol~element

IP version
IP options
IP TOS / DSCP
IP length
IP ID
IP fragments
IP TTL
IP protocol
IP checksum
IP source
IP destination

Filtering notes

Insignificant.
Insignificant.
Could aid victim if attack traffic non-premium.
Insignificant.
Insignificant.
No cost to filter out unless victim uses fragment-inducing protocols (NFS, AFS, GRE).
None.
None.
None.
Only filterable if victim can identify as uninteresting.
Only filterable if victim can identify as uninteresting.

ICMP request/reply Likely not difficult to filter out. Includes smurf attacks.
ICMP problem Likely not difficult to filter out. :
TCP source port
TCP SYN ACK
TCP RST
TCP guessable seq. no.
T f r c P

If filtered, no general access to remote server of given type.
If filtered, no general access to remote servers.
If filtered, state will accumulate over time.
Major threat .
Would be significant threat but easily filtered due to limited deployment.

UDP No threat due to no inherent reply mechanism.
UDP length Insignificant.
UDP checksum Insignificant.
DNS query/response Can be filtered by opening up holes to specific remote servers.
Recursive DNS queries Major threat to name servers.
SNMP request/response Generally can be filtered out with little impact on victim.
HTTP proxy caches A significant threat, but likely easily traced back to slave.
Gnutella "push" Major threat.

t

Other TCP applications Will in general be traceable to slave if applicatio n server keeps logs.
Other UDP applications Unknown.
Other overlay networks Unknown. i

TABLE I
SUMMARY OF DIFFERENT REFLECTOR THREATS AND THE EFFICACY OF COMBATTING THEM USING FILTERING.

force the marking, because to do so they will have to dupe
a classifier upon which billing for the premium traffic re-
lies. Presumably this will be difficult to do, given the fi-
nancial motivations to secure use of the premium traffic.)

It is hard to see what filtering benefit can be had from
the length field, since few forms of reflectors will be lim-
ited to sending only particular-length replies, and, even if
they did, filtering them out would also filter out legitimate
traffic. However, if the traffic to a victim tends to come
only in particular sizes, such as small DNS requests, then
the victim can possibly filter out any reflector traffic that
does not come in that size.

The IP ID field is very difficult for the attacker to ma-
nipulate, and carries only a smidgen of useful semantic
information. Thus, it is very hard to see how it could be

ACM SIGCOMM 42

usefully filtered on.

It is likewise difficult to see how the attacker can take
much advantage of fragments . It will only be possible
to generate them for reflectors that send large replies us-
ing TCP/IP stacks that do not implement PMTU discov-
ery [Mo90], or for reflectors that have paths to the vic-
tim that transit GRE tunnels [F+00]. Fragments offer the
benefit to the attacker of making it difficult for the victim
to filter on TCP or UDP header information, since it will
only be present in the initial fragments. (Also, that header
might itself be split across multiple fragments; some stacks
have been observed to do this as part of their normal op-
eration [Pa99].) But due to the limited use of fragments
in the Intemet, the victim could likely filter out all frag-
mented traffic and suffer little degraded service, other than

Computer Communication Review

for some implementations of protocols like NFS and AFS
that frequently send high volumes of fragmented traffic, or
for sites that rely on GRE tunnels.

The TTL field is easier for the attacker to manipulate
(by choosing the distance from the reflector to the victim,
and choosing reflectors according to their particular stacks,
and hence their particular initial TTLs). But it is hard to
see how the TTL can be used for any useful filtering, un-
less the only legitimate communication the victim partakes
in comes from a small set of remote sites that can be char-
acterized with a narrow TTL range.

The protocol field will determine the next layer of filter-
ing, as discussed below for particular protocols. Clearly,
protocols unimportant to the victim can be filtered out
based on this field, so the attacker will need to select re-
flectors that have one of the same protocol fields as the
victim's desired traffic. But this will usually be very easy
to do, because the desired traffic will almost certainly in-
clude TCP and UDE

The checksum field should provide no traction. It is
expensive for a filter to verify, but also appears impossible
for the attacker to usefully manipulate.

The final two fields are the source and destination ad-
dresses. Obviously, the same filtering traction applies to
these as does for ordinary DDOS floods: if either can be
identified as an uninteresting address, then the victim can
filter out the traffic; the attacker attempts to ensure that this
is not the case. Also note that with a reflector attack, the
source address will always be legitimate (Figure 2), unlike
with the usual direct-spoofing attack (Figure 1).

