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ABSTRACT
We put forth the notion of a dual receiver cryptosystem and
implement it based on bilinear pairings over certain elliptic
curve groups. The cryptosystem is simple and efficient yet
powerful, as it solves two problems of practical importance
whose solutions have proven to be elusive before:
(1) A provably secure “combined” public-key cryptosystem
(with a single secret key per user in space-limited environ-
ment) where the key is used for both decryption and signing
and where encryption can be escrowed and recovered, while
the signature capability never leaves its owner. This is an
open problem proposed by the work of Haber and Pinkas.
(2) A puzzle is a method for rate-limiting remote users by
forcing them to solve a computational task (the puzzle).
Puzzles have been based on cryptographic challenges in the
past, but the successful design of embedding a useful cryp-
tographic task inside a puzzle, originally posed by Dwork
and Naor, remained an open problem till today. We model
and present “useful security puzzles” applicable in two sce-
narios: a secure fileserver, and an online transaction server
(such as a webserver).

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems; D.4.6
[Security and Protection]: Access Controls

General Terms
Security, Design, Theory

Keywords
Puzzles, Useful Secure Computation, Public Key, Digital
Signature, Key Escrow, Pairing-based Cryptography, Ellip-
tic Curves
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1. INTRODUCTION
We introduce the notion of a dual receiver cryptosystem,

which enables a ciphertext to be decrypted by two indepen-
dent receivers. To implement a dual receiver cryptosystem,
one may use the methodology suggested in [37], by using the
first receiver’s key and the second receiver’s key and encrypt-
ing the same plaintext with both. This, however, makes the
ciphertext (which should also include a proof of consistent
encryption) inefficient. Even in a practice-oriented adapta-
tion of the dual ciphertext methodology [12], such a multi-
cryptosystem scheme is not the proper efficient solution.
To achieve a practical system, we build on any bilinear

map between two groups, and in particular, we use a pairing
defined on certain elliptic curves. Several recent papers have
used pairings to construct cryptosystems, and these recent
designs inspired our construction’s components. The first
and most basic design is the three-party one-round Diffie-
Hellman key exchange proposed by Joux [28]. A partic-
ularly elegant and surprising cryptosystem is the identity-
based encryption scheme proposed by Boneh and Franklin
[6], in which the public key is a user’s identity and a key-
generation authority assigns the user a private key. Hierar-
chical identity-based systems were given in [17], and Boneh,
Lynn, and Shacham [7] used pairings to generate short sig-
natures. Various other constructions have been proposed.
Our basic design is a cryptosystem that transforms the

three-party one-round Diffie-Hellman key exchange proposed
by Joux [28] into a dual receiver cryptosystem public key.
This is analogous to the construction of the El Gamal en-
cryption from the Diffie-Hellman key exchange protocol, and
is therefore simple and efficient. We show that this sim-
ple construction is quite powerful by demonstrating how it
solves two open issues in the literature: how to construct
public-key cryptosystems that support encryption and sig-
nature generation with a single private key per user (called
“combined cryptosystems”), and how to construct “useful”
computational puzzles secure under certain assumptions.
We begin with an overview of these two problems before

we explain the details of the dual receiver cryptosystem. In
Section 2, we formally define public-key schemes, the no-
tions of security we used, and the Bilinear Diffie-Hellman
assumption, which is the basis for the security of our sys-
tem. Sections 3 and 4 present the dual receiver ciphertext
scheme and its security. Section 5 discusses our decryption-
oriented puzzles. The appendices contain an overview of the
Tate pairing, and proofs for Theorems 3.1 and 4.1.
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1.1 Combined Cryptosystems
Public key systems supporting both encryption and sig-

nature generation with a single private key portion per user
[21] model a public key in a constrained environment that
can afford only a single key per user. The user is required
to both sign and decrypt with this single secret key. (This
design may arise in constrained environments where a sys-
tem cannot support enough long term non-volatile memory,
or as a flexible design tool in cases where a system is spec-
ified to support only signatures but with the outlook that
an encryption requirement may be added later after the de-
sign is finished). Various systems, e.g., PGP, used combined
schemes before, but without any formal proof of security.
The use of a single key for both encryption and signa-

ture generation is a problem in certain applications where
the encrypted information must be recoverable by a third
party (e.g., a security officer). This is true for medical and
financial records where privacy and secrecy are becoming
mandatory (e.g., the Health Insurance Portability and Ac-
countability Act (HIPAA)), yet the necessity for emergency
access remains. However, no authority, and in fact no one
but the user, should have the capability to sign the user’s
name in order to preserve non-repudiation. This issue has
been discussed in the literature, as in [13], which recom-
mended that different tasks use separate keys due to escrow.
Ideally, the same encryption system should be able to create
recoverable ciphertexts for official use and non-recoverable
ciphertexts for private use. Even better would be a securely
combined encryption and signature system that uses the
same private key for both functions, allowing each instal-
lation of the system to adopt a “key recovery policy” in a
flexible way. The problem of having a single private key per
user together with simultaneous escrow of the decryption
capability and non-escrow of the signing capability has been
considered self-contradictory and perhaps somewhat para-
doxical, and was one of the earliest criticism raised against
combined cryptosystems when they were first suggested [40].
Our work answers this open problem. We propose a com-

bined public key system composed of an encryption scheme
secure against chosen-ciphertext attacks in which the en-
crypted message is either non-recoverable or recoverable by
parties that can be chosen differently for each message, and
a signature scheme secure against adaptive chosen-message
attacks (including attacks by the escrow agent). Both sig-
natures and ciphertexts that use the same secret key consist
of a single cryptosystem. Furthermore, a sender can escrow
her message to a party of the sender’s choosing without this
party being involved in any pre-processing. This achieves
full flexibility in key management and recovery policy (and
the recovering party is only involved in the recovery). Ob-
viously, we do not escrow keys directly in our design but
employ the dual receiver cryptosystem method.
As noted by Boneh and Franklin, key escrow is inherent

in identity-based schemes, since the key-generation author-
ity knows all the users’ private keys. Verheul [46] had sug-
gested that the user have two keys, one that is escrowed to
a designated recovery agent who gets involved in key gen-
eration and a second one that is not escrowed and can also
be used for signing. However, this scheme does not achieve
our goals of allowing a single key per user or per server with
careful modeling and security proofs. In fact, we are not
aware of any prior work that has solved the separation of
key management of combined cryptosystems.

1.2 Useful Puzzles
Computational puzzles have been proposed as a means to

protect servers from resource-depletion attacks [31, 9, 47],
such as TCP SYN floods [45]. The basic idea is to require
every client to perform some computationally expensive but
easily verifiable (by the server) computation. Attackers is-
suing large numbers of concurrent requests will need con-
siderable amounts of computational resources, making such
attacks difficult to mount, while low-rate legitimate clients
will not be severely affected.
Puzzle schemes typically use a one-way function (OWF)

to construct a hard computational challenge with a short-
cut: knowledge of an input to the OWF allows the server to
efficiently compute the result, while a client presented with
a result must exhaustively search (brute force) through the
space of potential inputs (applying the OWF to each) to de-
termine the correct value. Thus, a server can ask the client
a question similar to “which 32-bit number, when supplied as
input to the SHA1 OWF, results in the value 0xdeadbeef”?
The server can pick the input value at random, and may
vary its size to reflect the computational resources of the
clients and attackers.
However, solving a puzzle represents “useless” computa-

tion in the sense that, other than rate-limiting requests, it
serves no other purpose. One can imagine a server that uses
the clients that request some service to solve a useful prob-
lem. Such a “useful puzzle” must have specific properties:
Computational intensity: The puzzle should be a moder-
ate but serious computational task, assuring a certain slow-
down of the accessing party (client).
Reliability: It should be computationally efficient for the
challenger (server) to verify the result of the puzzle (much
easier to check than to compute).
Usefulness: The result of the computation should be useful
to the server.
Non-dependability: If the puzzle is not actually solved
by the client, the server should still be able to solve it (or
give it to another client to solve).
Security: The client must not learn the result of the com-
putation, any long-term cryptographic keys, or any other
secrets of the server.
The question is, how can a puzzle be useful, reliable and

