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Abstract— An essential function for achieving security in
computer networks is reliable authentication of communicating
parties and network components. Such authentication typically
relies on exchanges of cryptographic messages between the
involved parties, which in turn implies that these parties be
able to acquire shared seeret keys or certified public keys.
Provision of authentication and key distribution functions in the
primitive and msmwce-constrained environments of low-function
networking mechanisms, portable, or wireless devices presents
challenges in terms of resouree usage, system management, ease
of use, etBciency, and flexibility that are beyond the capabilities
of previous designs such as Kerberos or X.509.

This paper presents a family of light-weight authentication
and key distribution protocols suitable for use in the low layers
of network architectures. All the protocols are built around a
common two-way authentication protocol. The paper argues that
key distribution may require substantially different approaches
in different network environments and shows that the proposed
family of protocols offers a flexible palette of compatible
solutions addressing many different networking scenarios.
The mechanisms are minimal in cryptographic processing and
message size, yet they are strong enough to meet the needs of
secure key distribution for network entity authentication.

Tbe protocols presented have been implemented as part
of a comprehensive security subsystem prototype called
KryptoKnight, whose software and implementation aspeets
are discussed in [16], and which is the basis for the recently
announced IBM Network Seeurity Program product.

1. INTROD(JCTION

T HE STEADILY growing use of computer networks is
fostering increasing concerns about network security. One

of the main issues is effective control of access to network
components and resources by expanding populations of users,
some of which cannot always be trusted to use the network

properly. An essential requirement for implementing suitable
access controls is a mechanism for reliable authentication of
communicating entities and network users.

State-of-the-art authentication protocols typically rely on
exchanges of cryptographic messages between entities want-
ing to authenticate one another prior to or during actual
communication. Such exchanges in turn demand that the
communicating parties be able to acquire cryptographic keys
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for performing the necessary authentication exchanges—these
keys may be secret keys shared by the involved parties if

symmetric cryptography is used, or public keys certified by

a trusted authority if asymmetric cryptography is used. The
issues of authentication and key distribution in the context of
distributed applications have already been largely addressed
by designs such as Kerberos 124] and X.509 [ 12].

However, low-function networking mechanisms are typi-
cally subject to various environmental restrictions (e.g., small
packet header sizes, limited computing resources), which must
be taken into account when integrating security features. Such
mechanisms must also accommodate various network config-

urations and connectivities (e.g., local area networks, wireless
networks, global networks, etc. ) and devices of widely dif-
fering capabilities (e.g., palm-top, lap-top, desk-top, or floor-
standing devices). In such environments, the most primitive
component must be able to inter-operate securely with the most
powerful one, which implies the provision of simple common
security functions to meet minimal needs. Getting essential

authentication and key distribution functions to work within
the resource restrictions of such low-function networking

environments presents challenges in terms of resource usage,
efficiency, ease of use, flexibility, and system management.
These issues are the subject of the present paper.

The paper explains why existing key distribution designs,
aimed at distributed application environments, are not suitable
for use in low-function devices and network protocols. Instead
the paper proposes a Family of light-weight, authenticated
key distribution protocols that are especially suited for use in
such restricted environments. (The proposed protocols could
also be used at the application layer, although their intrinsic
economy may lack some of the functional features often
desired in distributed applications. ) The pdper finally argues
that key distribution may require different approaches (e.g.,
communication patterns ) in different network environments
and it shows that the proposed family of protocols offers
a flexible palette of compatible solutions addressing many
possible cases,

11. BACKGROUND AND RELATED WORK

A. Key Di.~tribution—E.xisting Designs and Limitations

In a large network with tens, hundreds, or thousands of
switching nodes and server computers, and several orders of
magnitude more client workstations and users, the problem of
the distribution and safe-keeping of cryptographic keys is not
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trivial. It is complex enough that one must abandon right away
the idea of casual (manual) distribution procedures outside the
system. Automated techniques based on electronic exchanges
over the network are required.

Several schemes have been designed for automating key
distribution services in distributed systems, e.g., [18], [7], [1],
[19], [2 1], [14], [20]. Some of these have lead to notable
implementations or standards, e.g., the Kerberos [24] and
ANSI X9. 17 [11] schemes, which use DES technology, or
the ISO-CCITT X.509 Directory Authentication scheme [12],
which relies on public key technology. These schemes vary in
popularity. Kerberos is the basis for the security component
provided by the Open Software Foundation (OSFTM) as part
of its Distributed Computing Environment (DCE) product.
However the authentication and key distribution protocols
defined by these designs are targeted at distributed application
environments, and thus present a number of features that

make their use cumbersome or undesirable in more primitive
environments such as low-function link, network, or transport
protocols, or remote booting protocols.

Yet authentication and key distribution functions are also
required within lower-function layers. For instance, most wire-
less link protocols (e.g., CDPD, GSM) rely on such functions
to assert the identity of a calling mobile device (though
key distribution designs are rather primitive and not very
secure); similar functions can and have been built into X.25
packet layer implementations to restrict incoming calls to
certain identified calling addresses; LAN adapter-based boot-
ing protocols would also need such functions to prevent
booting from untrusted boot servers. Thus, in contrast to
the existing application-layer designs, our goal here is to
design light-weight key distribution protocols that require min-
imal computing resources from their environment. A common

authentication protocol that has been tested against a wide
range of attacks, called interleaving attacks, serves as the
foundation for the entire family of key distribution protocols.

It is described in the following section.

