RABIN CRYPTOSYSTEM
Public: n,0<b<n— 1.

Private: p,q such that n = pg and p = q =
3 mod 4.

Encryption:

M — E(M) = M(M + b) mod n.

Decryption:

/b2 b

There is an ambiguity in the decryption be-
cause there are four possible square roots mod-
ulo n. If w is a nontrivial square root of 1 mod-
ulo n then it is easy to see that the four square
roots are

M,—M —b,w(M+b/2)—b/2, —w(M~+b/2) —b/2
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If p=1mod4 no algorithm is known for find-
ing square roots.

If p=3 mod 4 then there is a formula. Indeed,
letz € QRn. Thenz € QRp and z € QR4. Since
p =3 mod 4 we have that 4|(p+1). Therefore

(:I:a: )2 =x 2 modp

d P
—1
(Note :z;pT = 1 mod p, since x € QRyp.) Hence,
+1
ia:pT are the square roots of x modp. With

similar reasoning we conclude +x 4 are the

square roots of £ moday.

Thus if we have the two square roots modulo
p and the two square roots modulo ¢ then (as
explained before) we can use the Chinese re-
mainder theorem to find the four square roots
modulo n.



Example: n =77 =7-11,b = 9. Note 7 =
11 = 3mod 4. Note 271 = 39 mod 77 and
41 =58 mod 77.

Encryption: M — E(M) = M(M + 9) = M2 +
9.-M modT7T.

Decryption: N — D(N) = /N+8 -2 =
(VN +1-43) mod 77.

Say the ciphertext N = 22. Must compute
v23 mod 77. We have

23(r+1)/4 =232 =22 =4 mod 7
23(¢+1)/4 =233 =13 =1 mod 11

Use the Chinese remainder theorem to find the
four roots of 23 modulo 77. These are

+10 mod 77,£32 mod 77.
The four possible plaintexts are

(10-43) =44 mod 77,(—10 —43) =24 mod 77
(32-43) =66 mod 77,(—32 —43) =2 mod 77.

3



Decryption: Given N must find z such that
x(x +b) = N modn. To do this “we complete
squares’’ .

x(x + b) =N modn
12428 + 2 =N +% modn
(ac—l—%)z EN—I—%mOdn

2
Given N,n,b compute N + % which must a
quadratic residue modulo n. As before we can
compute all four square roots modulo n.

Secutity of Encryption: Is there an efficient
algorithm A which given ciphertext N it out-
puts £ = A(N) such that z(x +b) = N mod n?

Assuming such an algorithm A exists we give a
lLas VVegas algorithm for factoring n with prob-
ability > 1/2.

Idea: If z2 = y2 mod n then n|(z — y)(z + v).
Hence if £ Z +y mod n then gcd(xz — y,n) is a
nontrivial factor of n.



LAS VEGAS FACTORING ALGORITHM

Input: n,b
Choose a random 1 <r <n
Compute y = (2 —b2/4) mod n
Compute z = A(y)
Compute 1 = x +b/2
a. If xr1 = £r mod n then
quit (failure)

5b. if x1 # +r mod n then

output gcd(z1 +r,n)

AW

Theorem: Pr[success| > 1/2.

Proof: Define an equivalence relation

r%s@rzzszmodn.

The equivalence classes consist of four ele-
ments [y] = {ty, twy}, where w is a nontrivial
root of unity modulo n. Consider the value
returned by the oracle A on input vy, i.e., x =
A(y). If r = &y then the algorithm fails while
it succeeds if r = +wy. Since r is random the
theorem is proved.



FACTORING ALGORITHMS
Problem: Factor a given n.

This is a very important problem. No efficient
algorithm (i.e., running in time polylogarithmic
in n) is known.

The 1996 challenge referred to an RSA chal-
lenge with a key length of 130 decimal digits.
Implementation was done on the Internet.