secure? If it is to be reliable, it means the challenger has
to repeat the work of the accessing party in order to verify,
thus hurting the notion of “usefulness.” If it is to be useful,
the accessing party needs some secret information that is re-
quired to do the useful work, which may result in giving away
the security of the challenger (who needs to provide trapdoor
information or other secrets that are easier to check). The
straightforward approach taken with computational puzzles
thus far does not meet these requirements, except for some
very specific e-coin minting applications [26]. In this paper,
we answer the question on the existence of useful puzzles,
first posed in [11], in the affirmative. We propose the first
(to our knowledge) “useful security puzzles” scheme where
the underlying computation is cryptographic.
At the heart of the solution is the dual receiver cryp-

tosystem. We exploit a cryptosystem that effectively has
two receivers: the challenger, who needs to have a puzzle
solved as part of a protocol, and a second receiver that is
someone who has a different (perhaps temporary) trapdoor
that the challenger can provide him with. In our scheme,
the second receiver is another client that is contacting the
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same challenger (server) and is requesting some service in
the same protocol. Getting the trapdoor and doing the use-
ful work is only part of the decryption, since the accessing
party should not learn the plaintext, and the result should be
easily checkable. What we exploit are padding schemes for
chosen-ciphertext secure schemes that separate the trapdoor
action from the part that involves checking the integrity of
computation and the extraction of plaintexts. The combina-
tion of the dual receiver encryption and the separability of
the padding scheme enables the useful security puzzles un-
der certain threat models. We show an example whereby the
useful task is part of a combined cryptosystem operation.

2. DEFINITIONS

2.1 Public-Key Scheme Definitions
The key management of our scheme enables a second re-

ceiver to decrypt the ciphertext. We formally define dual
receiver public-key encryption (PKE) schemes, public-key
signature schemes, and their combination.

Definition 2.1. (Dual Receiver Public-Key En-
cryption Scheme) A dual receiver public-key encryption
scheme consists of four randomized polynomial-time algo-
rithms Enc = (K, E ,D,R) as follows:

• The key-generation algorithm K is a randomized al-
gorithm that takes a security parameter k as an in-
put, and produces a pair (e, d) of corresponding pub-
lic encryption and private decryption keys. We write
K(k) = (e, d). (Let K(k) = (f, g) be another key pair
in the following.)

• The encryption algorithm E is a randomized algorithm
that takes public encryption keys e and f , and a mes-
sage m ∈ M (where M is the message space) as in-
puts, and produces a ciphertext c ∈ C (where C is the
ciphertext space). We write Ee,f (m) = c.

• The decryption algorithm D is a randomized algorithm
that takes a private decryption key d, a public encryp-
tion key f , and a ciphertext c ∈ C as inputs, and pro-
duces a message m ∈ M or a special reject symbol.
We write Dd,f (c) = m.

• The recovery algorithm R is a randomized algorithm
that takes a public encryption key e, a private decryp-
tion key g, and a ciphertext c ∈ C as inputs, and pro-
duces a message m ∈ M or a special reject symbol.
We write Re,g(c) = m.

We require that if K(k) outputs (e, d) and (f, g), and
Ee,f (m) outputs c, all with positive probability, then Dd,f (c)
and Re,g(c) both output m for all m ∈ M.

Definition 2.2. (Public-Key Signature Scheme) A
public-key signature scheme consists of three randomized
polynomial-time algorithms Sig = (K,S ,V) as follows:

• The key-generation algorithm K is a randomized al-
gorithm that takes a security parameter k as an in-
put, and produces a pair (s, v) of corresponding pri-
vate signature and public verification keys. We write
K(k) = (s, v).

• The signature algorithm S is a randomized algorithm
that takes a private signature key s and a message m ∈
M as inputs, and produces a signature σ ∈ {0, 1}∗.
We write Ss(m) = σ.

• The verification algorithm V is a randomized algorithm
that takes a public verification key v and a message-
signature pair (m,σ) as inputs, and produces as output
either accept or reject. We write Vv(m,σ) = accept.

We require that if K(k) outputs (s, v) and Ss(m) outputs
σ, both with positive probability, then Vv(m,σ) = accept,
and for any other pair (m,σ′), Vv(m,σ′) = reject.

Definition 2.3. (Combined Scheme) Given a dual re-
ceiver PKE scheme Enc = (KE , E ,D,R) and a public-key
signature scheme Sig = (KS ,S ,V), the combined scheme
consists of six randomized polynomial-time algorithms Comb
= (K, E ,D,R,S ,V) as follows:

• The key-generation algorithm K is a randomized algo-
rithm that takes a security parameter k as an input,
and produces two pairs of keys [(e, d), (s, v)], the first
for Enc and the second for Sig.

• Encryption, decryption, and message recovery are per-
formed with E , D, and R, and signature generation
and verification are performed with S and V, exactly
as in the original schemes.

Note that the only differences between the combined and
the original schemes are in the key-generation algorithms.

2.2 Security Definitions
We now formally define the security notions we use. In-

formally, if no probabilistic polynomial-time (PPT) attacker
can recover the whole plaintext from a given ciphertext, then
the public-key encryption scheme is said to be one-way.

Definition 2.4. (One-Wayness of a Dual Receiver
PKE Scheme) Given a dual receiver public-key encryption
scheme Enc and a sufficiently large security parameter k,
generate keys K(k) = (e, d) and K(k) = (f, g). The suc-
cess probability of an adversary A, Succ(A), is defined to be
Pr[A(Ee,f (m)) = m] where m is a random message in M.
Enc is (t, ε)-OW, if for any such adversary A with running
time bounded by t(k), Succ(A) < ε(k).

A plaintext-checking oracle takes as input a plaintext m
and a ciphertext c and outputs whether or not c encrypts
m. If the adversary above has access to a plaintext-checking
oracle, it is playing out a one-way plaintext-checking attack,
or OW-PCA.
Informally, if no PPT attacker can learn any bit of infor-

mation about the plaintext from the ciphertext, except the
length, then a public-key encryption scheme is said to be
semantically secure, or equivalently polynomial-time indis-
tinguishable (notated as IND) [19]. The following definition
is the logical extension of semantic security to a dual receiver
public-key encryption scheme.

Definition 2.5. (Semantic Security of a Dual Re-
ceiver PKE Scheme) Given a dual receiver public-key
encryption scheme Enc and a sufficiently large security pa-
rameter k, generate keys K(k) = (e, d) and K(k) = (f, g).
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Given an adversary A consisting of two PPT algorithms A1

and A2, have A1 choose two equal-length messages (m0,m1)
from M. For a random bit b ← {0, 1}, encrypt the corre-
sponding message Ee,f (mb) = c. The advantage of adversary
A, Adv(A), is defined to be |Pr[A2(m1,m2, c) = b] − 1/2|.
Enc is (t, ε)-IND, or semantically secure, if for any such ad-
versary A with running time bounded by t(k), Adv(A) <
ε(k).

The adversary considered above is playing out a chosen-
plaintext attack, or CPA, since she is able to encrypt any
plaintext of her choice. If the adversary has access to both a
decryption oracle, and in our case a recovery oracle, then she
is playing out a chosen-ciphertext attack. Naturally, we do
not allow the adversary to ask thatm0 andm1 be decrypted.
If the adversary’s access to the oracle is limited in time, the
attack is called non-adaptive [37]. If access is unlimited,
the attack is called adaptive or CCA [41]. Chosen-ciphertext
security is the strongest security notion that one can expect
in the standard model of communication.
When considering signature schemes, if no PPT attacker

can forge a signature on one message, then the signature
scheme is secure against existential forgery.

Definition 2.6. (Security of a Public-Key Signatu-
re Scheme) Given Sig = (K,S ,V), a public-key signature
scheme, and a sufficiently large security parameter k, gen-
erate keys K(k) = (s, v). Given an adversary A consisting
of a PPT algorithm A, A outputs a message/signature pair,
(m,σ). Adv(A) is defined as Pr[Vv(m,σ) = accept]. Sig is
(t, ε)-secure against existential forgery if for any such adver-
sary A with running time bounded by t(k), Adv(A) < ε(k).