B. Two-Way Authentication—Basic Building Block

As suggested in the introduction, one of the most basic
functions required to enforce any security in a network is
the ability for communicating parties to prove their identities
to one another. State-of-the-art techniques for providing such
authentication rely on exchanges of cryptographic messages.
Many such protocols have been designed, some have been
standardized, e.g., X.509 [ 12], or are in common use, e.g.,
as part of the Kerberos system [24]. In all these designs,
each party proves its identity to the other by demonstrating
knowledge of a secret, typically a cryptographic key, through
encryption of a challenge (time-stamp, counter, or one-time
random number) that is unique in that it changes with every
execution of the protocol. However many of these designs
present a number of features that make their use cumber-
some or undesirable in the primitive environments of link,
network, or transport protocols below the application layer.
They typically require exchanges of unnecessarily large cryp-
tographic messages and involve relatively heavy computations,

A 0

A, B, Na

(1) b

B, A, Nb, MACba(Na, Nb, B)
(2) +

A, B, MACab(Na, Nb)
(3) F

Fig. 1. Secure two-way authentication protocol.

especially where public-key cryptography is used. Simpler
protocols can and indeed have been designed. However, while

simplicity may give the illusion of security, it is in fact hard to
achieve. In [5], [6], we introduced a family of authentication
protocols that are at the same time efficient in message size and
computation overhead, and resistant to a wide set of attacks
known as interleaving attacks. The basic idea for formally
proving the correctness of these and similar protocols was
discussed initially in [5], while extension and full exploitation
of the concept were developed in [9] and [2], after the work
reported here was completed. The formal proof concludes
that a successful attack would require directly breaking the
underlying encryption mechanism (which is assumed to be
impractical). This proof is not discussed further in the current
paper.

One of the protocols derived from that work is represented
in Fig. 1. In this figure, the letters A and B stand for the
identifiers of two network entities performing two-way au-
thentication. The variables Na and Nb are one-time random
numbers (called nonces) used by each party to challenge the
other to prove its identity. The notations MACba and MACab
denote cryptographic one-way hash functions, called Message
Authentication Codes, computed with keys Kba and Kab
respectively, and used to guarantee the authenticity of their
parameter string. (The commas between the MAC parameters
indicate concatenation into one string to which the MAC
function is then applied.) Implementing the MAC functions
with a symmetric cryptographic system such as DES [8], Kab

and Kba are (typically equal) secret keys shared by A and
B. Instead of using an encryption function to implement the
MAC’s, one can use a plain one-way hash function (e.g.,
the MD5 algorithm [23] is believed to be such a function)
applied to the authenticated string concatenated with the
secret key [25]. Using such a plain one-way hash function
instead of an encryption function has the added advantage
that even the source code or the detailed design of the
resulting implementation are not subject to the export controls
applicable to cryptographic technology in many countries.

In addition to being exportable and seeure, the above proto-
col presents an interesting aspect for low-function networking
environments: it requires a minimal amount of computation
and minimal-size messages. These features make it particularly
well-adapted to securing such primitive network functions as
remote booting or link-layer authentication, that are executed
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in environments where processing power, memory space, and
message sizes are limited, Indeed, the longest message (on

flow (2)) requires only four variables: the cleartext identifiers
A and B of the involved parties (which would already be in-
cluded in a typical packet header anyway). the cleartext nonce
Nb. and the result of the cryptographic MAC computation,
which could be as short as 128.64. or even 32 b. depending on
the function used for the MAC computation. Using asymmetric
cryptography is of course also possible, but would require
much longer messages, and is thus not considered further
in this paper. By contrast. in designs such as Kerberos or
X.509. initial authentication messages. even leaving out their

key distribution aspects. tend to involve more parameters.
more redundancy, more cryptography, sometimes also more
function to he fair, but function that is not relevant in lower-
Ievel network mechanisms. The protocol presented above is
the foundation for the family of key distribution designs to be
discussed in this paper.

111, L) ESIGN IssuBs

We now review the design issues that were considered

in the development of secure key distribution mechanisms
for primitive devices and low-function resource-constrained
networking environments.

A. Restricted WrsII.s Generous Use of Computing Resources

Typical network environments of the future will include
WAN stations, LAN stations, wireless stations, portable sta-

tions, simple switches, etc.. with limited computing resources.

Any authentication or key distribution mechanism within such
low-function devices must take these resource restrictions into
account.

There exist many key distribution designs but most are
aimed primarily at the application layer where they can assume
a relatively comfortable execution environment and make
fairly generous use of computing resources available at that
layer. Yet, while key distribution messages can always be gen-
erated by key management software executing at high levels
in systems with ample resources, they sometimes need to be
received and processed by low-function devices with limited
resources. For such devices many existing designs, with their
comfortable assumptions about the run-time environment, are
ill-suited.

The key distribution protocols discussed hereafter were
designed with restricted environments in mind. They make
minimal use of cryptographic functions, rely on the most
basic block-cipher or one-way hash primitives, require little
working space and computing power, and limit message size

and redundancy as much as possible. In particular, they re-use
and avoid repeating clear- or ciphertext parameters that are
already present in typical packet headers anyway (e.g., party
identifiers) or can be derived from the execution context (e.g.,
lifetime of u key equal to lifetime of a connection context).

B. Exposure to E.vport Restrictions

An unfortunate and sometimes surprising consequence of
using cryptographic messages, especially large ones, in au-

thentication and key distribution implementations is that they

become subject to various administrative controls in countries
that have restrictions on the export, import, manufacture, sale,

and sometimes even usage of cryptographic devices. However,
in many countries restrictions apply to the use of such devices
for confidentiality purposes, i.e., when they are used or can
easily be used for bulk encryption of secret data. When the
devices are designed (tailored) so that they can be used only
for computing and verifying the integrity of messages through
short (typically less than 128 b) MAC’s, using one-way hash
functions rather than encryption and decryption functions.
their distribution and use poses no problem because one-way

functions compress data in a way that does not allow any
decompression. Note that applying a one-way hash function
to a string concatenated to a secret key may be viewed
as generating a pseudo-random function of the string and
thus used for encryption. However this is a very restricted.
inefficient, and low-bandwidth form of encryption (in contrast
to the use of true optimized block encryption algorithms, which
are highly suitable for bulk encryption at reasonable speeds).

