ELLIPTIC CURVES: MOTIVATION

A fundamental question is whether an equation
with integer coefficients

F(xq1,...,2n) =0 (1)
has integer solutions; F'is a polynomial in vari-
ables zq,...,x, With integer coefficients.

1. Does (1) have solutions in the integers?

2. Does (1) have solutions in the rationals?

3. Does (1) have infinitely many solutions in
the integers?

4. Does (1) have infinitely many solutions in
the rationals?

A two variable equation F(x,y) = 0 forms a
curve in the plane. So we are seeking geometric-
arithmetic methods to find solutions.



LINEAR EQUATIONS

ar+by=c, a,bce”

ax+by=c

e In the integers it has a solution if and only
if gcd(a,b)|c, in which case it has infinitely
many solutions.

e In the rationals it has infinitely many solu-
tions.



EXAMPLES

2x—+ 3y = 13 has a solution in the integers.
Namely, £ = 2,y = 3. It also has solutions
in the rationals. For each rational value of

z the corresponding value of y is 13227,

4rx—6y = 13 has no solution in the integers,
because gcd(4,6) = 2 /|13. But it has
solutions in the rationals.

Pythagorean triples (X,Y,Z) are triples of
integers satisfying X2 + Y2 = Z2. E.g.,
(3,4,5). This is equivalent to solving z2 +

y® =1 ]n the rationals. The solutions are
1-42 2t
1+:2°Y = 12

Forn >3, X"4+Y" = Z"™ has no solution in
the integers (Fermat's conjecture). This is
equivalent to saying that =™ + ¢y™ = 1 has
no solution in the rationals, for n > 3.
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CONIC (QUADRATIC) EQUATIONS

ar® 4+ by? + cxy+dr+ey+ f =0,a,...,f € Q

Variable-transformation (rotation) transforms
this to the familiar equation of ellipse or hy-
perbola (c=d =e = 0). Take the intersection
of the conic with a rational line. Are the points
of intersection rationals?

If you solve the system of a conic equation
and an equation of a line you come up with
a quadratic that has two solutions. Moreover,
if one solution is rational so is the other (this
IS easy to see because the discriminant of the
quadratic is a rational).



If we know a rational point, say O, here is how
we get all of them. For any point P draw the
straight line OP and find its intersection P’
with L. Then P is rational < P’ is rational

Rational Line

Question: How do we test for a rational point?
Convert it into a “homogeneous’ equation.
Usmg the projective transformation z = )Z<,y =

= |t becomes equivalent to
aX? 4 bY? = cZ°? (2)

Theorem (Legendre): There is an integer m
depending on a, b, c such that equation (2) has
a nontrivial solution in the integers if and only
if X2+ bY?2 = ¢cZ2 mod m has a solution in
Z*

m-



Example: We can reproduce this method on
a circle C : z24y2 = 1. Consider a point (z,v)
moving on a circle. Take the line L connecting
(0,0) to (z,y). Say it intersects y-axis at (0,t).

y
(x,y)

(O

(-1.1)

The equation of the lineis L : yv = t(1 + z).
Since the point lies in L and in C we have 1 —
2 = y2 = t2(1 4+ 22), which gives the familiar
parametric equations
_1-—¢ 2t
TTix2 YT iy
Moreover, t is rational <& both x,y are ratio-

nals, which of course gives you all the rational
points.



CUBIC EQUATIONS

This is an equation of the form

ay> + bz 4 cx’y + doy® +exy + fr+gy+h =0

with rational coefficients. Weirstrass has shown
that using appropriate (e.g., projective) trans-
formations (possibly changing the coefficients)
it becomes equivalent to a Weirstrass Normal
Form:

y2=:1:3—|—a51:2—|—b:1:—|—c

Assuming its roots are all distinct it is called
an Elliptic Curve. The polynomial f(z) =
13 4+ ax? + bz + ¢ has either one real (and hence
two complex) or three real roots.

One Real Root Three Real Roots



WHY THE NAME ELLIPTIC CURVE?

2 2
Consider the ellipse 5 + %5 = 1. Then y2 =

b< — o leferer:clzate d4to obtz;m vy’ — -
2 _ bz b x
Hence, (v/)< = 4.4 = 4 o222 Choose

the constant k appropnately and the length of
the ellipse is given by the formula

\/1—|—(y/)2dx =/ 1 kQ Qdm
2.2 (3)
—_ f 1 k<x dm
V(1-22)(1-k22?)
Call g(z) = (1 — 2z2)(1 — k?22). Consider the
curve u? = g(z); use the transformations

1 - 2 u
-1 7 T @ _1)2
and u? = g(z) becomes u? = f(z), where
f(@) =g (DT3+3¢"(D)+7°+19" (1) T+79""(1).