The above adversary is playing out a key-only attack, but
if the adversary observes valid message/signature pairs cho-
sen and produced by the signer, then she is playing out a
known signature attack. If the adversary is allowed to ask
the signer to sign a number of messages of her choice, then
she is playing out a chosen message attack. Naturally, we do
not allow the adversary to ask that the challenge message
be signed. If the adversary’s access to the signer is limited
in time, the attack is called non-adaptive, and if access is
unlimited, the attack is called adaptive or CMA [20].
When combining a dual receiver public-key encryption

scheme Enc with a public-key signature scheme Sig we must
verify that sharing keys between the two does not degrade
the security of either scheme. Thus, an adversary for Enc
with access to a signature-generation oracle should not have
a greater probability of success in attacking Enc than it
would if it did not have access to the oracle. Similarly, an
adversary for Sig with access to a decryption oracle and a
recovery oracle should not have a greater probability of suc-
cess in attacking Sig than it would if it did not have access
to either oracle. We prove that the security of a scheme is
not degraded in the presence of an oracle by constructing a
simulator that does not have the private keys of the scheme,
yet can answer the adversary’s queries in a manner that
is indistinguishable from that of an oracle. If a signature-
generation oracle, a decryption oracle, and a recovery oracle
can be simulated, then both Enc and Sig can be used in com-
bination without compromising the security of either. Our
analysis of the security of the combined scheme uses the
technique used by Haber and Pinkas [21] to combine other
encryption and signature schemes.

Definition 2.7. (Security of an Encryption Scheme
in a Combined Scheme) The combined scheme Σ = (Enc,
Sig) does not compromise the security of Enc if for any PPT
adversary A with unlimited access to an oracle for Ss, there
exists an adversary A′ for Enc alone with success probability
at most negligibly worse than the success probability of A.

Definition 2.8. (Security of a Signature Scheme
in a Combined Scheme) The combined scheme Σ =
(Enc,Sig) does not compromise the security of Sig if for any
PPT adversary A with unlimited access to an oracle for Dd,f

and Re,g, there exists an adversary A′ for Sig alone with
success probability at most negligibly worse than the success
probability of A.

Definition 2.9. (Security of a Combined Scheme)
The combined scheme Σ = (Enc,Sig) is CCA-CMA secure if
no PPT adversary A has a non-negligible advantage against
a challenger A′ in a joint CCA-CMA game. The adversary
is allowed q1 adaptive queries to signature and decryption
oracles, and then picks between a CCA or a CMA challenge.
Once the challenger lays out the challenge, the adversary is
allowed q2 adaptive queries before producing her guess.

The security model used throughout the paper is that of
the random oracle model (a model employed in construc-
tions based on pairings such as [6], and in many efficient
constructions for chosen ciphertext secure encryption, e.g.,
[38]). A random oracle is a function H : X → Y chosen
uniformly at random from the set of all functions from X
to Y , Y finite. An algorithm can query the random oracle
for any x ∈ X and receive H(x) ∈ Y in response. Ran-
dom oracles are an idealized model for cryptographic hash
functions, and thus security proofs in this model only prove
security against attackers that are confined to this model as
well. Nevertheless, in many recent designs that employ hash
functions as a black box, this design approach followed by a
proof in the random oracle model gives a certain validation
to the strength of the system design methodology.

2.3 Bilinear Diffie-Hellman Problems
Three related complexity assumptions form the basis of

security for cryptography done using discrete logarithms in
a group. The security of our encryption scheme is based on
the difficulty of the Bilinear Diffie-Hellman Problem, which
is an extension of the three problems [10] described below
for a multiplicative group G.

Definition 2.10. (Discrete Logarithm (DL) Prob-
lem) Given two group elements g and h, find an integer n
such that h = gn whenever such an integer exists.

Definition 2.11. (Computational Diffie-Hellman
(CDH) Problem) Given three group elements g, ga, and
gb, a, b ∈ Z, find an element h such that h = gab.

Definition 2.12. (CDH Parameter Generator) A
CDH parameter generator G is a randomized algorithm that
takes a security parameter k, and outputs the description of
a group G for which the CDH problem is hard. The CDH
problem is considered hard if the following is negligible in k
for all PPT algorithms A:

Pr[G ← G(1k); g ∈ G; a, b ∈ Z : A(G, g, ga, gb) = gab].

G runs in time polynomial in k, and its order is determined
by k.
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Definition 2.13. (Decision Diffie-Hellman (DDH)
Problem) Given four group elements g, ga, gb, gc with
a, b, c ∈ Z, decide whether or not c = ab (modulo the or-
der of g).

Note that the DDH problem is no harder than the CDH
problem, and that the CDH problem is no harder than the
DL problem.
We use a non-degenerate pairing, that is a bilinear map

between two abelian groups G1 and G2. Let l1 and l2 be the
orders of the groups. The pairing of two elements P,Q ∈ G1

is denoted 〈P,Q〉 ∈ G2. Due to the bilinearity condition,
for all P,Q ∈ G1 and a, b ∈ Z, the pair 〈aP, bQ〉 = 〈P,Q〉ab.
Note that the DL problem should be hard in G2 so that
the pairing is not easily invertible and the DL problem in
G1 is not easily solved [30]. Good candidates for such bi-
linear maps are the Weil and the Tate pairings defined over
points on an elliptic curve defined over a finite field, and they
motivate our choice of notating the image in multiplicative
notation and the preimage in additive notation.

Definition 2.14. (Bilinear Diffie-Hellman (BDH)
Problem) Given the elements P, aP, bP, cP ∈ G1 with
a, b, c ∈ Z, find an element g ∈ G2 such that g = 〈P, P 〉abc.

Definition 2.15. (Decision Bilinear Diffie-Hellman
(DBDH) Problem) Given the elements P, aP, bP, cP ∈
G1 with a, b, c ∈ Z and h ∈ G2, decide whether or not h =
〈P, P 〉abc. If h = 〈P, P 〉abc, then (P, aP, bP, cP, h) is called
a valid DBDH tuple.

Definition 2.16. (Gap Bilinear Diffie-Hellman
(GBDH) Problem) Solve a given instance,
(P, aP, bP, cP ), of the BDH problem with the help of a
DBDH oracle that is able to decide whether or not a tuple
(P, a′P, b′P, c′P, h) is valid.

Definition 2.17. (BDH Parameter Generator) A
BDH parameter generator G is a randomized algorithm that
takes a security parameter k, and outputs the description
of two groups G1 and G2, and the description of a non-
degenerate bilinear map between the two groups for which
the BDH problem is hard. The BDH problem is considered
hard if the following is negligible in k for all PPT algorithms
A:

Pr[(G1,G2, 〈·, ·〉) ← G(1k);P ∈ G1; a, b, c ∈ Z :

A(G, P, aP, bP, cP ) = 〈P, P 〉abc].

Joux [29] gives a detailed analysis of the BDH problem in
his survey of the Weil and Tate pairings as building blocks
for cryptosystems. The details of the bilinear map used for
our cryptosystem will be discussed in Appendix A.

3. THE DUAL RECEIVER CRYPTOSYSTEM

3.1 The Semantically Secure Dual Receiver
Scheme

The dual receiver public-key encryption scheme with es-
crow, SEnc, provides semantic security. The message space
is M = {0, 1}n. The user may choose any public key yP as
the second receiver, and may even choose herself if she does
not wish a third-party to have access to the message. Note

that the decryption algorithm and the recovery algorithm
are the same operations using different keys.
We require that there be a hash function Hx associated

with each public key xP ; it is easy to base such a family
on a given random oracle hash (by first attaching a proper
prefix derived from xP to any string to be hashed).
Key-Generation: Groups G1 and G2 are chosen using a

BDH parameter generator G, along with a random element
P ∈ G1, and x ∈ Zl1 . The public key is (P, xP ) together
with a cryptographic hash function Hx : G2 → {0, 1}n. The
private key is x.
Encryption: The input is a plaintext m ∈ {0, 1}n. The

encryption algorithm chooses a random element r ∈ Zl1 and
computes u1 = rP , u2 = yP , and u3 = m⊕Hx(〈xP, yP 〉r),
where Hx is the primary receiver’s hash function and yP
is the secondary receiver’s public key. The ciphertext is
(u1, u2, u3).
Decryption: The decryption algorithm for private key x

computes u3⊕Hx(〈u1, u2〉x) = m. Note that:

〈u1, u2〉x = 〈rP, yP 〉x = 〈xP, yP 〉r = 〈P, P 〉rxy.

Recovery: The recovery algorithm for private key y com-
putes u3⊕Hx(〈u1, xP 〉y) = m. Note that:

〈u1, xP 〉y = 〈rP, xP 〉y = 〈xP, yP 〉r = 〈P, P 〉rxy.