Like the previously discussed authentication protocol, the

key distribution protocols discussed hereafter avoid usage and
deployment restrictions by relying only on MAC computations
instead of encryption and decryption functions as do the
Kerberos, X9.17 and X.509 designs, for instance. Of course
secretly transmitting cryptographic keys across networks re-
quires some confidentiality. However, such small secrets can
always be hidden using a technique called one-time padding.
which involves masking them through exclusive-or operations

with one-time random numbers. When restricted to such
short secrets as cryptographic keys, this elementary form of

encryption is not subject to legal deployment restrictions 1.The
need to generate a random pad, use it for encryption, and
exchange a seed for it, does not enable reasonable encryption
of large bulk data, and this justifies the fact that there are no
export regulations applied to this technique. as explained in
the previous paragraph. This padding technique is used in all
key distribution protocols proposed hereafter, Designs such as
Kerberos, X9. 17, or X.509 do not use it.

The usability of global networks connecting numerous users

across many businesses requires that authentication services
be unrestricted between countries. In a mobile environment
where users may move from country to country, the situation
would become intractable if authentication protocols were
restricted: how could one deal with cases where a user from
a financial industry from country A visits country B and
communicates with a commercial customer in country C,
using equipment produced in country D’? Getting a universally
accepted technology of which usage is not limited by any
government is valuable to side-step the above problems. Such
a technology is also sufficient for key distribution purposes.

C. A.ssumijtions on Operutionul Network Aspects

Most of the existing key distribution methods have been tai-
lored to the relatively narrow operational scenarios of specific

1A commercial product deri~cd t’rom this work tmd using this form of
encryption is being mwkct wound the world without re~iriulions.
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distributed applications. However such operational assump-
tions do not necessarily hold in all networking scenarios, and
may not even be suitable at all in certain cases.

For instance, any scheme relying on time-stamps favors
local area network (LAN) environments, where all network

users have easy access to a common trusted time server. While
requiring tightly synchronized clocks in a wide area network
(WAN) is conceivable, it certainly confers another dimension
to the challenge, especially if validating a distributed key re-
quires maintaining a real-time clock by such primitive network
components as link adapters, for instance, or agreeing on a
standard time zone, or trusting that clocks at other domains
are well administered, etc. Any time synchronization (software
or hardware) would have to be secure, otherwise an adversary
could attack the key distribution protocol by attacking the time
synchronization module.

More importantly, existing schemes make specific assump-
tions about network configuration and connectivity models.
They typically assume that keys can be acquired either from a
directory (e.g., certified public keys from the X.500 directory)
or from some key distribution center (KDC) or authentication
server (e.g., X9. 17 or Kerberos). Either assumption requires
that the entities seeking to acquire keys know how to reach
the necessary directory or KDC and have connectivity to it.
Existing designs typically dictate a specific communication
paradigm for contacting the directory or KDC. For instance,
when a client A needs a key to communicate with a server
B, Kerberos specifies that A must obtain the desired key from
the KDC prior to communicating with B, which is sometimes
called the push model. By contrast, in the same situation,
X9. 17 specifies that A must contact B first, and let B get the
necessary key from the KDC, which is sometimes referred to
as the pull model.

Both models are justified in their respective environments.
In the LAN environments for which Kerberos was initially

designed, requiring the clients rather than the servers to get
the keys makes sense because it distributes the burden of
getting keys over individual clients, thus alleviating the task of
shared servers. In the WAN environments for which X9.17 was
designed, the opposite approach is justified because there are
typically many more clients than servers, so that the amount of
system definition that would be required could be prohibitive.
Similarly in mobile networks where a client tries to contact
a home server, the KDC is likely to be much closer to that
server than to the roaming client, thus saving the expense of
long-range client-KDC communication that Kerberos would
require.

Dictating a fixed connectivity pattern is possible in well-
defined application environments where operating assumptions
are clear. However this is unreasonable in generic network
environments, where the context may change from time to
time and from place to place, and some situations may rule
out certain possibilities.

Consider for example a situation where a mobile or oth-
erwise unidentified station dials into a network, and must
be authenticated by the nearest switching node (intermediate
system) before being allowed to contact any station across the
network. This scenario clearly rules out the Kerberos-like push

model, where the newcomer should contact the KDC before
talking to the switching node. By contrast, consider a situation
where two switching nodes of an accidentally partitioned
network re-establish contact after the outage and need to
authenticate one another. In this case, which of the two nodes
should contact the KDC may depend on which network parti-

tion the KDC is in. Even in cases where physical connectivity
exists, it may be impossible (for route configuration reasons)
or undesirable (for security reasons) to provide some logical
connectivity. The family of protocols described hereafter offers
the flexibility of negotiating connectivity patterns at run-time
to communicate with a KDC or directory.

IV. KEY DISTRIBUTION FOR NETWORK ENVIRONMENTS

Used with MD5 hashing, CBC DES MAC, or any other one-
way function using a shared key as one of its arguments, the
authentication protocol described earlier presents the advan-
tages of requiring only relatively simple and short messages.
In addition, with CBC DES MAC or other encryption functions
used as one-way functions, the object code of an implementa-
tion may be exported as long as it does not offer any handle
for bulk encryption/decryption. With MD5, even the source

code of an implementation may be exported since it does
not embody any reversible encryption function, such as DES
for instance. However, MD5 (or DES) requires that pairwise

shared secret keys be distributed to any two parties wishing to
authenticate one another. This section will describe a suitable
key distribution protocol which builds on the basic two-way
authentication protocol described earlier, thus capitalizing on
its light-weight and exportability y properties. In addition, it is
flexible and nonprescriptive as far as network configuration
and connectivity are concerned, thus supporting both the push
and pull models of key distribution.