Summary: assuming the attacker picks source and des-
tination addresses of interest to the victim, the only angle
the victim might try at the IP level is filtering on the DSCP.

B. ICMP

There are two different ways to elicit ICMP re-
flector replies: using ICMP protocols designed as re-
quest/response (such as ICMP echo), or sending traffic that
will generate an ICMP message because of some problem
associated with the traffic [Po81b].

In the first category are the ping ICMPs (echo,
timestamp, address mask, router solicitation, information
request/reply). Of these, only the first is widely used, and
presumably the victim can get by with little difficulty if
replies to all of these are filtered out. (We note, though,
that smurf attacks, in which the attacker sends ICMP echo
requests to subnet broadcast addresses, are essentially a
form of reflector DDOS attack.)

In the second category (unreachable, source quench,
redirect, time exceeded, parameter problem), the most sig-
nificant for the victim will be the unreachables, which

ACM SIGCOMM 43

include host unreachable (useful for tearing down state
in some circumstance) and need fragmentation (necessary
for PMTU discovery), and time exceeded (needed to run
t r a c e r o u t e) . It appears plausible that the victim would
be willing to forgo these as a means to suppress a flooding
attack.

Summary: reflectors generating ICMP messages can
likely be filtered out.

C. TCP

Rather than walk the TCP header [Po81c], we consider
the types of packets that an attacker can coax from a TCP
reflector, as these have a great impact on filtering opportu-
nities.

For most victims, what the attacker really wants is a
packet that looks like one sent by a true client of the vic-
tim: an initial SYN packet, a packet containing data, an
acknowledgment, or a FIN. (An additional type, RST, is
discussed shortly.)

However, we first note that any packet from a reflec-
tor will have a source port corresponding to the port on
which the reflector runs. In particular, for Web servers (the
most widely available TCP reflector), this will usually be
port 80. Accordingly, the victim can filter out any incom-
ing traffic with a source port of 80 (say), and eliminate any
threat from TCP-based reflectors. Naturally, this prevents
the victim from access to the same service remotely, which
may be a significant difficulty; but perhaps an acceptable
one during a time of flooding,

Putting that limitation aside, inspecting the TCP state
diagram in [Po81c] shows that there is no way to trigger
a reflector into sending an initial SYN packet unless it has
an application-level means to do so (e.g., FTP "bounce"
attack [Ce97]). Furthermore, since the reflector will not
have an existing connection open to the victim, the only
packets it can send in response to receiving a packet pur-
portedly from the victim are either a RST or a SYN ACK
(though see below). If the victim filters out RST packets,
this will over time cause its servers to hold more state than
they need to, eventually clogging them with stale connec-
tions. (However, depending on the service, these connec-
tions may be amenable to manual garbage collecting.) If
the victim filters out SYN ACKs, then they lose access to
remote services (if there isn't more specific port filtering
they can employ, per the above); this may or may not be
acceptable, depending on the specifics of the victim's op-
eration.

There is, however, another possibility. If the reflector's
stack has guessable TCP sequence numbers [Be96], then
the attacker can potentially drive the stack through the en-
tire TCP state machine, tricking it into sending data seg-

Computer Communication Review

ments, acknowledgments, etc. This is a disaster for the
victim. But it is so even without delving into DDOS in-
cluding slaves and the l ike--a recently discovered attack
exploits such stacks to realize major amplification by dup-
ing Web servers into transmitting large items to the victim,
and exploiting "ACK splitting" techniques [SCWA99] to
greatly enhance the sending rate [Gu01]. Other applica-
tions such as FTP or streaming media servers could like-
wise be exploited. If done as part of a reflector attack, then
the attacker gains both the benefits of amplification and a
highly diffuse flood at the victim, a lethal combination.

Another way an attacker can trick a remote server
into sending data packets towards the victim is by forg-
ing a T/TCP connection request [BI94] from the victim.
T/TCP was designed to resist inadvertent confusion of old
network segments with new ones, via the CC/CCECHO
mechanism, but the only requirement placed upon the se-
quence numbers used by the mechanism is simply that
they be monotone-increasing. Consequently, it is simple
to pick a sequence number in the initial, spoofed T/TCP
SYN packet such that the server's stack will find it accept-
able. If the SYN packet also contains an expensive request
like "GET h u g e ± m a g e , j pg" , then the server will begin
transmitting the data to the victim immediately.