Security: SEnc is a semantically secure (IND-CPA) dual
receiver public-key encryption scheme if the BDH problem
is assumed to be hard.

Theorem 3.1. Let Hx be a random oracle from G2 to
{0, 1}n. Let A be an adversary with running time bounded
by t that has advantage ε against SEnc. Suppose A makes a
total of qHx > 0 queries to Hx. Then there is an algorithm
B that solves the BDH problem for G with advantage at least
2ε/qHx and a running time O(t).

Proof. See Appendix B. �

SEnc is also a (OW-PCA) dual receiver public-key encryp-
tion scheme if the GBDH problem is assumed to be hard.

Lemma 3.2. Let PCO be a plaintext-checking oracle, and
let Hx be a random oracle from G2 to {0, 1}n. Let A be
an adversary with running time bounded by t that has suc-
cess probability ε against SEnc. Suppose A makes a total of
qHx > 0 queries to Hx and PCO. Then there is an algo-
rithm B that solves the GBDH problem for G with advantage
at least `

ε− 1
2n

´
qHx

`
1− 1

2n

´ ,
and a running time O(t).

Proof. See Appendix C. �

3.2 The Chosen-Ciphertext Secure Dual
Receiver Scheme

The encryption scheme CEnc provides chosen-ciphertext
security and allows a specified third party to decrypt the
ciphertext. We use the REACT conversion introduced by
Okamoto and Pointcheval [38] to convert the SEnc scheme
into a chosen-ciphertext secure scheme. The message space
is M = {0, 1}n, b2 is the length of the bit-string representa-
tion of a point in G2, and n′ is a security parameter.

334



Key-Generation: Groups G1 and G2 are chosen using
a BDH parameter generator G, as are a random element
P ∈ G1, and x ∈ Zl1 . The public key is (P, xP ) together
with cryptographic hash functions Hx : G2 → {0, 1}n, G :

{0, 1}n → {0, 1}n, and F : {0, 1}4n+b2 → {0, 1}n′
. The

private key is x.
Encryption: The input is a plaintext m ∈ {0, 1}n. The

encryption algorithm chooses a random element r ∈ Zl1 ,
a random element ρ ∈ {0, 1}n, and computes u1 = rP ,
u2 = yP , u3 = ρ⊕Hx(〈xP, yP 〉r), u4 = m⊕G(ρ), and u5 =
F (ρ,m,u3, u4, 〈xP, yP 〉r). The ciphertext is (u1, u2, u3, u4,
u5).
Decryption: The decryption algorithm computes

u3⊕Hx(〈u1, u2〉x) = ρ and G(ρ)⊕u4 = m given a ciphertext
(u1, u2, u3, u4, u5). Then it checks that u5 = F (ρ,m, u3, u4,
〈u1, u2〉x), and if u5 is correct, the algorithm outputs m.
Otherwise, it outputs Reject.
Recovery: The recovery algorithm computes

u3⊕Hx(〈u1, xP 〉y) = ρ and G(ρ)⊕u4 = m, given a cipher-
text (u1, u2, u3, u4, u5). Then it checks that u5 = F (ρ,m, u3,
u4, 〈u1, xP 〉y), and if u5 is correct, the algorithm outputsm.
Otherwise, it outputs Reject.
Security: CEnc is a chosen-ciphertext secure dual receiver

public-key encryption scheme if the GBDH problem is as-
sumed to be hard. Since SEnc is OW-PCA and one-time
pads (the XORs) are semantically secure, the conversion is
chosen-ciphertext secure in the random oracle model. (See
Theorem 1 in [38]).

4. THE COMBINED SCHEME
In this section we present a signature scheme that is se-

cure against adaptive chosen-message attacks and the dual
receiver encryption scheme that is secure against chosen-
ciphertext attacks, both of which use the same private key.

4.1 The Signature Scheme
The signature scheme Sig provides security against exis-

tential forgery under a chosen message attack if the CDH
problem is assumed to be hard in G1. The message space is
M = {0, 1}n. This scheme is similar to Boneh, Lynn, and
Shacham’s signature scheme [7].
Key Generation: Groups G1 and G2 are chosen using a

BDH parameter generator G, as are a random element P ∈
G1, and x ∈ Zl1 . The public verification key is (P, xP )
together with a cryptographic hash function I : {0, 1}n →
G1. The private signature key is x.
Signature: The input is a private signature key x ∈ Zl1

and a plaintext m ∈ {0, 1}n. The signature algorithm cal-
culates σ = xI(m). The signature is σ.
Verification: Given a public key (P, xP ), and a message-

signature pair (m,σ), the verification algorithm verifies that
〈P, σ〉 = 〈xP, I(m)〉.
Security: Sig is secure against existential forgery under

adaptive chosen-message attacks.

Theorem 4.1. Let I be a random oracle from {0, 1}n to
G1. Let A be an adversary with running time bounded by t
that has advantage ε against Sig. Suppose A makes a total
of qI > 0 queries to I and qS > 0 signature queries. Then
there is an algorithm B that solves the CDH problem for G1

with advantage at least ε/e(qS+1) (where e is the base of the
natural logarithm) and a running time at most t+j(qI+2qS),
where j is the time taken to multiply two points in G1.

Proof. See Appendix D. �

4.2 The Combined Scheme
Recall that a combined public-key scheme leaves the en-

cryption, decryption, recovery, signature generation, and
verification algorithms unchanged, but needs a new key-
generation algorithm.
Key-Generation: Groups G1 and G2 are chosen using a

BDH parameter generator G, along with a random element
P ∈ G1, and x ∈ Zl1 . The public key is (P, xP ) together
with a cryptographic hash function Hx : G2 → {0, 1}n.
The private decryption key is x. The public verification
key is (P, xP ) together with a cryptographic hash function
I : {0, 1}n → G1. The private signature key is x.
Security of CEnc in the Presence of Sig: The combined

scheme does not compromise the security of CEnc.

Lemma 4.2. Let I be a random oracle from {0, 1}n to G1.
Let A be an adversary that has advantage ε against CEnc in
a CCA attack with unlimited access to I and a signature ora-
cle for Sig. Then there is an algorithm B that has advantage
ε against CEnc.

Proof. Given an adversary A that attacks CEnc when
used together with Sig, we construct an adversary B attack-
ing CEnc alone.
Algorithm B is given (P, xP, yP ), the encryption key for

CEnc, and B sends the seven-tuple (P, xP, yP,Hx, G,F ,I) to
A where I is a random oracle controlled by B.

• I-queries: Here I is a random oracle controlled by B
where B keeps a list of tuples, the I-list. When A
issues a query, qi, to I , B checks to see if qi is on the I-
list. If qi appears in a tuple (qi, ii, ri), then B responds
with I(qi) = ii. Otherwise, B picks a random ri ∈ Zl1

and sets ii = riP . B adds the tuple (qi, ii, ri) to the
I-list, and responds with I(qi) = ii.

• Signature Queries: When A issues a signature query,
qi, B obtains the corresponding tuple, (qi, ii, ri), by
making a I-query as outlined above. B sets σi =
ri(xP ). Note that σi is a valid signature for qi un-
der the public key xP . B gives σi to A.

A’s view of the signature is identical to that of a real
signature, and thus its probability of success in breaking
the encryption scheme is unchanged. �

Security of Sig in the Presence of CEnc: The combined
scheme does not compromise the security of Sig.

Lemma 4.3. Let Hx be a random oracle from G2 to
{0, 1}n, and let F be a random oracle from {0, 1}4n+b2 to

{0, 1}n′
. Let A be an adversary that has advantage ε against

Sig with unlimited access to Hx, F , and a decryption oracle
for CEnc. Then there is an algorithm B that has advantage
ε against Sig.

Proof. Given an adversary A that attacks Sig when used
together with CEnc, we construct an adversary B attacking
Sig alone.
Algorithm B is given the verification key for Sig, (P, xP ),

and B sends (P, xP,Hx, G, F ) to A where Hx and F are
random oracles controlled by B.
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• Hx-queries: Here Hx is a random oracle controlled by
B where B keeps a list of tuples, the Hx-list. When
A issues a query, qi, to Hx, B checks to see if qi is
on the Hx-list. If qi appears in a tuple (qi, hi), then
B responds with Hx(qi) = hi. Otherwise, B picks a
random hi ∈ {0, 1}n, adds the tuple (qi, hi) to the
Hx-list, and responds with Hx(qi) = hi.