A. Certificates and llckets

The distribution of secret keys from a KDC to parties in its
network requires that secret channels be used. In a symmetric
cryptography context, it is natural to envision securing such
channels through symmetric encryption. This in turn requires
that each party in the network share with the KDC at least
one secret key, which it can use to secure its channel with the
KDC. We call this secret key shared between the KDC and one
of its clients the client’s main key-encryption key (KEK).

The nature of the messages exchanged between a KDC and
its clients over the secret channel they share is actually rem-
iniscent of public key certificates: a key distribution message
issued by the KDC to one of its clients, also referred to as a
ticket, must by definition include the distributed key; it must
also include a key stamp (e.g., a unique key version number,
time-stamp, or nonce) indicating to the recipient that the key
is fresh and valid; it must finally include the identifier of the
party(ies) with which the key is intended to be used. (If it did
not include that identifier, an intruder X could substitute one
certificate for another, thus tricking a party A into accepting
as the key meant to authenticate B some other key that X
happens to know, which in turn would allow X to impersonate
B.) Thus, secret key tickets contain essentially the same sort
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of information as public key certificates. the main difference
being the size of (he distributed key (and, of course, the A KDC

cryptographic method by which it is authenticated and kept
secret as necessary). B, A-stamp

In the ensuing discussion, we adopt the following notation: (1) ➤

Kx Party X’s KEK
Kxy Secret key shared by X and Y

Ka* + Kab, KET

Ex(M) Encryptionof M under key Kx (2) 4

Exy(M) Encryptionof M under key Kxy Fig. 2. Basic kcy distributionprotocol.
MACX(M) Message Authentication Code for

message M under key Kx
MAC’xy(M) Message AuthenticationCode for

party identifiers and key stamp into Ka*. However. looking at

message M under key Kxy.
expression (a) above. one can observe that a simple yet secure
way to hash these variables into Ka* is to define

Using this notation, a ticket for giving A a shared secret key
Kab to communicate with B can, assuming E also provides
integrity, be described as follows:

Tab = Ea(Kab, B, A-stamp, KET. other attributes),

where A-stamp is a unique key stamp proving to A that the

key is fresh and valid, KET is the key expiration time, and the
“other attributes” might include such things as message type,
encryption type. key type, key usage flags, etc. This indeed
resembles very much the syntax of tickets used in Kerberos.
If party identifiers (addresses or names) such as B, A-stamp,
and other attributes arc long, expressions such as this one

result in long cryptographic messages, which lead to the packet
size and export problems explained earlier. This ticket syntax

assumes that the function E provides also integrity-there are

encryption functions for which this does not hold, e.g., stream
ciphers.

However basic security in primitive networking environ-
ments requires hardly any key attribute beyond the identifier
of the party with which the key is associated and the key stamp
and expiration time. Furthermore, as observed by the X9.17
designers, the only thing that really needs to be kept secret in

a ticket is the key itself. The party identifier and key stamp
may but need not be kept secret in principle. Thus a ticket
syntax similar to the one used in X9. 17 is sufficient:

(a) Tab = {Ea(Kab), B. A-stamp, KET], MACa(previous 4
fields).

where the party identifier and key stamp are transmitted in
cleartext but are tied to the key by the appended MAC
field. This format helps export considerations because MAC

implementations are exportable, and the usage of reversible
encryption is restricted to the key itself.

However. for certain tickets, X9. 17 also uses an even better
(more compact ) form of ticket. which it calls a notarized key.
The notarization consists of folding the key attributes-in the
X9. 17 case. the party names and a unique key stamp derived
from a counter—into the KEK that is used to encipher Kab.
The resulting ticket format becomes simply

Tab = Ea*(Kab), B. A-stamp, KET

where the notarization key Ka* is a function of Ka, the party

identifiers A and B, and the unique kcy stamp. X9.17 happens
to use a relatively complicated function for combining the

(b) Ka* = MACa(B. A-stamp. KET),

where MACa is assumed to be pseudo-random, ie., not to
reveal any information about Ka* given all its arguments
except Ka 125!, 13]. The A-stamp proving the freshness of
tbe key may be a unique time-stamp, key version number, or

one-time random number (nonce ) issued by the party A who
requested the key. The resulting key Ka* is thus computable
only by the KDC and by A, who are the only parties knowing
Ka, and can thus safely be used to encipher Kab. Thus, the
party identifier, key stamp. and KET can be transmitted ful Iy
in the clear, because their MAC integrity vector under key Ka
is tied to Kab as part of the encrypted ticket used to transmit
Kab.

This is one of the ideas behind the ticket syntax used in

the family of server-based protocols to be described in the
following section. Another idea is that encryption of Kab under
Ka* may be done using any algorithm. DES would be fine
if it is the local standard, but anything else will do as long
as it is secure. One simple choice, available on any micro-
processor, is to use Ka* simply as a one-time pad since it
is pseudo-random. i.e. to compute its exclusive-or with Kab.