Decimal | Year MIPS | Algorithm

Daigits Achieved | Years

100 1991 7|Q Sieve

110 1992 75| Q Sieve

120 1993 830 | Q) Sieve

130 1996 500 | Gen. Num. Field

MIPS-Years is Millions of Instructions Per Sec-
ond counted in Years, e.g. a Pentium 200 is a
50 MIPS machine.



Existing Factoring Algorithms

Sieve of Eratosthenes (oldest known factoring
algorithm).

Number Field Sieve (NFS).

Special Number Field Sieve (SNFS).

General Number Field Sieve (GNFS). Is the
fastest known factoring algorithm for numbers
with 110 digits or more.

Quadratic Sieve (QS) is the fastest known al-
gorithm for numbers less than 110 digits.

Elliptiv Curve Method (ECM) (works well for
numbers with less than 40 digits).

Pollard’'s p — 1.
Pollard’s p.
Pollard’s Monte Carlo Algorithm.

Continued Fraction Method (only of intellec-
tual interest).



Experimental Running Times
Key length selection for RSA depends on in-

tended security and expected key lifetime. E.qg.,
if you want your keys to remain secure for 20
years a key 1,024 bits long is too short!

Table for factoring times in NFS and SNFS.

4 of Bits | NFS-MIPS | SNFS-MIPS
512 3.10% < 200
768 2.108 1-10°
1024 3.1011 3.107
1280 1-1014 3.109
1536 3.10%6 2.1011
2048 3.1020 4.1014

To be sure, certainly you can use very large
keys, but remember your computation time will
become unreasonable! Here are some predic-
tions in bit lengths:

Year | Individual | Corporation | Government

2000 1024 1280 1538
2005 1280 1533 2048
2010 1280 1538 2048

2015 1538 2048 2048
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Theoretical Running Times

Here is the “expected running times” of some
algorithms used in practice:

Quadratic Sieve O(e(l‘l‘o(l)\/lﬂnln Inn)

Elliptic Curve O(e(1to(1)v2Inpininpy

Num. Field Sieve 0(6(1,924-0(1))|n1/3n|n|n2/3n)

To avoid attacks by the Pollard p — 1 method
RSA uses p = 2p; + 1,9 = 2q1 + 1, with p1,q1
primes od roughly the same size.

For RSA factors of equal size the Quadratic
sieve is the most successful.

The elliptic curve method is useful when the
number has prime factors of differng size.

The Number Field Sieve is the most recent
test.



POLLARD'S p—1 METHOD

Input: n,B

a =2

for j =2 to B do a=a’ modn
d=gcd(a—1,n)

1 <d<nthen dis a factor of n
else failure

Idea: Let p be a prime divisor of n. Let B
be chosen so that “every power of a prime
dividing p — 1 is < B". It follows that (p —
1)|B!. However, at the end of the for loop
a = 2B' = 1 modn. Since p|n we also have
a = 2B' = 1 modp. It follows that pla — 1
and hence also p|gcd(a — 1,n) = d. Next we
proceed to factor d,n/d, and so on.

W=

Running Time: Each modular exponentia-
tion requires O(log B) modular multiplications
each taking time O(log2n). The gcd can be
done in time O(logn). Hence complexity is
O(Blog Blog?n + log3n).
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Example

Disadvantage: Requires n to have a prime
factor p such that p — 1 has small factors.

Let n = 15770708441. We do not know any
prime factor of n. We assume that there is
one, say p, such that p — 1 has small factors.

We guess that all prime factors of p — 1 are
< B = 180.

Iterate and in step 3 we compute the value
a=11620221425.

From this we compute d = gcd(a — 1,n) =
1359709.

The complete factorization of n is found to be

n = 135979115979

If p = 135979 then we see that p—1 = 2
3-131-173. Hence our choice of B = 180
was correct. We could have picked something
smaller, say B = 173!
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DIXON'S ALGORITHM

Select a factor base B = {pi,po,...,pp} Of
primes and a constant C' > B + 10.

For 5 < C consider the vector a; = (a1_; mod
2,ap,mod 2,...,ap ; mod 2) € (Z3)P so that a
subset of them adds to (0,0,...,0) modulo 2.
This amounts to finding a Iinear dependence
among these vectors.