• F -queries: Here F is a random oracle controlled by
B where B keeps a list of tuples, the F -list. When A
issues a query, qi, to F , B checks to see if qi is on the F -
list (note that qi is a bit-string of length {0, 1}4n+b2 ).
If qi appears in a tuple (qi, ri), then B responds with

F (qi) = ri. Otherwise, B picks a random ri ∈ {0, 1}n′
,

adds the tuple (qi, ri) to the F -list, and responds with
F (qi) = ri.

• Decryption Queries: B responds as follows when A
issues the five-tuple decryption query, qi = (u1, u2, u3,
u4, u5). B obtains the corresponding tuple, (qi, u5),
from the F -list and sets g to the last b2 bits of qi. If u5

is not in any tuple, then B picks a random g ∈ {0, 1}b2 .
B then obtains the corresponding tuple (g, hi) from the
Hx list by making aHx-query as outlined above. B sets
ρ = u3⊕hi, and outputs m = u4⊕G(ρ).

A’s view of the decryption is identical to that of a real
decryption (as is its view of the recovery for they are simu-
lated the same way), and thus its probability of success in
forging a signature is unchanged. �

Security of Σ=(CEnc,Sig): The combined scheme Σ is
CCA-CMA secure, and thus does not compromise its own
security with respect to an adversary that is trying to com-
promise either the encryption or the signature.

Theorem 4.4. Let Hx, F , and I be random oracles, then
Σ is CCA-CMA secure, assuming that the GBDH and the
CDH problems are hard.

Proof. Queries to Hx, F , I , the decryption and signa-
ture oracles are exactly as in Lemmas 4.2 and 4.3. Due to
the chosen-ciphertext security of CEnc, Theorem 4.1, and
Lemmas 4.2 and 4.3, if A has advantage ε over Σ, then
there is an algorithm B that can solve either the GBDH or
the CDH problem with non-negligible probability. �

Non-mandatory Escrow Encryption: Our combined dual
receiver encryption and signature scheme can easily allow
escrow encryption at the sender’s discretion, without any
sacrifices to security. The sender can choose a specific escrow
public key to be the second key to recover the information.
The sender can also choose her own public key to be the
second key if she does not wish a third-party to have access
to the message. This gives a very flexible key-management
component that can be used in designing secure file and
storage systems, and general recovery and backup policies.
The designation of tasks in the system can be managed via
a key certification process.

5. USEFUL SECURITY PUZZLES
Our approach is based on a construct called “decryption-

oriented puzzles,” which in turn is based on the dual receiver
method. We first describe the approach conceptually and
then map the implementation to the general approach. We

also give an overview of other work in client puzzles, and
describe how to use our scheme in two different scenarios: a
secure fileserver and an online transaction server.

5.1 Summary of Approach
At an abstract level, we use a “puzzle public key” algo-

rithm for encryption and decryption, where the encryption
involves the receiver’s public key Ke and an auxiliary key
Ka. The public keys are arbitrarily chosen and, given a fixed
Ke, any choice for Ka will work. The encryption process
generates a ciphertext that has two portions, (C1, C2).
The decryption is such that given one of the private keys

Pe or Pa and (C1, C2), the message M can be recovered.
We can achieve partial decryption when, given only C1 and
one of the private keys, an intermediate value, TD1, can be
found by using a “trapdoor recovery algorithm.” The sit-
uation is such that: (1) given C1, M is unpredictable and
remains secure, while; (2) there is a message-recovery al-
gorithm that on TD1, C1, C2 can recover the message M
quickly. The message recovery algorithm must be much
more efficient than the trapdoor recovery algorithm. Fur-
ther, if a wrong TD1 is supplied, the message recovery al-
gorithm will reject it efficiently. This “puzzle public key”
algorithm is used as follows:
Consider a busy fileserver where remote clients store and

retrieve files over the network. While the communication
itself may be protected via a protocol such as TLS, we also
want files to be protected while stored on the server’s disk.
In this scenario, the server has a permanent key Ke as its
public key (this may be a combined system where the key
is used for encryption and signature), and periodically gen-
erates an auxiliary key Ka. When storing a client’s file,
the server encrypts it using some symmetric cipher (such
as AES) under a randomly chosen “session” key KS , en-
crypts KS under the server’s puzzle public key (resulting
in a (C1, C2) ciphertext per our previous discussion), and
stores both the file and the (C1, C2) tuple to disk. Without
useful puzzles, the fileserver must decrypt the session key
KS every time a client requests the file. Instead, we want
to rate-limit clients requesting files via a puzzle scheme, and
lighten the server’s computational burden simultaneously.
When a new client (Client1) contacts the server with a

request for a file, the server responds with the C1 portion
of that file’s encrypted session key, as well as Pa (the aux-
iliary private key). Client1 will be able to solve the puzzle
(C1) using that key and give the result, which is the trap-
door TD1, to the server. The server will try to recover
the message via a very efficient computation. If successful,
Client1 will get access (since it solved the puzzle and ex-
tracted the trapdoor). If the message recovery fails (e.g.,
because Client1 did not solve the puzzle), Client1 will be
denied access. The knowledge of the auxiliary private keys
and the trapdoors has no effect on security, since the ses-
sion keys cannot be recovered by clients and the auxiliary
keys are relatively short–lived. Furthermore, the server can
now provide the decrypted file to Client1. A malicious at-
tacker could retrieve a collection of files legitimately, memo-
rize their trapdoors, and then reuse them to flood the server
with repeated requests for those files, avoiding having to
spend the time to solve the puzzle. We are concerned with
the computationally expensive aspect of this process, the
session key decryption. Other mechanisms (e.g., caching)
must used to avoid other attacks.
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A second scenario of using decryption puzzles involves an
online transaction server (such as a webserver) to which
clients connect using a session-security protocol similar to
TLS. Here, clients encrypt the session keys that will protect
the remainder of the session under the server’s puzzle public
key. We discuss this scenario in more detail in Section 5.4, as
the security model is somewhat different from the relatively
straightforward case of the fileserver.

5.2 Decryption-Oriented Puzzles
We present a construction of a decryption-oriented puzzle

from any semantically secure dual-receiver PKE such as the
one presented in Section 3.1. We use the REACT trans-
form introduced by Okamoto and Pointcheval [38] (employ-
ing strong cryptographic hash functions that behave like a
random oracle) to build a system that is chosen-ciphertext
secure and has the desired puzzle properties.
Let Enc= (K, E ,D,R) be as in Definition 2.1 with message

space M = {0, 1}n.

• Server Key-Generation: The key generation algorithm
K is run on security parameter k and produces a pair
K(k) = (e, d). The public key is e together with two
cryptographic hash functions, G : {0, 1}n → {0, 1}n

and F : {0, 1}4n → {0, 1}n′
. The private key is d.

• Auxiliary Key-Generation (for Client): The key gen-
eration algorithm K is run (separately and with inde-
pendent coins) on security parameter k and produces
a pair K(k) = (f, g). The public auxiliary key is f .
The private auxiliary key is g.

• Encryption: The input is a plaintext message m ∈
{0, 1}n. The encryption algorithm chooses a random
string ρ ∈ {0, 1}n and applies the dual-receiver en-
cryption E with public keys e, f to produce an encryp-
tion c = Ee,f (ρ). It also computes u1 = m⊕G(ρ) and
u2 = F (ρ,m, c, u1). The ciphertext is (C1 = c;C2 =
[u1, u2]).

• Trapdoor Decryption by Client: Given a ciphertext
C1 = c, the first part of the of the decryption algorithm
applies the dual-receiver recovery algorithm Re,g(c) to
recover ρ = TD1.

• Decryption by the server: Given a ciphertext (C1 =
c;C2 = [u1, u2]) and the trapdoor TD1 = ρ, the mes-
sage decryption algorithm computes G(ρ)⊕u1 = m
and it checks that u2 = F (ρ,m, c, u1), and if u2 is
correct, the algorithm outputs m. Otherwise it out-
puts Reject. If it rejects, the server can compute ρ
itself from C1 = c and repeat this step with the new ρ
(checking the sender’s integrity in this case).

We can show, and briefly argue that:

Lemma 5.1. The decryption–oriented puzzle scheme sat-
isfies Usefulness, Security, Integrity and Recovery.