This is less complex than DES, not to mention the fact that the
exclusive-or operation is not subject to export controls, Under
this assumption, tickets are simply of the form

Tab = (Ka* + Kab), B. A-stamp. KET,

where “+” indicates exclusive-or and Ka* is computed ac-
cording to expression (b) above, using any suitable MAC
algorithm, such as MD5 with Ka as a secret pretix for example

[23], [251. (Note that using a MAC as suggested above protects
the secrecy of Kab but does not protect its integrity. in
the sense that while an intruder cannot discover the key, it
could change that key to an unknown value. This could be
delected by an additional cryptographic integrity check but is
not discussed here. ) A corresponding ticket for the distribution
of the same key to B would be

Tba = (Kb* + Kab), A, B-stamp, KET.

with Kb* = MACb(A, B-stamp, KET). When exclusive-or-
based notarization is used, it is essential that each key stamp
be unique, otherwise an intruder. having managed to obtain
one key Kab, could derive Ka* and Kb*. and thus obtain
subsequent keys shared by A and B, using [he fact that Ka*

and Kb* do not change for every Kab issued.
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The resulting ticket syntax is thus exportable and leads to

minimal-size messages. In practice, the key stamp may be just

a nonce issued by the party that requested the ticket. Then, this
nonce and the necessary party identifier, must already have

been transmitted in cleartext as part of the original request,
as illustrated in Fig. 2. Thus these parameters need not be
unnecessarily repeated as part of the issued ticket; the ticket
then boils down to just the KET and the notarized key itself,
nothing else, thereby allowing minimal redundancy in mes-
sage parameters, which in fact provides additional protection
against potential known-plaintext attacks. Such economy of
mechanism is not present in any of the existing, application-
layer designs for key distribution (Kerberos, X9.17, X.509)
for several reasons:

● the keys require many more attributes in such high-level
environments;

● the designs make unnecessary use of encryption, enci-
phering many parameters that have nothing secret about
them;

c key attributes are enciphered with the key rather than
folded into it through notarization (except in X9. 17);

● economy of mechanism was clearly not an objective in
these designs.

With the foregoing discussion on the content and syntax of
tickets behind us, we are in a position to describe the proposed
family of flexible KDC-based protocols that avoid as much as
possible all the limitations of existing application-layer designs
mentioned earlier.

B. Scenarios and Protocols

A guiding concept behind our family of KDC protocols is
its flexibility and adaptability to many different network con-
figurations and connectivity patterns. In all coming scenarios,
two entities A and B want to authenticate one another but
have no key Kab initially. At the end of the scenario, the
two entities have obtained a copy of the same shared secret
key Kab and authenticated one another. (Any message they
exchange subsequently can also be authenticated in the same
way using the same key Kab.)

A-B-K Pull Scenario: Of all the scenarios and corre-

sponding protocols to be described, the most easily understood
one is called A-B-K (pull model); it resembles the X9.17
scenario in that the KDC is contacted by B. It is represented
in Fig. 3.

In the A-B-K scenario, it is assumed that A either is unable,
unauthorized, or unwilling to contact the KDC or it is willing
to let B choose whether or not to contact the KDC.2 Thus,
according to the two-way authentication protocol suggested
earlier, A contacts B in flow (1), challenging it to encipher
a nonce Na. B then contacts the KDC in flow ( 1‘), passing
along A’s identifier, A’s nonce Na and its own identifier B
and nonce Nb. The KDC replies in flow (2’) by sending two
tickets including the same fresh key Kab. The tickets follow
the basic syntax suggested in the previous section, i.e., for Tab,

Tab = (Ka* + Kab), B, A-stamp, KET,

2For example, A and B may already share one key, but A defers to B for
deciding whether to get another key or not.

A B KDC

A, Na
(1) w

Na, Nb, A, B
(l’) +

Nk, KET, Tab, Tba

(2’) 4

Nk, KET, Tab, Tba
Nb, MACab(Na,Nb, B)

(2) ●

MACa(Na,Nk)
MACab(Na,Nb)

(3) w
MACa(Na,Nk)
MACb(Nb,Nk)

(3’) ————-. ————–+

Fig. 3. A-B-K ticket distribution protecol.

where the A-stamp proving the freshness and validity of the
key include one of three things:

● a simple but unique time-stamp, which would require
clock synchronization as in Kerberos,

● a counter value, which would require counter synchro-
nization as in X9.17, or

● a nonce associated with the requested key (i.e., Na in the
present case).

As suggested in the previous section, the advantage of
using counters or nonces is that these do not need to be
transmitted explicitly as part of the ticket because they are
already known from the context (in the case of counters) or
were already transmitted as part of the request (in the case
of nonces). One additional advantage of nonces is that they
do not require the maintenance of any synchronized clock
or counter, which is an essential consideration in situations
where A and B may be simple link adapters without their own
power supply or permanent storage. Another advantage is in
scenarios involving multiple parallel connections between A
and B, where race conditions between protocol initiations by A
and B would make counter synchronization a major challenge.
All protocols proposed here thus use nonces wherever possible.
In addition to the two tickets, the KDC issues a nonce of its
own, Nk, whose role will soon become clear.

Upon reception of the tickets, B may or may not cache them
for reuse in later communication with A. The issue of caching
tickets will be discussed soon. In any case B computes

Kb* = MACb(A, B-stamp, KET),

which it uses immediately to decipher Tba and retrieve Kab.
In flow (2), B proceeds to compute and send to A its own

nonce Nb and the expected authenticating expression

MACab(Na, Nb, B).

B piggybacks on the same message the values of Nk, Tab,
and Tba that it received from the KDC. (Note that Tba is
meaningless to A, since it is enciphered using B’s KEK Kb.
However A may want to cache it for later use.) In any case,
upon reception of Tab, A computes

Ka* = MACa(B, A-stamp, KET)
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and uses it to decipher and cxtriict Kab from Tab. A then pro-
ceeds to reply to B with the expected authentication expression
MACab(Na, Nb) in flow (3). For reasons explained below, A
may also piggytwck on that tlow a similar expression, but
computed using Nk instead of Nb and enciphered under Ka
instead of KiIb.

lJpon remp[ion of these messages, B has the option of

computing ii similar MAC expression but with Nb instead
of Na and enciphered under Kb, and forwarding both MAC

expressions [() the KDC in an optional flow (3’). The result
of that optional flow would be to acknowledge to the KDC
that A and B received the intended key Kab and successfully
authenticated one another. Such information may be useful
to log for later auditing purposes. It is onc of the reasons
(besides security) for introducing Nk in flow (2’). Of course if
such auditing is desired then the KDC needs to maintain state

information associating Nk to A, B, and the newly distributed
Kab.