For 53 < C suppose we have obtained congru-

o a
ences: z% = p; " po>7 - pP7 mod n

I\/Iultlplylng these we get the congruence T2 =

y2 mod n which can be used to factor n.

Finding vectors a;, j < C corresponds to finding
a linear dependence oner Z» (which exists since
C > B).

To generate integers z; such that xf mod n
factors completely over the base B one uses
the quadratic sieve algorithm.
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Example of Dixon’s Algorithm

Let n = 15770708441 and B={2,3,5,7,11,13}.
Take the congruences:

83409341562 =3.7 modn
120449429442 =2.7 .13 mod n
27737000112 =2.3.13modn

Multiply these out and reduce the product to
obtain

0703435785° = (2-3-7-13)2 =546 mod n
Hence we obtain the factor

gcd(9703435785—-546,15770708441) = 115759

The three vectors are
(0,
= (
(
and satisfy

a1 + a2 +a3=(0,0,0,0,0,0)
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CRYPTOSYSTEMS BASED ON GROUPS

A group is a pair (G,-) with a distinguished
element e (identity) where G is a finite set and
.G X G — G is a binary operation such that
1. Vu,v,w(u-(v-w) = (u-v)- - w)
2. Yuadlv(u-v =e)
For each v the unique v such that u-v = e is
called inverse of uw and is denoted by u Ll

Why are groups of interest to cryptography?

Starting with an element v € G we can iterate
integer powers of u, namely wu,u?,u3,... and
generate new elements of G.

Given a “base” v € G and an element v € GG
which is an integer power of u, say uk, can we
compute k7
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Examples

Example: In the group Z’l“9 we can form the
powers 7 mod 109.

79 =1 mod 19

71 =7 mod 19

72 =11 mod 19

73 =1mod 19

74 =7 mod 19

7° =11 mod 19
Now given an element, say 11, can you com-
pute the exponent 5 which satisfies 7° = 11 mod
197

The bigger the prime involved the more com-
plicated the problem!

Example: In the group Z5:-4, the number 435
is a power of 2! Can you find the exponent?
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Classes of Groups

Z% (set of integers relatively prime to n,
modulo n).

T he multiplicative group of the Galois Field
GF(p"™). Most frequently used for p = 2.

Elliptic curve groups over Z;.

Groups of symmetry (e.g., the set of sym-
metries of a regular polygon).

Groups of permutations.

Groups formed by words and relations.
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El Gamal Cryptosystem

For any group (G,-) we define the following
cryptosystem:

Cryptosystem ElGamal (G, «, 3) :
Public: (G,),a,8€ G
Private: Exponenta e Z s.t. a4 =0
Encryption: To encrypt M choose some
random integer k£ and encrypt
M — E(M) = (ak, M3F)
Decryption: (y1,y2) — D(y1,y2) = yo(y$) ~?
In the sequel we will relate the security of this
cryptosystem to the difficulty of computing Dis-
crete Logarithms in the group (G,-).

Let o € G.

Discrete Logarithm Problem(a): Given a
B8 €< a > find an integer s such that 8 = af.

ElGamal is applicable to any cyclic subgroup
< o > of (G,-) such that the discrete logarith
problem is difficult on this subgroup.
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ElGamal is usually applied to the multiplicative
group of Z*, for p a large prime.

Example of EIGamal(2579, 2,949):

Private: a = 765
Public: p=2579,aa =2
8= a’%® mod 2579 = 949

To send message M = 1299 we choose random
k = 853 and compute

y1 = 2853 mod 2579 = 435
yo = 1299949853 mod 2579 = 2396

Ciphertext is (435,2396). To decrypt we com-
pute

2396 - (4357°%)~1 mod 2579 = 1299

The Elliptic curve cryptosystem is essentially
ElGamal on a specific class of groups called
Elliptic groups.
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REPRESENTATIONS OF GROUPS

How difficult is it to solve the Discrete Loga-
rithm Problem?