Three factors limit the severity of the T/TCP attack.
First, the T/TCP server will begin in slow start (the specifi-
cation suggests an initial sending window of 4 KB [Br94],
but this is for the client initiating the connection, not the
server replying to it). Unless the server's stack has guess-
able sequence numbers as discussed above, the attacker
can't exploit ACK-splitting techniques to move the server
out of slow start.

Second, the packets sent from the server to the victim
will have CCECHO options in their TCP headers, which
makes them amenable to stateless packet filtering, though
the filter is potentially somewhat complicated, because due
to the use of other TCP options, the location of the CCE-
CHO option in the header will not always be the same. (In
addition, such filtering will prevent the victim from access-
ing external servers using T/TCP; not a significant limita-
tion, however, as they can disable their own use of T/TCP
and then the external servers will not use it in reply.)

Third, TfFCP is not widely deployed, so it will be diffi-
cult for an attacker to find a large number of TfFCP reflec-
tors. Furthermore, if such reflectors were used in a high-
profile DDOS attack, likely many servers would soon be
configured to no longer use T/TCP.

Summary : if a site can endure loss of contact to exter-
nal servers, and can tolerate failing to tear down legitimate
connections that the remote peer has reset, then filtering of
SYN ACKs and RSTs will protect against the main form

ACM SlGCOMM 44

of general TCP-based reflector attacks. One exception is if
the attacker can find large numbers of remote servers with
guessable initial sequence numbers; in addition, due to the
amplification of this form of reflection, such servers con-
stitute a potential DDOS threat by themselves, without the
attacker even having to coordinate a collection of slaves.

D. UDP

Like IP, UDP is ia generic carrier for higher-level pro-
tocols [Po80], and by itself does not constitute a reflector
threat because there is no inherent "reply" mechanism built
into UDP reception, As with TCP above, the port numbers
in the header may provide for filtering when an attack is
based on reflecting off of UDP servers running on well-
known ports. The!length and checksum fields appear to
provide the same traction as for IP, i.e., essentially none.

E. DNS

DNS servers offer two possibilities for reflection. The
first is a reflector simply sending a DNS reply in response
to a spoofed DNS request. This form may be recognized
because the reply will arrive at the victim from source
port 53. Consequently, the victim can filter it out, but at
some cost. First, this will impede the victim's own access
to the DNS via external DNS servers. Probably the vic-
tim can cope with this by opening up holes in the filtering
to provide access to a specific set of remote DNS servers,
and reconfiguring their local DNS to send queries to them.
Second, some DNS queries are made using a source port
of 53 as well as a destination port of 53. If the victim
provides DNS service, then any such incoming requests
would be filtered out. However, by adding filtering on the
QR bit in the DN8 header [Mo87], such requests can be
properly distinguished from the reflector replies.

The second form of DNS reflection concerns DNS
servers that in turn recursively query other servers to re-
solve a request. If the victim is a name server for a partic-
ular zone, then the attacker can issue a stream of queries to
a large number of name servers that will in turn cause those
name servers to bombard the victim server with recur-
sive queries. The queries needn't even be spoofed, which
would enable the attacker to launch them in the presence of
anti-spoof filtering, though this would reveal the slaves' lo-
cations to any monitoring or logging done at the reflectors.
But if the queries are spoofed, then the attacker could even
use the victim's address as the purported source, such that
when the reflector DNS server supplies a reply of some
form, that too goes to the victim, a form of amplification
(though one that can be filtered out).

Note that caching at the reflector server does not help
to ameliorate the attack; the attacker simply keeps chang-

Computer Communication Review

ing the domain name used in the bogus query, forcing the
reflector to go to the primary name server each time.

Summary: DNS reflection appears to be a serious
threat for denial-of-service attacks on name servers. The
full degree of the threat depends on whether enough
servers support recursion that the second form of reflec-
tion is a true threat. Anecdotally, it appears that the an-
swer is yes: a large number of servers do indeed support
recursive queries. The only apparent solution to this threat
appears to be to include filtering in name servers so that
they will only process recursive queries coming from local
addresses, coupled with filtering at the site's border to en-
sure that incoming packets with local source addresses are
dropped.