This completes the description of the basic protocol. The
issue of whether A anclhr B should cache tickets depends
on operational assumptions of the scenario at hand. If the
scenario assumes that keys such as Kab are valid for one
single interaction (message exchange or connection duration)
between A and B, then tickets need not be cached, and keys
should be stored and later erased as part of the interaction

context information, thus forcing A and B to get new keys for
each intemction. (In this case. the use of a KET parameter is

also redundant, ) On the other hand, if the KET allows spanning
more than one interaction. A and/or B may want to cache
tickets for the span of their lifetime: each can cache its own
tickets knowing the other does the same, or one of them can
cache both tickets knowing the other does not cache any. [n
either case. at least one copy of each ticket must be cached
between the two partners, so that both can retrieve the key Kab
if and when they resume interaction after a period of inactivity

and within the lifetime of the key Kab.
Notice that. at the end of the whole exchange, A and B

have acquired the same secret key Kab and authenticated one
another. Yet the protocol can achieve more at very low cost:
it can allow A and B to authenticate the KDC and vice-versa.
Indeed, assuming that key stamps A-stamp and B-stamp are
just nonces (Na and Nb), the original expressions for the
notarization keys

Ka* = lvlACa(B, Na, KET), and Kb* = MACb(A, Nb, KET)

simply tie together in one tamper-resistant MAC expression

the KEK of one party to its nonce, the name of the other
party, and the key expiration time. By replacing these two
original expressions by

(cl ) Ka* = MACa(Na, Nk, KDC, B. KET) and
(c2) Kb* = MACb(Nb, Nk, KDC, A, KET),

A B KDC

A, Na
(1) ●

Na, Nb, A, B
(1’) +

Nk, Tab = MACa(Na, Nk, KDC, B, KET) + Kab
KET, Tba = MACb(Nb, Nk, KDC, A, KET) + Kab

(2’) e

Nk, Tab = MACa(Na, Nk, KDC, B, KET) + Kab
KET, Tba = MACb(Nb, Nk, KDC, A, KET) t Kab

Nb, MACab(Na, Nb, B)
(2) 4

MACa(Na, Nk)
MACab(Na, Nb)

(3) ●

MACa(Na, Nk)
MACb(Nb, Nk)

(3’) -+

Fig. 4. A-B-K ticket distribution promwi (expmted version)

for introducing the nonce Nk. The revised expressions not
only qualify as valid notarization keys to secure the necessary
key distribution parameters but by doubling up as legitimate
authentication tokens in the sense of the basic protocol, they
allow A and B to authenticate the KDC. Thus, while the key
distribution protocol achieves its main purpose and allows A

and B to authenticate one another, it also achieves two-way
authentication between the KDC and its clients because, in
effect, the flows involving the KDC include, by superposition
to the key distribution process, two separate runs of the basic
authentication protocol, each run involving the KDC and one
of its clients.

In summary, the A-B-K scenario seen above amounts to
nothing more than carrying out three instances of the ba-
sic two-way authentication protocol discussed earlier, one

between A and B, one between B and the KDC, and one
between A and the KDC (via B), where the latter two are
slightly enhanced versions of the basic protocol to cater for
key distribution. The resulting three-way protocol exhibits
security, exportability, and minimal message overhead. The
other scenarios in the remainder of this section are essentially
only variations of this first one. They merely show how the
KDC operation can dynamically adapt itself to various network

configurations or connectivity patterns.
The foregoing discussion is of course intuitive, and a formal

proof that the use of authentication tokens as notarization keys
destroys neither the security of the authentication, nor that of
the key distribution is essential. Some more arguments appear
in Section IV-C while a formal proof is not the subject of
the present paper. Similarly, with the above description of the

which include Nk, we achieve the same result but, in addition, protocol, it appears to be possible for an intruder or for B
the revised expressions match the canonical format and fulfill to change the value of Kab without A being able to detect
all necessary conditions to qualify as secure authentication it. In reality a judicious choice of algorithm for generating
tokens for the second tlow of the basic authentication protocol, pseudo-random values for Nk can be used to bar that threat
in the sense of 151 and [6]. and guarantee the integrity of the key. This is however also

Fig. 4 depicts the A-B-K scenario using the expanded syntax beyond the scope of the present paper, and is addressed in a
for both tickets, The use of this syntax is the main reason separate publication [13 ].
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KDC A B

A, Na
(1) ●

B, Nb, MACb(Na, Nb, B)
(2) 4

Na, Nb, A, B, MACb(Na, Nb, B)
(1’) ●

Nk, KET, Tab, Tba, MACab(Na, Nb,
(2’) *

Nk, KET,

B)

Tab, Tba, MACab(Na,Nb)
(3) ●

Fig, 5, K-A-B ticket distribution protwol

K-A-B Push Scenario: In this second scenario, called K-
A-B (push model), the KDC is contacted by A instead of B,
as shown in Fig. 5. A contacts the KDC because B is either
unable, unwilling or not allowed to do so.

The scenario starts with the same flow (1) in which A chal-
lenges B to encipher some nonce Na. Since B, for whatever

reason, does not contact the KDC as in the previous scenario,
it does not have a key Kab to authenticate itself to A. Thus it
uses its main KEK Kb instead, and omits in flow (2) to return
any ticket to A as it would have done in the A-B-K scenario.

Not seeing any tickets in (2), A deduces that B did not
contact the KDC and thus (unless it has cached tickets from
a previous interaction with B) proceeds to contact the KDC
in step ( I‘ ). There, it passes to the KDC its own nonce as
well as B’s identifier and B’s nonce Nb. It also appends B’s

authentication token

MACb(Na, Nb, B)

since it does not know Kb and thus cannot check that token.
In flow (2’), the KDC recognizes a K-A-B scenario and

thus checks B’s token for A, replies with Nk, KET, Tab and
Tba as usual, and appends B’s token translated from key Kb
to the new key Kab to inform A that B’s original token did
“check’ all right (under the assumption that Na is fresh, which
A knows is true). The tickets have the same format as in the
A-B-K scenario.