Hence equation (3) becomes

xr =

k22

/\/1—|—(y’)2d:1:=/1_ T de

Uu




SINGULARITIES
For an elliptic curve y2 = 23 -+ azr? + bx + ¢
define F(z,y) = y2 — f(z). A singularity of the
elliptic curve is a point (xg,yg) such that

OF OF

_ : _- — : =0

5 (zo,y0) oy (z0,Y0)
However, 28 = —f/(z) and %—Z = Dy.

Setting both equal to O we see that singulari-
ties occur when 2y = —f/(2) = 0. But y = 0O
if and only if f(x) = 0. Hence, singularities
occur at g when f(zg) = f'(xzg) = 0, i.e., zg
is a common root of f, f/, which also means f
has a double root (at zq).

It follows that

y? = f(z) has singularity < f has double root



This gives two possible pictures for the singu-
larities: y2 = z2(z 4+ 1) and y2 = 3.

Double Root Triple Root

Singular cubics are easy to analyze because
they behave like conics.

“Draw the axis of symmetry and project ratio-
nal points”.

It is usual to assume the elliptic curve has no
singularities.
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If an elliptic curve is y2 = f(x), with f(z) =
23 + ax? + bz + ¢ then f(z) has the form

f(z) = (z — ) (2 + Bz + )
It follows that

Claim: If two roots of an elliptic curve are
rational so is the third.

More generally, if P, are rational points on

the elliptic curve so is the point Px () depicted

in the picture. This operation is not yet a

group (because it is not associative!) but can

be made into one by adding an extra point O.
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FORMING A GROUP

By adding a rational point O at infinity we can
make this operation form a group.

P*Q PP

P+Q P+P

Notice that when P = () then we draw the line
tangent to the elliptic curve at P and form the
point P + P exactly as before.

The proof that it is a group is explained in the
next picture (except for associativity which is
more complicated).
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GROUP PROPERTIES

(0]

PO

P+O=P

P+Q=Q+P
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This turns out to be an abelian group and the

operation + is independent of the point O we
choose.

Now we can also answer our original question!
Theorem (Mordel): The group of rational

points of a nonsingular elliptic curve is finitely
generated.

P*Q

Reflection on x-axis

P+Q

In practice we determine the point O using a
bit of projective Geometry. We assume O is
a point at infinity which is a rational point of
the cubic. Thus we can even derive explicit
formulas for the group operation.
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EXPLICIT FORMULAS

We can derive an explicit formula for the point
P14+ P> in terms of the points P; = (x1,vy1) and
P> = (xo,y>). Consider the elliptic curve y? =
:B3—|—a£B2—|-b£B—|—C and put Pix Py = (CB3,y3),P1—|—
Py = (3, —y3).

Assume (z1,y1) #= (zo,y2). Equation of line
through P1, P> is y = Ax 4+ v, where A = %
and v = y1 — Ax1 = yo» — Axo. Substituting we
get y2 = Mz +0v)2 =23 +ax? +bx+o¢ e,
34 (a=2XDz2 4+ (b=2 )z + (c—v2) =0 =
(x —z1)(x — 22)(x — x3), since all three points

(z1,v1), (x2,y2), (z3,y3) satisfy this equation.

If we multiply out and equate terms we can
prove trivially x3 = )\Q—a—ml—mz,yg, = A\x3+v.
Hence, we have the formulas

(x1,y1)*(x2,92) = (N2 —a—z1—x0, A(x3—21)+¥y1)

(x1,y1)+(x2,y2) = (V2 —a—z1—x0, N(@1—23)—Yy1)
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Different formula needed when P, = P>. We
find the tangent to the elliptic curve at P
(which is also the slope \ of the tangent at
P;) by implicit differentiation of y2 = f(z):
)\ pu— y/ p— —f/(x)

2y

Open Problem: No algorithm is known for
determining whether or not a cubic has a ra-
tional point.

Example Consider the elliptic curve y2 = z3+
17.

It has the two points P; = (—1,4) and P, =
(2,5).

P x Py = (-%,%) and Py 4+ P>, = (—

©|00

_109)
I 7 -

The tangent at P; = (—1,4) has slope A

3/8. Using the previous formula we get 2P
(137 2651)_

64 ° 512



AVOIDING SINGULARITIES

Let E(a,b) be the abelian group of rational
points of the elliptic curve

y? = f(z) =2 +az+b
We saw before that the curve has no singular
points iff f(x) has no double roots.

Having double roots is equivalent to f(z) =
fl(x) =0, i.e.
> 4+ar+b=31°4+a=0 (4)

It follows that 22 = —a/3. But also =%+ az? +
bx = 0. This implies

2 2
a a 2a
— —— br = 0, and hence, t = —
9 +a< 3) T b YT Top

Substituting in (4) we obtain
2a? 2
3 <§> +a =0, and hence 4a> + 27b%> = 0.