Depends on the group representation!

Consider the groups (Z;,-) and (Z,_1,+). Take
a generator g of Z7 and define the mapping

(Zp—1,+) — (Z,,") - x — ¢(x) = g" mod p.
Clearly,

1. ¢(z+y modp) = (¢(z) - ¢(y)) mod (p— 1)
2. ap(a) = p(a® mod p) mod (p—1)

3. B=a*modp < d(B) =ad(a) mod (p—1)

It is easy to solve linear congruences! Does
this mean that it is easy to solve the discrete
logarithm problem?

No! Finding the isomorphism means we must
find the generator! But there are too many
possible generators!
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Discrete Log Attacks

T he following attacks will be considered, where

p—1=pips

Method

€1,.62 Ck
o o .pk

Time (# of Operations)

Exhaustive Search

Schank’s Algorithm

Pohlig-Hellman

Index Calculus

O(p)
O(\/P)
O(2F_1 e;(log(p — 1)/p1))

O(el/Q—I—o(l)\/lnpln Inp)

Thus, the Pohlig-Hellman algorithm requires
the factorization of p — 1.
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A General Method

Consider a permutation f : X — X of an n-
element set X without fixed points, i.e. f(x) #
z, for all z. Example: f:Z; — Z; u— (- u.

Let the orbit of x € X be defined by Orbs(z) =

{CE,f(CE),fQ(CE),f?)(CE), ..., f™(x)}. Giventhatye
Orbs(z) find an integer k such that y = f*(x).

Put m = 4/n. By Euclidean division, every
integer a < n is of the form a = gm + r, where
0 <gq,r <n. Hence,

fo(x) = frmtr(z) = fIm(f"(x))
= fMo-o fm(fr(x) )
Compute (r, f"(y)), for r < m, and sort by

second coordinate. Also, compute (q, f9(x)),
for ¢ < m, and sort by second coordinate.

Find two pairs (q, f9), (r, f~"(y) with identical
second coordinates, i.e., f7"(y) = f9(z). It
follows that y = fam+7(x).

Search time is O(y/n).
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DISCRETE LOGS IN Z]

Problem Instance: p prime, o generator of
Z;;, and @ an element of Z;.

Objective: Find unique k£ < p — 1 such that
8 = o¥ mod p (we denote this by k :=log, B).

One way to do this is to generate all powers
of 3:

B8,6%,6°,...

and find the correct exponent by exhaustive
search.
This takes time O(p).

Another way is to use the previous general
method in order to reduce the search time to

O(4/p). This is known as Schank’s algorithm.
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SCHANK'S ALGORITHM

Schank’s Algorithm(p,«,3): If m = |/p — 1]
then notice that every integer a < p—1 is of
the form a = gm 4+ r, where 0 < q,r < m — 1.
Hence a% = (a™)%a™ mod p.

1. Compute (r,Ba™" mod p), forr =0,1,...,m—
1 and sort them by the second coordinate.

2. Compute (¢, ™ mod p), forq=20,1,...,m—
1 and sort them by second coordinate.

3. Find two pairs with identical second coordi-
nates, i.e., (r,Ba~" mod p), and (g, a™? mod p)

such that o™ " = a™? mod p.

Running time of the algorithm is O(,/p).
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Example: Let p = 809 and we want to com-
pute l10g3(525). We have a = 3,3 = 525,m =
v/808] = 29 and &2° mod 809 = 99. We then
tabulate (z,99* mod 809) and (i, 525-(3")~1 mod
809), for i =0,...,28.