Proof. Usefulness: Note that while the trapdoor re-
covery, which results in ρ, gives only a random value, it
involves performing the costly (computationally intensive)
dual-receiver message recovery algorithm R. In our imple-
mentation (Section 3.1) this is an operation over the curve
(the pairing) and is conceptually analogous to exponentia-
tion over a finite field, if somewhat more complex in terms of

the actual operations involved. On the other hand, the mes-
sage decryption by the server involves only bit-wise XOR,
and a check of a simple hash function (which is much more
efficient). Thus the puzzle is very useful yet reliable.

Security: The scheme is a chosen-ciphertext secure public-
key encryption. The client, seeing only part of the ciphertext
that recovers to a random value ρ, has no idea what the mes-
sage is (he only sees parts that could have been computed
without seeing the message).

Integrity and Recovery: The check in REACT assures the
faithful operation by the client. On the other hand, if the
operation fails to pass verification, the server can do the
puzzle itself from scratch, or give it to another client. �

5.3 Related Work on Puzzles
Early work defending against resource depletion attacks

focused around the concept of the “cookie,” an opaque bit-
string that the initiator of a connection request needs to
return verbatim to the server before the request is allowed
to proceed. Thus, cookies were used only to establish the va-
lidity of the peer in terms of network address reachability; in
other words, cookies protect against attackers spoofing their
IP address. Cookie-based solutions [36] were used against
TCP connection-depletion (also known as TCP SYN) at-
tacks [45, 23], and in security protocols such as Photuris
[32], IKE [22], JFK [2], and others [39, 24]. More generally,
The advantages of being stateless, at least in the beginning
of a protocol run, were recognized in the context of security
protocols in [27] and [4].
Computational client puzzles as a means to defend against

denial of service attacks were first introduced in [31]. In that
work, client puzzles were used to counter TCP SYN attacks
from attackers that were willing to expose their IP address.
Although TCP cookies are ineffective in that scenario, client
puzzles can mitigate the effects of such an attack by an
adversary that is CPU-limited. However, in recent years
attackers have demonstrated their ability to effectively uti-
lize large numbers of subverted hosts in their attacks [25].
Gligor [18] argues that solutions requiring client proofs of
work (e.g., computational client puzzles such as those using
hash functions) are both ineffective and unnecessary in open
networks, such as the Internet, when strong access guaran-
tees (e.g., maximum waiting time) are desired.
Jakobsson and Juels [26] first proposed the concept of a

useful puzzle, which they call a “bread pudding protocol.”
The particular scheme they use, applied to minting e-coins
for the MicroMint micropayment system [42], is specific to
MicroMint and does not appear to be easily generalizable to
other types of useful work.
Client puzzles have also been used in the context of se-

curity protocols [26, 35], most notably for protecting SSL
against computational denial of service attacks [9]. Other
uses of client puzzles involve junk email mitigation [11], fair
exchange [8, 16], protection of sensor networks against DoS
attacks [48], and time-lock puzzles [43]. The latter aims to
encrypt a message such that it cannot be decrypted, even by
the sender, until some pre-determined future time. A sum-
mary of other uses of client puzzles (also known as “hash
cash”) may be found in [5]. [1] introduced the concept of
a memory-bound puzzle, which aims to impose the same
solving delay as traditional client puzzles by increasing the
number of memory accesses a client needs to perform to
solve the challenge.
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Wang and Reiter [47] introduce the idea of a puzzle auc-
tion as a way to ease some of the practical deployment diffi-
culties, e.g., selecting the appropriate hardness for the puz-
zles. Their approach lets clients bid for the resources by
adjusting the difficulty of the puzzles they solve. When the
server is attacked, legitimate clients gradually increase their
bids (puzzle difficulty), eventually bringing the cost outside
the adversary’s capabilities.

5.4 Employing Useful Security Puzzles in a
TLS-like Protocol

We now briefly discuss another application of useful puz-
zles, which trades off security against certain kinds of eaves-
dropping adversaries with resistance to computational de-
nial of service attacks. Consider a cryptographic protocol
such as TLS, a simplified version of which is shown in Fig-
ure 1 (inspired by a similar figure in [33]). In Message 3 of
this protocol, the client encrypts a randomly-chosen secret
value, S, with the server’s public key (obtained from the cer-
tificate sent by the server in Message 2). The server must
decrypt this secret value, which both parties use to derive a
session key. In almost all cases, the RSA algorithm is used
to encrypt S. Note that the server also uses its private key
to authenticate (via a signature) to the client.

S

Client Server

I want to talk, ciphers I support, Nonce client

server
Certificate            , cipher I choose, Nonce

server

data protected with keys derived from K

choose secret S
compute

K = f(S,Nc,Ns)

compute
K = f(S,Nc,Ns)

Decrypt {S}
server

{S}           ,{keyed hash of handshake messages}
server S

{keyed hash of handshake messages}

Figure 1: Simplified SSLv3/TLS.

We envision using useful security puzzles as a substitute
for the RSA encryption shown above, as shown in Figure 2.
The server will have a long-term public/private key pair (Ke
and Pe), and will periodically select a new auxiliary key pair
(Ka and Pa). A client A that contacts the server will re-
ceive both public keys (Ka and Ke), as well as the current
auxiliary private key (Pa). The client will then select a se-
cret S, which will be encrypted along with a server-provided
stateless nonce Ns, using both public keys creating cipher-
text C1, C2, as described in Section 5.1. If the server is
lightly loaded, it may simply decrypt this value using Pa
and Pe itself. Otherwise, the server selects another client,
B, at random and forwards C1 to it. On a busy server, such
as a popular e-commerce web site, there will be a constant
stream of new clients connecting, to which C1 can be for-
warded to. Similarly, the original client may receive another
C1′, produced by another client connecting to the server.
Client B will now use Pa to produce the intermediate

value TD1 and send it back to the server as proof of work
done. The server will verify the solution (as described in
Section 5.2) and the nonce, and will allow the connection
from client B to proceed. At the same time, the server has
retrieved the secret value S produced by client A for use in
deriving a session key. The purpose of the nonce is to force
colluding clients (e.g., machines controlled by the same at-
tacker) to communicate with each other, mitigating the im-
pact of an influx of such clients on the throttling properties
of our scheme. If client A also provides a correct response to
the challenge C1′ (which may have been generated by client
B or some other client contacting the server in the same
window of time as A), it will be allowed to proceed with its
connection. Neither A nor B have learned anything about
the secret values they helped decrypt, nor have they learned
anything that would allow them to impersonate the server
to other clients (e.g., the server’s private key). The server
has throttled down the clients by forcing them to perform
some useful computation; under schemes such as [31], the
client would have to perform the same work in addition to
solving a “useless” puzzle, while the server itself would have
to do more of the protocol’s cryptographic work.
There is, however, a weakness in the use of the puzzle

in this environment: a powerful adversary that is capable
of monitoring all the server’s communication links can ob-
tain enough information (specifically, (C1, C2) and TD1) to
decrypt the original message from the client to the server,
thus violating the security of the TLS-like protocol. From a
denial-of-service perspective, such an adversary can poten-
tially perform much more powerful attacks (e.g., shut down
these links); however, this scheme has the potential to make
things worse from a security perspective. Addressing this
issue remains an open problem; here, we offer two potential
approaches to mitigating the threat.
First, we can treat the first iteration of the TLS-like proto-

col as a pre-authentication phase, establishing a key which
can be used to quickly validate the client’s traffic to the
server’s router using a scheme such as the one proposed by
Yaar, Perrig and Song [49]; a second authentication phase
(without using puzzles) is subsequently used to secure the
end-to-end path. Second, we can use a distributed set of
servers through which the main server routes (and receives)
Messages 3, 4 and 5 (per Figure 2). These messages are
transmitted under pre-established security associations, pre-
venting an attacker eavesdropping on the server’s direct links
from obtaining enough information. Such an attacker would
instead need to eavesdrop the links for all these servers. Re-
cent work has shown that such overlay-based mechanisms
offer reasonable security guarantees [34] and performance
characteristics [3].