E SNMP

Another widely deployed UDP-based request/reply ser-
vice is SNMP [CFSD90]. Sites that fail to block off-site
access to SNMP will often provide a large number of pos-
sible reflectors, potentially much greater than the number
of Web servers or DNS servers with recursion enabled.

However, this attack will be identifiable because it
comes from the well-known SNMP port (161). In addi-
tion, it seems quite plausible that most victims can survive
just fine if external SNMP traffic is filtered out and fails to
reach them. On the other hand, this could potentially be
a major problem for service providers who rely on SNMP
to manage their network. However, they can likely allow
replies from their own hosts to pass through the filter, as-
suming their hosts are numbered out of only a few network
prefixes, and thus are easy to express as filter exceptions.

Another question regarding this attack is how many sites
do in fact fail to block incoming SNMP requests. The con-
cern is that many "open" environments such as educational
institutes may fall into this category.

Summary: likely not a threat.

G. HTTP

While the typical operation of an HTTP session is to
transfer data items between the client and the server, HTTP
proxy caches provide a way that an HTTP client can ma-
nipulate a server into initiating a connection to a victim
web server. Most proxies will happily attempt to fetch
whatever URL you request from them. These fetches look
to the victim like legitimate requests; it cannot filter them
out without losing all of its legitimate clients, too.

There are three limitations/defenses against proxy re-
flector attacks. First, it is not clear that there are enough
proxy caches (as opposed to Web servers themselves) to
constitute a truly large pool of possible reflectors, though
with the rise of content distribution networks (CDNs) this

ACM SIGCOMM 45

may change (and, as noted above, even a fairly modest
number of reflectors can still serve well to complicate
traceback).

Second, in principle proxies can be configured to only
serve a particular set of clients. However, CDN proxies
likely cannot do any such restricting, because by their na-
ture they're meant to serve the Internet public at large. On
the other hand, the proxies could be configured to only
serve the pages of their customers. Anecdotally, they do
not appear today to have this restriction.

Third, the connection between the slave and the reflec-
tor cannot be spoofed (unless the reflecting proxy has pre-
dictable sequence numbers), and hence monitoring or log-
ging at the proxy will identify the slave's location.

This last is a major shortcoming. It means that the at-
tack might be quickly traced back--all it requires to ex-
pose the slave is one alert administrator among the many
off of which a slave is reflecting.

Summary : would be a significant threat were it not
for the likely quick traceback due to the non-spoofed con-
nection from the slave to the proxy. Definitely a signif-
icant threat if servers running on stacks with predictable
sequence numbers are widely deployed.

H. Other TCP applications / Gnutella

There are a vast number of different TCP-based applica-
tions, and certainly some of them will provide some form
of relaying, implicit or otherwise, that can be exploited
by an attacker to serve as a reflector (e.g., SMTP relays
[Po82]; FTP servers and PORT directives [PR85]).

For nearly all of these, however, the same limitation ap-
plies as stated above for HTTP reflectors: triggering the re-
flection requires a non-spoofed connection from the slave
to the reflector, which then exposes the slave to traceback.

An exception, however, is Gnutella [Gn00]. As ex-
plained in [Be00b], Gnutella includes a "push" facility
analogous to an FTP PORT directive that instructs the
server to connect to a given IP address and port in order
to deliver the Gnutella item. However, the key difference
between this form of reflection and that for FTP is that
the Gnutella "push" directive can first propagate through
the Gnutella network, becoming separated from the client
(in our case, the slave) that injected the request. Thus,
while the victim can readily trace back to the Gnutella
server that is attempting to connect to the victim, the next
step of tracing back to the slave is essentially impossible:
the request has lost its origin, and there is no information
that the Gnutella server can log, other than its immediate
neighbor who passed along the request. While in principle
with enough logging one could trace back the chain from
neighbor to neighbor to (eventually) the requesting client,

Computer Communication Review

it seems certain that this will prove administratively impos-
sible. The only apparent fix would be to modify the pro-
tocol to include propagation path information with "push"
directives.

Finally, other large overlay networks (IRC, distributed
games) may have similar functionality that can be ex-
ploited.

Summary: Gnutella could be a major problem.