(0,1)
(4,559)
(8,207)
(12,26)
(16,781)
(20,528)
(24,676)
(28,81)

(1,99)
(5,329)
(9,268)
(13,147)
(17, 464)
(21, 496)
(25,586)

(2,93)

(6,211)
(10, 644)
(14,800)
(18, 632)
(22,564)
(26,575)

(3,308)
(7,664)
(11,654)
(15,727)
(19,276)
(23,15)
(27,295)

(0,525)
(4,396)
(8,724)
(12,768)
(16,399)
(20, 754)
(24,259)
(28,163)

(1,175)
(5,132)
(9,511)
(13,256)
(17,133)
(21,521)
(25, 356)

(2,328)
(6,44)

(10, 440)
(14,355)
(18,314)
(22,713)
(26,658)

(3,379)

(7,554)

(11,686)
(15,388)
(19,644)
(23,777)
(27,489)

(10,644) and (19,644) have same second co-
ordinate. Hence, log3z 525 =29.-10+419 = 3009.
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POHLIG-HELLMAN(p, a, 3)

Let p— 1 = pllp?- pkk If 8= a® mod p then
a = log, B is uniquely determined modulo p—1.
So enough to compute a mod p;*, i = 1,...,k
and use the Chinese Remainder Theorem.

Assume q is prime s.t. p = 1 mod q¢® and p #

1 mod qc'l'l. We want to compute x = a mod

q° = log, 3 mod q°. EXpress x = Zf_% a;q",

where 0 < a; < qg—1. Write a = = + sq¢°. We
] p—1 ag(p—1)
Clam: ¢ =a ¢ modnp.

p=1 p=1 cyp—1
Proof: 37 =a% 7 =a® T mod p. Hence

c E p—1
enough to show o (T 1549 = a0 modp

This is equivalent to proving (:1: + ch)p =
oTl mod (p—1), i.e.,

et -0 =500 o bt
= P— 1(8(] +Z zQ)

(p—l)(sq +Z iq")
=0mod (p—1)
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p—1 p—1
Now, compute 8¢ . If 3 ¢ = 1 modp then

ag = 0. If not then compute

p—1 p—1 p—1

p—1ls p—1,;
a ¢ mod p, « modp,...,aqlmodp,...
—1 p—1.

p-1  p-1
until 3 ¢ =« 7 ' mod p. It follows that ag = i.

If c= 1 we are done.

Else ¢ > 1. Define f; = Ba~ %0 and let z; =

log, 81 mod ¢¢. It follows z1 = Z,f;% a;q° and
p—1 (p—1)ag

o
B3 =a ¢ modp. We can compute oy as
before. If ¢ = 2 we are done, else ¢ > 2 and
continue as before.

(p—1)i
1. compute v, =a ¢ modp, for ¢ <gq.

2. setj=0and ;=0

while j < c¢— 1 do

p=1
compute § = 3¢ mod p
find ¢ s.t. 0 = ~;
Qaj .= 7 '
Bir1 = Bja%? mod p
J=73+1
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Example of Pohlig-Hellman(29,2,18):

p—1=28=22.7 a=2,3=18; want to com-
pute the discrete logarithm log, 18. The expo-
nent a such that 2¢ = 18 mod 29 is unknown.
Compute separately a mod 22 and a mod 7.

q=2,c=2:
gq=22c=2
q=7,c=1

a28/2 = 214 — 28 mod 29
328/2 = 1814 = 28 mod 29
Hence ag =1

B1 = Boa~! =9 mod 29
328/% = 97 = 28 mod 29
Hence a1 =1 and a =3
a?8/4 = 24 = 16 mod 29
328/4 = 184 = 25 mod 29
Hence ag =4 and a = 4

Use the Chinese Remainder Theorem to solve
the system = 3 mod 4,z = 4 mod 7 to get
x=11. Hence, log, 18 =11.

28



INDEX CALCULUS METHOD
Method uses a factor base B = {p1,p2,...,pB}-

Step 1: Compute the logarithms of the B
primes in the base B, i.e. log,p1,...,l00,PB-

Explanation of Step 1: Take C = B+10 con-
gruences o% = p{™ - pP  modp, 5 <O, e,
r; = o1 ;109ap1+---+ap jlog,pp mod (p—1).
This gives a system of C linear congruences in
the unknowns log, p;, @ < C.

Step 2: Compute log, B8 using the knowledge
from Step 1.