Theorem: y2 = 23 4+ az + b is non-singular iff
4q3 4 27b% £ 0.
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ELLIPTIC CURVES OVER 7%,

Almost everything said before works over finite
fields.

Given a prime p, an elliptic curve over Z, is
a congruence y2 = z3 4+ ax 4+ b mod p together
with a special point O at infinity such that the
“non-singularity” condition 44342752 # 0 mod
p is satisfied.

Given points P=(z1,vy1),P> = (xp,y>) on the
elliptic curve we define

P+ Py = (A% —z1 — 20, \M(z1 — 23) — y1),
where
VRULif py £ P,

THo—Tq
A= 333%—|—a
2y1
We also define (xz1,v1) + (z1,—y1) = O and
Pi4+0 =04 P = Py. This is an abelian
group, denoted Ep(a,b).

if P, = Ps

This same idea works over GF(p™) as well.
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PROPERTIES

Let p be a prime > 3

e Hasse: p+1-2,/p < |Ep(a,b)| < p+1+2,/p

e Schoof: There is an efficient O(log®p) al-
gorithm for computing |Ey(a,b)|.

e Waterhouse: For any integer such that

p+1-2/p<n<p+1+2p

there exist a,b < p such that |Ep(a,b)| =
n. Moreover, the orders of the groups of
elliptic curves are uniformly distributed in
this interval.

e Theorem: Ey,(a,b) = Zp,; X Zn,, for some
ni,no such that nplny and nolp — 1.
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Example
Consider the elliptic curve y2 — 2341246 over

Z71. To determine the points on E we look at
each possible point of Z1; computing z3+z+6
and then trying to solve equation y2 = :1:3—|—:1:—|—
6 mod 11.

This involves computing square roots modulo
11. There is an explicit formula to do this
because 11 = 3 mod4. In fact the square
roots of a quadratic residue r are +r(11+1)/4 =
r3 mod 11. To compute we tabulate:

34+2x4+6|€QR117| v
no
no
yes 4,
YES 5
no
yes
no
yes
yes
no
yes 2,9

N
(@)

W N

5@00\1®U1-I>OOI\JHO&
ANODPODOWOG OO
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Example (Continued)

The elliptic curve has 13 points (x,y) on it
(including the point at infinity). Being of prime
order 13 it must be a cyclic group itself. E.qg.,
take the generator a = (2,7).

Powers of «, e.g. (2,7) 4+ (2,7) can be com-
puted as follows. First compute A:

A =(3-2241)(2-7)"! mod 11
= (2-3)"1 mod 11
=2-4mod11
=53
Hence z3 = 82 -2 —2 = 5mod 11, and y3 =
8(2—5)—7 =2 mod 11. It follows that (2,7)+

Next (2,7)+ (2, 7)4+(2,7) =22, 7)+(2,7) =
(5,2) + (2, 7).
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ELLIPTIC CURVE SYSTEMS

ElGamal is applicable to the cyclic subgroup
Zn, Of Ep(a,b), but its expansion factor is 4
Moreover, the plaintext
space consists of the points in Ep(a,b) and no
convenient method is known for generating de-

(versus 2 over Zp).

terministically points in Ep(a,b).

Take an Elliptic Curve E, which contains a
cyclic subgroup H = Zp, with intractable dis-

crete logarithm. Plaintext space is Z;; X Z; and
Ciphertext space is Ep X Z; X Z.

Public :
Private :

Encryption :

Decryption :

Menezes — Vanstone System :
o, € Ep

a such that 8 = a«
Choose Random k € Zn,
(337 k) — E(xa k) — (y07y17y2) :
Yo = ka, (c1,¢c2) = kS

r = (r1,72),y1 = c1z1 Mod p,
and yo> = coxo Mod p

(y0, y1,¥2) — D(yo,v1,y2) =
(y1cy ™ mod p,yoc5 T mod p),
where ayg = (c1,¢)
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FACTORING, PRIMALITY, GROUPS

We are given an integer n to be tested for
primality and a group G C (Z,)F, for some k.
For x € G define |x|; = order of z in G.

Assumption: There is a set Sg of integers
such that

dr € G(|z|g € Sg) < n is prime
Primality Testing: 3x € G(|z|g € Sq)7?

We can test |z|g = m as follows:

x| =m < 2 =e & V(prime p|m)(az% #*e).

Thus testing primality for n reduces to fac-
torization of m € Sg. Usually we know prime
factors of each m € Sg.

Groups En(a,b) of elliptic curves are used for
primality testing and factoring n.
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