L Other UDP applications

To our knowledge, there are no other UDP applications
sufficiently widespread to serve as a major potential pool
of reflectors. If there were, however, and they did not re-
side on a well-known port (such as UDP port 19 for char-
gen [RP94]), then they could be used to attack UDP-based
victim servers such as DNS servers by forging the victim's
source address and well-known port. While the reflection
generated by the application would be a junk request as
far as the victim server was concerned, unless the request
had a set of characteristics that permitted filtering it out,
the victim would have to spend resources determining that
the request was indeed invalid, and the attack would be
effective.

Summary: while UDP applications could be a threat in
principle, no immediate threat is apparent.

IV. IMPLICATIONS OF REFLECTOR ATTACKS FOR

TRACEBACK

A major advantage to attackers in using reflectors in
DDOS attacks is the degree to which they complicate
traceback. First, instead of the victim being able to trace
back the attack traffic from themselves directly to the
slave, they must induce the operator of one of the reflector
sites to do so on their behalf, which can be administratively
cumbersome or difficult. Furthermore, if that traceback is
then done using a scheme that relies on observing a high
volume of spoofed traffic, such as ITRACE or probabilis-
tic packet marking, then the attacker can undermine the
traceback by spreading each slave's trigger traffic across
many reflectors, greatly increasing the amount of time re-
quired by the traceback scheme to gather sufficient traffic
to analyze.

However, if traceback is done using a scheme that also
works for low volume flows, such as SPIE, then this ad-
vantage disappears, and the attacker should not spread out
each slave's trigger traffic, as doing so will increase the
chances that the slave will be detected by one of the differ-
ent cooperating operators.

Another facet of the analysis in the previous section to
keep in mind is that some forms of reflector attacks require
legitimate (non-spoofed) connections from the slave to the

ACM SIGCOMM 46

reflector, such as exploiting HTTP proxies. Such reflec-
tor attacks will expose the slave to potentially immediate
traceback.

For reflectors running on TCP stacks with guessable se-
quence numbers, the attacker may well be able to estab-
lish the necessary slave-to-reflector connection without ex-
posing the slave's IP address; however, guessing sequence
numbers generally requires establishing a series of legiti-
mate connections beforehand, in order to infer the pattern
of sequence number generation. If the logs at the reflec-
tor include these initial probes, then the slave may still be
exposed. That said, for application-level logs, the attacker
may be able to escape having the probes logged by fail-
ing to complete the 3-way TCP connection establishment
handshake, in which case the application running at user
level will generally never see the connection.

Finally, we note that Barros independently discovered
DDOS reflector attacks, and proposed an elegant modifi-
cation to ITRACE to address them [Ba00]. Barros' refine-
ment is for ITRACE routers to sometimes send the ICMP
message to the soUrce of the just-processed packet rather
than its destination. The net effect is that if a slave is forg-
ing traffic from a victim in order to dupe a server into act-
ing as a reflector, Occasionally touters on the path between
the slave and the reflector will send ITRACE messages to
the victim, enabling the victim to trace back the attack to
the slave(s).

Note that the efficacy of Barros' "reverse ITRACE"
mechanism does not depend on Nr, the number of reflec-
tors, but only on Ns, the number of slaves. From our anal-
ysis above, it is clear that this appealing scaling property
makes the mechanism helpful for defending against many
forms of reflector attacks.

V. SUMMARY

The above analysis indicates that there are several sig-
nificant reflector attack threats:

• Victims must be able to cope with loss of general access
to remote services, due to the need to filter out SYN ACKs.
Such filters could, however, include holes to allow access
to a small number of particular remote servers.
• DNS servers can be attacked by reflectors serving re-
cursive queries. Damage is limited only by the size of
the reflector pool, i.e., how many name servers there are
that support recursion and accept requests from arbitrary
clients.
• TCP-based servers are for the most part somewhat pro-
tected against application-level reflection assuming that
enough of the application servers keep sufficient logs that
the non-spoofed connection between the slave and the re-
flector can be used to trace back the attack to the slave.

Computer Communication Review

Without this assumption, Web servers can be attacked
by requests chained through proxies serving as reflectors,
SMTP servers by mail sent through relays, and any TCP-

[Pa99]
based server by requests reflected through mechanisms

such as FTP PORT directives.
• TCP-based servers running on TCP stacks with guess- [Po80]

able sequence numbers are a severe threat. Not only do
[Po81a]

they allow application-level reflection without easy iden- [Po81b]
tification of the slave (unless the precursor traffic probing
the sequence-number progression is logged), but they also [Po81c]

can provide major amplification of the attack traffic due to
the use o f ACK-split t ing techniques [SCWA99]. [Po82]

• Gnutella's "push" facility appears to be a significant [PR85]
threat.