Explanation of Step 2: This is done with a

lLLas Vegas algorithm. Assume we were suc-

cessful in Step 1 and we know the values
|Ogoz P1,---, logapB
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Choose a random 1 < s<p—2.
Compute Ba® mod p.

Factor Sa® mod p in the given factor base B =
{p17p27 <. 7pB}1 Say
Ba’® = pilp? . -pCBB mod p
It follows that
098 = —s+c1logqp1 + -+ CB lOgapB-

Analysis shows that precomputation has asymp-
totic running time

O(e(l—l—o(l))\/lnpln Inp)

and the time to find the discrete log is

0(6(1/2—|—0(1))\/|np|n In P)
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EXAMPLE

p = 10007, a = 5,0 = 9451, 8B = {2,3,5,7}.
First we compute logs 2,095 3,1095 5,l0gg5 7. Try
to factor a* for £ = 4063,5136,9865.

54063 =42 =2.3.7 mod10007
5°136 =54 =2.33 mod10007
59865 =189 =33.7 mod10007

which give the linear congruences

logs 2+ 10953+ logg7 4063 mod 10006
logs 24+ 3109534 = 5136 mod 10006
3109534 logs7 = 9865 mod 10006
with unique solution logg2 = 6578,l0953 =
6190,logs7 = 1301. To find log59451 we
choose a random exponent s = 7736 and com-
pute 9451 - 57736 = 8400 mod 10007. Over B
this factors to 24315271, We derive logs 9451 =
—7736 + 410952 + 10953 + 210955 + l0gg5 7 =
4.6678+ 6190+ 2-1+ 1301 = 6057.
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DISCRETE LOGARITHM BITS
Let o be a generator of Z;.

Least Significant Bit LSB (3):

LSB(3) =0 < log,pS is even
< B € QR
—1
& 6]97 =1 modp
T hus the least significant bit is easy by Euler’s
test.

Other Bits: Write p — 1 = 25¢, with ¢t odd.

Theorem 1: It is easy to compute the -th
least significant bit for ¢ < s.

Theorem 2: If there is an “efficient” algo-
rithm for computing the s + 1-st least signifi-
cant bit then it can be used to compute effi-
ciently log, 3.
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Proof of Theorem 2 for s =1

Assume there is an “efficient” algorithm for
computing the 2nd least significant bit.

p—1 = 2t, where t is odd. Hence, p— 3 =
2(t — 1) which implies p = 3 mod 4. In this
case, if B is a quadratic residue mod p then

+1
iﬁpT are the two square roots of 3 mod p.

Claim: For any ~, log,~ is even < log,(p —7)
IS odd.

Proof: (=) Assume IOga'y is even. Since «

is a generator of Z*, o 2 = modp. By Fer-

—1
mat’'s theorem, « T = —1 mod p. Assume

v = a mod p, for some a even. Hence,

p—1
p—y=—v=a 2 o=« T +am0dp,

which implies log,(p—7) = —I-a mod (p—1),
i.e., log,(p — ) is odd. Reverse the steps to
prove ().
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Let the input be «,3,p. We want to output
l0g, 8.

Let Lo(v) = the 2-nd least significant bit of
109, Y-

If L1(B) is odd then replace 8 := Ba—! mod p.
This new 3 satisfies L1(3) = 0.

Let B = a® mod p, for some even a. Then

+1
\/E = 6PT = +a%2 mod p.

By assumption, the value L»(3) can be com-
puted efficiently and moreover, L>(8) = L1(a%?).
Hence, Li(a%?2) can also be computed effi-
ciently. Hence we can determine which of the
two possibilities & is correct.

If L>(B) = Ll(ﬁ 5 ) then set 3 _ﬁ 5 , else

set G=p—3 7 i Next set 8 := 8- aL2(8) and

iterate.
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GALOIS FIELDS (used in EIGamal)

(Zp, 4+, ) is a Galois Field for p prime. It has p
elements.

Let Zp[z] be the polynomials in the variable
x and coefficients over Z,. We can add and
multiply such polynomials. So (Zp[z],+,:) be-
comes a ring.