6. CONCLUSIONS
We introduced the notion of a “dual receiver cryptosys-

tem” which enables a ciphertext to be decrypted by two
independent receivers. We presented a construction and il-
lustrated its use in two important applications that solve
heretofore open problems in the literature.
The first application, inspired by the work of Haber and

Pinkas, is a “combined cryptosystem” wherein multiple par-
ticipants, each maintaining only a single public/private-key
pair, can both encrypt and sign messages, and can also dele-
gate decryption (escrow) capabilities to a specified user (on a
per-message basis, if desired). The escrow is achieved with-
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K = f(S2, Nonce2, Nonce4)

C1’ (part of {S2}           )

{keyed hash of handshake messages}
S1

{keyed hash of handshake messages}
S2

{S2}            ,{keyed hash of handshake messages}
Ka,Ke

server
Certificate            , cipher I choose, Nonce4, Pa

server
Certificate            , cipher I choose, Nonce3, Pa

{S1}            ,{keyed hash of handshake messages}
Ka,Ke

Ka,Ke
C1 (part of {S1}           )

ServerClient 1 Client 2

Intermediate result of decrypting S1Intermediate result of decrypting S2

I want to talk, ciphers I support, Nonce1 I want to talk, ciphers I support, Nonce2

K = f(S1, Nonce1, Nonce3)

Ka,Ke

Figure 2: A TLS-like protocol using useful puzzles. For simplicity, only two clients are shown, each partially decrypting

the other’s secret value S on behalf of the server.

out compromising the security of the signature scheme or
the security of any other message encryption.
The second application, first suggested by Dwork and

Naor, is a “decryption-oriented” useful puzzle scheme. Here,
a server can effectively delegate the decryption of an en-
crypted message to a client in the form of a puzzle. The
puzzle-solving client facilitates the decryption without learn-
ing anything about the encrypted message or the server’s
private key. The remaining cryptographic workload for the
server (including verification that the puzzle was correctly
solved) is reduced to a bitwise XOR and the computation
of a simple hash. We believe that this scheme will have im-
portant applications in preventing denial-of-service attacks,
and we explore two such settings: a network fileserver and
a web server. The happy irony is that a DoS attacker that
seeks to shut down a server by inducing it to perform com-
putationally intensive cryptographic computations, is forced
to facilitate the server’s pending cryptographic tasks on be-
half of legitimate clients.
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APPENDIX

A. THE PAIRING
Recall that our scheme makes use of a non-degenerate

pairing, that is a bilinear map between two groups G1 and
G2. We choose G1 to be a large subgroup of the group of
points of an elliptic curve over Fq of order l �= q, where
q = pn. G2 is chosen to be a subgroup of F

∗
qr where r is the

security multiplier and qr − 1 is divisible by l.

340



Two different pairings can be defined over an elliptic curve
– the Weil pairing and the Tate pairing. We give preference
to the Tate pairing as it is faster to compute [15]. Another is-
sue is that a low security multiplier is needed for the pairing
to be efficiently computed, and r always reaches its optimal
value in the Tate pairing, but does not always do so for the
Weil pairing [14].

Background: Before defining the Tate pairing we review
some definitions.
Let k(x, y) denote the field of quotients (rational functions

in x, y with coefficients in the field k), where f = g/h and g
and h are homogeneous of the same degree. Let the function
field of the curve E, denoted k(E), be the equivalence classes
of rational functions on E, k(E) = k(x, y)/I(E). If f =
g/h ∈ k(E), then h �∈ I(E), and two functions g/h and
g′/h′ are identified if gh′ = g′h.
Let k[E] = k[x, y]/I(E) be the coordinate ring of E (where

the quotient field is k(E) from before). We define the ideal
MP of k[E] by MP = {f ∈ k[E] : f(P ) = 0}. Given f ∈
k[E], the order of f at point P is denoted ordP (f), and is
the multiplicity of the point. We can also define ordP (f)
as max{d ∈ Z : f ∈ Md

P }. Using ord(f/g) = ordP (f) −
ordP (g), we can extend ordP to k(E). Given f ∈ k(E),
we say that f has a zero at P ∈ E if ordP (f) > 0, and a
pole at P if ordP (f) < 0. Equivalently, f has a zero at P
if f(P ) = 0, and a pole at P if f(P ) is not finite, denoted
f(P ) = ∞.
The divisor group of a curve E, denoted Div(E) is the free

Abelian group generated by the points of E. Thus a divisor
D ∈ Div(E) is a formal sum,

P
P∈E nP (P ), with nP ∈ Z

and nP = 0 for all but finitely many P ∈ E. The degree of
D is defined by degD =

P
P∈E nP . The support of D is the

set of points for which nP �= 0.
Given f ∈ k(E), we can associate a divisor div(f) to f ,

given by div(f) =
P

P∈E ordP (f)(P ). A divisor D is prin-
cipal if it has the form D = div(f) for some f ∈ k(E) (f
is unique up to constant multiples). Two divisors D1 and
D2 are linearly equivalent, denoted D1 ∼ D2 if D1 − D2 is
principal. Given f, g ∈ k(E), functions such that div(f) and
div(g) have disjoint support, Weil’s Reciprocity Law states
that f(div(g)) = g(div(f)).
An elliptic curve is a pair (E,O), where E is a cubic curve

in two variables and O ∈ E is the point at infinity (the
elliptic curve is usually just referred to as E). The elliptic
curve E is defined over k, denoted E/k, if E is defined over
k as a curve and O ∈ E(k). Given an elliptic curve E and
D ∈ Div(E), D is principal if and only if degD = 0 andP

nP (P ) = O. Given a function f ∈ k(E) and a divisor
D =

P
nP (P ), f can be evaluated at D by defining f(D) =Q

f(P )nP for P in the support of D.
Tate pairing: Given l ∈ Z, l �= 0, the l-torsion subgroup

of E, denoted E[l], is the set of points of order l in E. E[l] =
{P ∈ E : lP = O}. Given an l-torsion point P , DP denotes
a divisor from the class (P ) − (O) of the quotient of group
of divisors of degree 0 by the subgroup of principal divisors,
and fP denotes a function such that div(fP ) = l(P )− l(O).
The Tate pairing of two points P,Q ∈ E[l] is defined as

t(P,Q) = fP (DQ)(q
r−1)/l. Recall that l|(qr − 1).

An elliptic curve defined over a field of characteristic q
is supersingular if E[qr] = 0 for all r ≥ 1. Supersingular
curves have extra endomorphisms in their endomorphism
ring, and these endomorphisms map points defined over the
ground field to points defined over an extension field. Thus,

given an endomorphism Φ, t(P,Φ(P )) �= 1, and we do not
have to worry about the points in the pairing being linearly
independent. We denote t(P,Φ(Q)) by t̂(P,Q).

Hashing: Recall that the signature generation scheme
requires a cryptographic hash function I : {0, 1}n → G1.
To construct such a hash function we first construct a hash
function from {0, 1}n to Fq, and then we construct an en-
coding function from Fq to G1. Given M ∈ {0, 1}n, M is

hashed to f ∈ {0, 1}log q and it is rehashed if it not less than
q. Let y be the f -th element of Fq. Given y, the encod-
ing function calculates x from the equation for E, and sets
P = (x, y). The encoding function outputs lP , which is an
element in G1.

Extensions: Our system can use the Weil pairing, as well
as pairings over more general Abelian varieties [44]. More
general bilinear maps of the form m : G0 × G1 → G2 can
also be used. In this case, both ciphertext and signature can
be shortened in length by taking G0 to be a subgroup of Fp

and G1 to be a different subgroup of Fp6 of the same order.
Both the Weil and the Tate pairings can be used on the
asymmetric pair G0 × G1 as the map m. See [7] for details.

B. PROOF OF THEOREM 3.1
Proof. The proof of this theorem closely follows Lemma

4.3 in [6]. Algorithm B is given the BDH parameters pro-
duced by G and an instance of the BDH problem for these
parameters, (P, aP, bP, cP ). B uses the adversary A to find
g = 〈P, P 〉abc, the solution to the BDH problem, as follows.
First, B creates a public key for SEnc by setting xP = aP
and yP = bP , and sends (xP, yP,Hx) to A.

• Hx-queries: Here Hx is a random oracle controlled by
B where B keeps a list of pairs, the Hx-list. When A
issues a query, qi, to Hx, B checks to see if qi is on the
Hx-list. If qi appears in a pair (qi, hi), then B responds
with Hx(qi) = hi. Otherwise, B picks a random string
hi ← {0, 1}n, adds the pair (qi, hi) to the Hx-list, and
responds with Hx(qi) = hi.