At that point, A may or may not cache the tickets for later
use, and computes Ka* to decipher and extract Kab from Tab.
It then passes Nk, KET, Tab and Tba and the usual token
MACab(Na, Nb) to B in flow (3) to complete the two-way
authentication. B may or may not cache the tickets, computes
Kb* to decipher and extract Kab from Tba, and verifies A’s
token.

Notice that this scenario as it stands does not allow A and
B to complete a two-way authentication protocol with the
KDC. They implicitly authenticated the KDC but the KDC
could not authenticate them without a couple of extra flows,
which would be substantially more costly and harder to map on
typical connection set-up protocols. To that extent the use of
Nk in the tickets does not serve any particular purpose. Nk is

used here simply to preserve some homogeneity between ticket

formats in all scenarios, but for no other significant purpose.

KDC A B

Na, 0, A, B
(1’) 4

Nk, Tb, KET, Tab, Tba
(2’) +

A, Na, Tab, Tba, Nk, Tb,
(1) ●

MACb(Nb, Nk)
B, Nb, MACab(Na,Nb, B)

(2) ●

MACab(Na,Nb)
(3) w

MACa(Na,Nk)
MACb(Nb,Nk)

(3’) + -----------

Fig. 6. K-A-B(t) ticket distribution protocol.

K-A-B(t) Push Scenario

1995

KET

In certain network scenarios, it may be desirable to use
another push protocol, referred to as K-A-B(t) and represented
in Fig. 6, to force A to get the tickets before communicating

with B, or to prevent B from contacting the KDC. This
protocol exhibits a Kerberos-like flow.

In this scenario, A contacts the KDC directly with its nonce
Na and B’s identifier in flow ( 1‘). Notice that A cannot provide
the KDC with a nonce for B since it has not yet communicated
with B. Seeing that Nb is absent (e. g., null), the KDC infers a
K-A-B(t) scenario. In this case, it replies in flow (2’) with the
usual Nk, KET, Tab and Tbs. However, since Nb was absent,
it cannot be used as the freshness stamp in Tbs. Instead a time-
stamp 1% must be used in lieu of Nb in this case. Notice that
the use of such a time-stamp dces not require that all parties
keep clocks synchronized as tightly as in Kerberos if that time-
stamp is used only to prove the freshness of the key and not
to authenticate the KDC to B. (This latter task would have
required a unique time stamp.) A time-stamp that is loosely
synchronized (e.g., to the nearest 5 min tick) would do in the
present case.

Upon receiving the tickets, A may cache them, derives Kab
as usual, and proceeds to send its nonce Na, together with Nk,

Tb, KET, Tab and Tba to B in flow (1). Seeing two tickets
coming in on the first message, B deduces a K-A-B(t) scenario.
It may cache the tickets, derives Kab from Tba, after checking
that Tb is within the allowed time window (or any agreed
upon validity check required for Tb), and replies in flow (2)
with the usual MACab token for A. It may optionally add a
MACb(Nb, Nk) token for the KDC.

A receives and checks the MACab token from B, replies
with its own token on flow(3), and then may forward the
optional MACb token to the KDC, together with its own
MACa to complete the scenario with the optional flow (3’)
and allow the KDC to authenticate A and B and log that they
successfully authenticated to one another.

C. Arguments for the Security of the Protocols

We now give intuitive arguments for the security of the

proposed key distribution protocols. As mentioned earlier, a
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formal definition and analysis of security is beyond the scope
of this paper.

The security of (he protocols assumes the security of the

underling cryptographic primitives. That is. any atrdck which

breaks the protocol implies an attack which breaks the cryp-
tographic primitives. Thus. there is no weakness attributable

to the protocol itself.
In the proposed protocols the relevant cryptographic prim-

itive is the MAC func~ion (which uses random private keys
shared between the involved parties to achieve secrecy). We

adopt a common cryptographic assumption, which is that the
MAC function is pseudo-mndom. This assumption implies
the following property: even having seen pairs of the form

(arguments. MAC of the arguments) an attacker with no
knowledge {~f the shared secret key still has no knowledge

ot the results of the MAC when applied to new arguments.
(This property is required for instance to protect the secrecy
of a key through exclusive-OR with a MAC. )

Somewhat more forma]l y: assume that every attacker can
only perform polynomial time computations. The MAC func-
tion has the property that such an attacker will fail in the
following attack. The attockcr cannot distinguish between two

black boxes when one box contains a truly random function

(that gives random values given arguments) while the other
box contains the MAC function with an unknown random
secret key,

We note that our protocols do not use the standard CBC
DES MAC’ function because it is not pseudo-random when
applied to variable-length strings. The MD5 function, applied
to a string concatenated with a secret key. may be viewed as
suitably pseud(>-random, (See the arguments proposed in our
own work 15] and developed subsequently in [3]).

A key distribution protocol is secure if the distributed key
remains secret. Namely, whenever a party A accepts key
Kab as a session key, then this key is unknown to any
adversary. A stronger condition is to require the key Kab
to be pseudo-random, namely any polynomial time adver-
sary cannot distinguish between the key Kab and a random
string. We argue that the keys accepted by parties from the
proposed protocols appear pseudo-random to any polynomial
time adversary.

The security follows from considering the entire set of

expressions that are available to an adversary from runs of
the protocol. and the keys that a party may accept.