We also define an equivalence relation g(x) =
h(x) mod f(x) iff f(x)|g(x) — h(x). The set of
these equwa[le]nce classes becomes a ring, de-
noted by T

If the polynomial f(x) is irreducible, i.e., it has
no nontrivial polynomial divisors, then Zplz] g
. . . (f(x))
in fact a finite field.

If f(x) is an irreducible polynomial of degree n
then (?E—Ef)]) is the Galois field of size p".

How do we construct irreducible polynomials?
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EXAMPLE

Look at Zs[x]. There are four polynomials
of degree 3 and constant term equal to 1.
:1:3—|—1,:1:3—|—:1:—|—1,:1:3—|—:1:2—I—1,:1:3—|—:1:2—|—:1:—|—1
Of these, 234+ 1 = (z 4+ 1) (@3 + 2+ 1) and
3+z22+z+1=(z+1)(z?+1). But the other
two are irreducible. This gives rise to the fields

A and 22l They are both identi-

cal with 23 elements. Look at 23+ + 1.

001 010 011 100 101 110 111
001|001 010 O11 100 101 110 111
010010 100 110 O11 OO1 111 101
011011 110 101 111 100 0OO1 010
100|100 0O11 111 110 010 101 OO0O1
101|101 001 100 010 111 O11 110
110110 111 O11 101 011 010 100
111|111 101 O10 OO1 110 100 O11

To obtain its elements we divide by 3 4+x4+1
and keep the remainder which is a degree two
polynmial) (represented by its coefficients).
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PROPERTIES OF FIELDS

There is an irreducible polynomial in Zp[z] of
degree n, for each n > 1.

Hence, there is a (unique) Galois field with p"
elements, denoted by GF(p"), for each n > 1.
Of course, GF(p) is the same as Z.

The multiplicative group of GF(p") is cyclic
and has p"™ — 1 elements.

GF(2") is the most studied field. Previous
algorithms (e.g., Shanks and Pohlig-Hellman)
can be modified to work here. The discrete
logarithm is considered intractable for large n
provided that 2™ — 1 has a large prime factor.

Hardware implementation of GF(2127) exist,
where p(z) = 2127 + 2 4+ 1.
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KNAPSACK SYSTEMS

Cryptosystems based on NP-hard problems are
not always secure. We give two such examples:
the first insecure and the second secure.

Based on Subset Sum problem:
Instance: sq,s>,...,sp, T are positive integers.

Question: Is there a 0—1 vector (xz1,z>,...,%n)
such that % ; x;s;, =17

Subset sum problem is easy for superincreasing
instances, i.e. > ;.;s; <sj, for all j.

for i = n downto 1 do
it T>s;then T =T —s;,x; =1
else z; =0
if Z?:l L;S; — T then
x1,Io,...,Tn IS the solution
else there is no solution

The above representation of T' is unique if the
given sequence si1,...,Sp IS superincreasing.
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MERKLE-HELLMAN KNAPSACK
For s = (s1,s9,...,8n) consider the encryption

function Es : {0,1}" — [0,>" 1 s4] :

n
r = (x1,%2,...,2n) — Es(z) = > x5
i=1

Note that FEsis1—1 and is also easy to decrypt
iIf s is superincreasing. Strategy: Permute the
s;'S sO that the sequence is no longer superin-
creasing. Let p be a prime > ' . s;.

Knapsack Cryptosystem:

S superincreasing

f one-way linear transformation
e.g.,  — ax mod p

Public : (f(s1),---5 f(sn))

Private : s and trapdoor f

Encryption © Ej(sy), . f(sn))
Decryption : Given N solve Subset Sum

problem for f~—1(N)

This cryptosystem has only *“historical inter-
est” since it was already broken in the 1980s.
However, there might be other one-way func-
tions that may make it secure!
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Example

The input sequence

259 21,45, 103,215,450, 946

IS easily checked to be superincreasing. The
transformation f is defined as follows: Choose
a modulus p = 2003 and an integer a = 1289.
f is the one-way linear transformation

x— (a-x) modp:zxz— (1289 -x) mod 2003.