[RP941

[SCWA99] VI . ACKNOWLEDGMENTS

My thanks to Steve Bellovin and Cesar Eduardo Barros

for their valuable comments on this work, and also to the

anonymous reviewers for their excellent comments .

[aa00]

[Be96]

[Be00a]

[BeOOb]

[Br94]

[CFSD90]

[Ce97]

[F+00]

[FS00]

[Gn00]
[Gu01]

[Me00]
[Mo871

[Mo90]

REFERENCES

C. Barros, "[LONG] A Proposal for ICMP Traceback Mes-
sages," http : //www. research, att. com/lists/
ietf-itrace/2000/09/msg00044.html,

Sept. 18, 2000.
S. Bellovin, "Defending Against Sequence Number At-
tacks," RFC 1948, May 1996.
S. Bellovin, "ICMP Traceback Messages," Interact
Draft, http : //www. research, att. com/~smb/
papers/draft-bellovin-itrace- 00. txt,

March 2000.
S. Bellovin, "Security Aspects of Napster and Gnutella,"
http: //www. research, att. com/~smb/talks /

Naps t e rGnu t e i i a / index, htm, June 2000.

R. Braden, "T/TCP - - TCP Extensions for Transactions:
Functional Specification," RFC 1644, July 1994.
J. Case, M. Fedor, M. Schoffstall and C. Davin, "Sim-
ple Network Management Protocol (SNMP)," RFC 1157,
May 1990.
CERT Coordination Center, "FTP Bounce," CERT
Advisory CA-1997-27, http://www, cert. org/

advisories/CA-1997-27, html, December 1997.

D. Farinacci, T. Li, S. Hanks, D. Meyer and R Traina,
"Generic Routing Encapsulation (GRE), RFC 2784, March
2000.
P. Ferguson and D. Senie, "Network Ingress Filtering: De-
feating Denial of Service Attacks which employ IP Source
Address Spoofing," RFC 2827, May 2000.
Gnutella, http://gnutella.wego.com, 2000.
Guardent, "Guardent releases information regarding
flaw in Intemet infrastructure," h t t p : //www. g u a r d
e n t . cora/pr2 001- 0 3 - 1 2 - i p s . html, March 2001.
E Metzger, private communication, February 2000.
E Mockapetris, "Domain names - - implementation and
specification" RFC 1035, November 1987.
J. Mogul and S. Deering, "Path MTU discovery,"
RFC 1191, November 1990.

ACM SIGCOMM 47

[NBBB98]

[SWKA00]

[S+01]

[SP01]

K. Nichols, S. Blake, E Baker and D. Black, "Definition
of the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers," RFC 2474, December 1998.
V. Paxson, "Bro: A System for Detecting Network In-
truders in Real-Time," Computer Networks 31(23-24), pp.
2435-2463, December 1999.
J. Postel, "User Datagram Protocol," RFC 768, Au-
gust 1980.
J. Postel, "Interact Protocol," RFC 791, September 1981.
J. Postel, "Internet Control Message Protocol," RFC 792,
September 1981.
J. Postel, "Transmission Control Protocol," RFC 793,
September 1981.
J. Postel, "Simple Mail Transfer Protocol," RFC 821,
August 1982.
J. Postel and J. Reynolds, "File Transfer Protocol,"
RFC 959, October 1985.
J. Reynolds and J. Postel, "Assigned Numbers," RFC 1700,
October 1994.
S. Savage, N. Cardwell, D. Wetherall and T. Anderson,
"TCP Congestion Control with a Misbehaving Receiver,"
Computer Communication Review, 29(5), pp. 71-78, Oc-
tober 1999.
S. Savage, D. Wetherall, A. Karlin and T. Anderson,

"Practical Network Support for IP Traceback," Prec.
ACM/SIGCOMM, pp. 295-306, August 2000.
A. Snoeren, C. Partridge, L. Sanchez, W. Strayer, C. Jones
and F. Tchakountio, "Hash-Based IP Traceback," Prec.
ACM/SIGCOMM, to appear, August 2001.
D. Song and A. Perrig, "Advanced and Authenticated
Marking Schemes for IP Traceback," Prec. IEEE INFO-
COM, April 2001.

Computer Communication Review