Consider a run where party A, having selected a random
nonce Na, accepts key Kab for a session with party B. In all
the proposed protocols this implies that party A received a
string

MACa(Na, Nk, KDC. B, exp) + Kab

where exp is any expression. We first claim that the string

MACa(Na, Nk. KDC. B, exp)

is pseudo-random. This follows immediately since A selects
Na rdndomly at the beginning of the session, and therefore
it (with overwhelming probability) never calls the pseudo-
random function MACa with the same set of inputs. Similarly,
KDC selects Nk randomly, and therefore never calls MACa
with this set of inputs.

It follows that an adversary which is neither A nor B does

not gain any useful information from having both

MACa(Na, Nk. KDC, B, exp) + Kab and

MACb(Nb, Nk, KDC, A, exp) + Kab.

One may think that the adversary may learn something

about Kab from the other flows which involve that key. Note
that Kab is either selected randomly by the KDC, or appears
pseudo-random to the adversary. The only other expression
where Kab may appear is when a party sends

MACab(Na, Nb, B) or MACab(Nb, Na, A).

But since we assumed the MAC function is pseudo-random,

it follows that this does not give any information about Kab

either.
The same holds even if on past executions for which the

adversary may have somehow learned the actual key (thus
learning the value of the MAC on the corresponding nonce).
The learning of past keys (MAC values) does not help in
learning a current one as a party (say the KDC) always chooses
a new value for it.

So far we have envisioned an adversary wbo observes the
flows. Now consider the case of an adversary actively trying
to send messages (an impersonator). Even in this case the
impersonator does not control the nonce values that the MAC
function is applied to. Thus the results still appear pseudo-
random, and further they are hard to produce without the
secret keys Ka, Kb, and Kab. Thus this impersonator cannot
produce the required answers (with significant probability).
Thus, trying to break the protocol and even running many
instances of it cannot help an active intruder, (The arguments
to such claims are derived from the ones in [5] where the
notion of interleaving attacks and its more formal notion of

matching histories and successful attack were put forth. J
In general the combination and formalization of the above

arguments constitute the foundation for the security of the
protocol and the fact that active and passive attacks combined
cannot make a party impersonate an entity or a security
server (unless the underlying cryptographic function can be
compromised). The formal arguments do not simply use the
security of the basic authentication protocol to argue that

the distribution is secure as well; the key distribution and
subsequent authentications are proven secure together against
any combination of passive and active attacks.

V. DISCUSSION

The three KDC protocols presented above form a consistent
family that can all coexist and be supported simultaneously
by the KDC. The KDC and each party can easily discover
dynamically, at run-time what scenario to play based on the
other parties’ behavior. The existence of so many different
scenarios makes it conceivable that two parties A and B could
start behaving in incompatible ways, e.g., both insisting that
they should contact the KDC or both declaring that they cannot
do so. The resolution of such deadlock situations calls for
architectural rules specifying either that one of the scenarios
is a default that all implementations must agree to support as
a minimum option, or alternatively that some implementations
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may not be able to inter-operate because of incompatible
assumptions or operational conditions. The KDC of course
supports all options.

All protocols together avoid the limitations of existing
designs in that they allow any scenario, and the ticket format
they use avoids reliance on tightly synchronized clocks or
counters, minimizes message sizes, minimizes cryptographic
operations, and stays clear of export restrictions through use of
plain MAC operations, except for the key encryption operation

itself, whose exclusive-or-based concept is not directly suitable
for efficient bulk encryption, is therefore not subject to export
controls.

A protocol variant in which A and B use key distribution to
refresh a key Kab they share can be easily derived from the
protocols above. In fact A and B can use Kab to exchange
another key Kab’, and then use Kab’ to perform two-way
authentication or other functions.

One may legitimately ask why the proposed protocols do
not minimize the number of messages. Other designs have
been proposed that require only four messages, e.g., [24], [21 ],
[ 14], [20] instead of the five or six shown in our protocols. It
is indeed possible to marry the light-weight mechanisms and
one-way functions used in our designs with the flow diagrams

used in these other designs to define an enhanced family
of protocols, some of which would have only four flows.
However, doing so would require assuming either tight clock
synchronization as in Kerberos [24], and/or full connectivity
between all involved parties as in [21], [14], and [20]. Both of

these assumptions can of course be made in theory. They were
not made in our case because they were not felt justified in
environments of the sort we envisioned, namely low-function
link or network protocols. Indeed, in these cases not all
participants have the means and the connectivity required for
supporting the reduced flows. In fact, even if they had, the
protocol flows assumed in [21], [14], and 20] may be tricky
to implement in practice as they require sharing parameters
(e.g. nonces) between different connection contexts since some
of the request-response message pairs they include are sent
and received on different links or connections. This can
certainly be implemented but is at the very least unusual for
communication protocols, and may be hard to map on some
existing implementations. Finally it should be pointed out that
the 6th flow in some of our protocols is always optional,
but—if present—adds a function not present in many of the
four-flow designs, namely authentication of the clients to the
KDC.

VI. CONCLUSION

In this paper, we have described a family of KDC-based key
distribution protocols catering to different network connectiv-
ityy patterns. All the proposed mechanisms use concepts from

the same basic two-way authentication protocol and extend
them to the distribution of tickets.

The resulting family of protocols differs from previous
designs in that it is specifically tailored towards low-function
networking environments, where good security is required but
must be provided with minimal overhead, must cater to various

restrictive network configurations and connectivity patterns,

and must be exportable, which is achieved by relying solely
on the use of one-way hash functions for all authentication and
key distribution protocols, as observed independently in [10]).
The simplicity, and economy of the proposed protocols means
that they can be used for building security into even the most
primitive devices and networking components, thus allowing
these to participate fully and securely in future networks.

All the protocols in this paper have now been implemented

as part of a comprehensive security subsystem prototype called
KryptoKnight, whose software and implementation aspects are

discussed in [16], and which formed the basis for the IBM
network security program product.
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