The integer a is the trapdoor. This gives rise
to the following public key

575,436,1586,1030,1921,569,721,1183,1570
The plaintext 101100111 is encrypted as

575+1586+1030+721+1183+ 1570 = 6665

To recover the plaintext we compute

a ly =317.-6665 = 1643 mod 2003.

From this we obtain the plaintext 101100111.
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CODES

An [n, k]-code is a k-dimensional subspace of
(Z>)™. A generating matrix G for an [n,k]-
code is a kK xn matrix whose rows form a basis
for C. d(z,y) is the Hamming Distance of
r,y. d(C) = Ming yccqzxyd(z,y). AN [n,k,d]-
code is an [n,k]-code C s.t. d(C) = d.

Correcting Errors: Let G be the generating
matrix of an [n,k,d]-code C.

e A Transmits z € (Z>)*: Encode y = zG €
(Z>)™, and transmit y through channel.

e B Receives r € (Z>)": B finds ¢/ € C s.t.
d(y’',7) = minygcc d(u,r) (nearest neighbor
decoding) and outputs 2z’ = ¢¥/G.

Claim: If #(errors) in ris < d_Tl then ¢ =y
and hence z/ = z. Proof: d(v/,y) < d(y/,r) +
d(r,y) < 2d(r,y) < 2951 =d—1 < d. Hence,
d(y',y) = 0.
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Nearest-Neighbor Decoding

Svyndrome: Consider the parity-check matrix
H for C,i.e. an (n—k) xn, 0—1 matrix which
forms a basis for C+ (orthogonal complement
for C). The syndrome of r is the vector Hr'.
Note for z € (Z5)™ we have that: (1) z € C &
Hz' =0, and (2) if r = z4e¢, where z € C and
e € (Z>)", then Hr! = He'. Hence, syndrome
depends only on the errors and note on the
particular word transmitted.

Syndrome Decoding: Compute s = Hxz'. If
s — 0O then no errors and decode r as r. If
s #= 0 generate all possible error vectors e of
weight 1 and for each such e compute He'.
If it happens that for any of these He! = s
then decode r as r — e. Otherwise continue to
generate all vectors of weight 2,3,...,(d—1)/2.

Thus we decode in at most
mn

n n
1 ,
F () ()
Note that if B compares r to all code words,
time 2F will be needed, since |C| = 2F.
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MCcCELIECE SYSTEM

G generating matrix of [n,k,d] Goppa code C
(this is class of codes for which decoding is
easy); n =2 d=2t+ 1, k=n—mt. S is a
k x k invertible matrix, P an n X n permutation
matrix and G/ = SGP.

Public :
Private :
Encryption :

Decryption :

Correctness:

xG' 4+ €

McEliece System

G/

G,S, P

r — G’ + e, for some

random vector of weight ¢

y — D(y)

Compute: y; = yP~1

Decode: y1 as y1 = x1 +¢e1
where x1 € C

Compute: xzg s.t. x0G = x1

Compute: z = S~ 1

= 205 1SGP + ¢

roGP + e

x1P +e

=y P—e1P+e

=y—e1P+e

— Y

43



A Hamming [7,4,3]-Code
T he matrix

1 00 0110
G — O1 00101
|l oo0o10011
O 001111
generates a [7,4,3] code. Choose matrices
(O 1 0 0 0O O\
O O0O1 00O
1 (1)8 1 O O0O0O0OO0OO1
S = 01 1 1 ,P=|1 0 O O 0 0O
1100 O O1 00 0O
O O0OOO0O10
\0 00010 0)
The public generating matrix is
1 1 11 0O020
o — 1 1 00100
1 001101
01 01110
The plaintext £ = (1,1,0,0) is encrypted as
y=z2G'"4+e=1(0,1,1,0,1,1,0), where e is the
error vector (0,0,0,0,1,0,0).
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