• Challenge: The adversary A produces two messagesm0

and m1 on which it wishes to be challenged. B picks
a random string u ∈ {0, 1}n, defines the ciphertext to
be (cP, u), and gives the ciphertext as the challenge
to A. Note that the decryption of the ciphertext is
u⊕Hx(〈aP, bP 〉c) = u⊕Hx(g) due to the way we de-
fined xP and yP .

• Guess: The adversary A outputs its guess b′ ∈ {0, 1}.
B responds by outputting a random qi that appears on
the Hx-list as the solution to the given instance of the
BDH problem.

LetQ be the event thatA issues a query for g. Then Pr[Q]
in the simulation is the same as Pr[Q] in the real attack. Be-
fore any queries are made Pr[Q] = 0 in both cases. Let Qi be
the event that a query for g was made in the first i queries.
Pr[Qi] = Pr[Qi|Qi−1] Pr[Qi−1] + Pr[Qi|¬Qi−1] Pr[¬Qi−1],
and using induction we only have to show that Pr[Qi|¬Qi−1]
in the simulation is the same as Pr[Qi|¬Qi−1] in the real
attack. Note that the public key and the challenge are
distributed as in the real attack, and all responses to the
Hx-queries are uniform and independent in {0, 1}n. Thus,
Pr[Qi|¬Qi−1] is the same in both the simulation and the
real attack, and Pr[Q] is the same in both the simulation
and the real attack.
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If A never issues a query for g, then the decryption of
the ciphertext is independent of A’s view. Therefore in the
real attack Pr[b = b′|¬Q] = 1/2. Since A has advantage ε,
|Pr[b = b′]− 1/2| ≥ ε.

Pr[b = b′] = Pr[b = b′|¬Q] Pr[¬Q] + Pr[b = b′|Q] Pr[Q]

≤ 1

2
Pr[¬Q] + Pr[Q] =

1

2
+

1

2
Pr[Q].

Therefore ε ≤ |Pr[b = b′] − 1/2| ≤ 1/2 Pr[Q], and Pr[Q] ≥
2ε. The probability that g appears in some pair on the Hx-
list is at least 2ε, and thus B produces the correct answer
with probability at least 2ε/qHx . �

C. PROOF OF LEMMA 3.2
Proof. Algorithm B is given the BDH parameters pro-

duced by G and an instance of the GBDH problem for these
parameters, (P, aP, bP, cP ). B uses the adversary A and
a DBDH oracle to find g = 〈P, P 〉abc, the solution to the
GBDH problem, as follows. First, B creates a public key
for SEnc by setting xP = aP and yP = bP , and sends
(xP, yP,Hx) to A.

• Hx-queries: Hx-queries are handled as they are in The-
orem 3.1.

• PCO-queries: Here PCO is a plaintext-checking or-
acle controlled by B. PCO-queries are equivalent to
reverse Hx-queries. When A issues a query, (mi, ci =
(u1i , u2i , u3i)), to PCO, B checks to see if hi = mi⊕u3i

is on the Hx-list. If hi does not appear in a pair
(qi, hi), then B picks a random element r ← Zl2 , sets
qi = 〈P, P 〉r, and adds the pair (qi, hi) to the Hx-list.
B uses a DBDH oracle to determine if (xP, u1i , u2i , qi)
is a valid DBDH tuple. If it is, B responds yes to A,
and otherwise responds no.

• Challenge: B picks a random string u ∈ {0, 1}n, defines
the ciphertext to be (cP, yP, u), and gives the cipher-
text as the challenge to A. Note that the decryption of
the ciphertext is u⊕Hx(〈aP, bP 〉c) = u⊕Hx(g) due to
the way we defined xP and yP .

• Guess: The adversary A outputs its guess m ∈ {0, 1}n.
B responds by outputting a random qi that appears on
the Hx-list as the solution to the given instance of the
GBDH problem.

Let Q be the event that A issues a query for g in a
Hx-query or a query for Hx(g) (actually a query for some
(m′, (xP, yP,m′⊕Hx(g)))) in a PCO-query. Then Pr[Q] in
the simulation is the same as Pr[Q] in the real attack. Be-
fore any queries are made Pr[Q] = 0 in both cases. Let Qi

be the event that a query for g or Hx(g) was made in the
first i queries. All the responses by the PCO-queries are
valid and only create entries in the Hx-list that are uniform
and independent in {0, 1}n. Using similar reasoning to that
used in the proof for Theorem 3.1, Pr[Qi|¬Qi−1] is the same
in both the simulation and the real attack, and thus Pr[Q]
is the same in both the simulation and the real attack.
Let S

def
= Pr[A((cP, yP, u))]. If A never issues a query for

g or Hx(g), then the decryption of the ciphertext is indepen-
dent of A’s view. Therefore in the real attack Pr[S|¬Q] =
1/2n. Since A has success probability ε, Pr[S] ≥ ε.

Pr[S] = Pr[S|¬Q] Pr[¬Q] + Pr[S|Q] Pr[Q]

≤ 1

2n
Pr[¬Q] + Pr[Q] =

1

2n
+

„
1− 1

2n

«
Pr[Q].

Therefore ε ≤ Pr[S] ≤ 1
2n +

`
1− 1

2n

´
Pr[Q], and

Pr[Q] ≥ ε− 1
2n

1− 1
2n

.

The probability that g or Hx appears in some pair on the
Hx-list is at least

`
ε− 1

2n

´
/

`
1− 1

2n

´
, and thus B produces

the correct answer with probability at least`
ε − 1

2n

´
qHx

`
1− 1

2n

´
. �

D. PROOF OF THEOREM 4.1
Proof. Algorithm B is given the CDH parameters pro-

duced by G and an instance of the CDH problem for these
parameters, (P, aP, bP ). B uses the adversary A to find
g = abP , the solution to the CDH problem, as follows. First,
B creates a verification key for Sig by setting xP = (a+ r)P
for a random r ∈ Z, and sends (P, xP, I) to A.

• I-queries: Here I is a random oracle controlled by B
where B keeps a list of tuples, the I-list. When A
issues a query, qi, to I , B checks to see if qi is on the
I-list. If qi appears in a tuple (qi, ii, ri, ci), then B
responds with I(qi) = ii. Otherwise, B picks a random
ri ∈ Z and generates a random coin ci ∈ {0, 1} where
Pr[ci = 0] = 1/(qS +1). If ci = 0, B sets ii = riP + bP .
If ci = 1, B sets ii = riP . B adds the tuple (qi, ii, ri, ci)
to the I-list, and responds with I(qi) = ii.

• Signature Queries: When A issues a signature query,
qi, B obtains the corresponding tuple by making a I-
query as outlined above. If ci = 0, B reports failure
and terminates. If ci = 1, B sets σi = ri(aP ) + rii =
(a+r)riP . Note that σi is a valid signature for qi under
the public key xP which was set to (a + r)P . B gives
σi to A.

• Challenge: The adversary A produces m,σ, a message-
signature pair on which it wishes to be challenged such
that m was never a signature query. If σ is not a valid
signature on m, B reports failure and terminates. Oth-
erwise, B obtains the corresponding tuple by making
a I-query as outlined above. If ci = 1, then B re-
ports failure and terminates. Otherwise, ci = 0 and
ii = riP + bP . Thus, σ = (a + r)(ri + b)P . Then B
outputs the required solution to the CDH problem as
abP = σ/(rbP + riaP + rirP ).

Let Q1 be the event that B does not abort during A’s
signature queries. The probability that B does not abort
during one query is 1 − 1/(qS + 1), and since A makes at
most qS signature queries, Pr[Q1] ≥ (1−1/(qS+1))qS ≥ 1/e.
Let Q2 be the event that A produces a valid message-

signature pair given that the Challenge stage was success-
fully reached. The public key given to A is from the same
distribution as a public key produced by the key-generation
algorithm, and the responses to the I-queries are uniformly
and independently distributed in G1. Thus Pr[Q2] ≥ ε.
Let Q3 be the event that the final I-query made by B

does not fail given that B did not report a failure up to
this point. The probability that c = 0 is 1/(qs + 1) so
Pr[Q3] ≥ 1/(qs + 1).
If Q1, Q2, and Q3 are true then B produces the correct

answer. Thus B solves the CDH problem with probability
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at least ε/e(qs + 1). B’s running time is the time it takes
for A to run plus the time it takes to respond to (qI + qS)
hash queries and qS signature queries. If a multiplication
in G1 takes time j, then the total running time is at most
t+ j(qI + 2qS). �
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