PUBLIC KEY CRYPTOGRAPHY

Public vs Nonpublic Unlike Private key cryp-
tography, there is no need to share keys. In-
stead, there is a public “phone number” avail-
able to any potential user and a private key.
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TRAPDOOR

Public Key Cryptography (PKC) is based on
the idea of a trapdoor function f : X — Y,
i.e.,

e f is one-to-one,

e f is easy to compute,

e f is public,

e 1 is difficult to compute,

e 1 becomes easy to compute if a trapdoor
IS known.

Thus, although in conventional cryptography
the prior exchange of keys is necessary, this is
not so in public key cryptography.



The idea of PKC was first proposed by Diffie
and Hellman in 1976. Here are some important
PKCs that we will study.

e RSA

e Rabin

e Merkle-Hellman

e McEliece

e ElGamal

e Elliptic Curve



RSA CRYPTOSYSTEM

n,p,q: Define n = pg where p and ¢ are large
primes.

d,e: gcd(e,¢(n)) =1 and ed =1 (mod¢(n))

M: M is the number representing the message
to be encrypted.

C: C is the number representing the “Cypher-
text” (i.e., the encrypted text).

Public Information: n,e.

Private Information: d.



PRIMES

An integer n > 1 is prime if 1 and n are its only
divisors.

Euclid: There are infinitely many primes.

If p1 <po <:-- < pp are the first n primes then
any prime divisor of the integer 1 + p1po---pn
must be larger than p,.

The number w(n) of primes < n is asymptoti-
cally equal to . More generally,

Dirichlet-Hadamard-de la Valleé Poussin:

If gcd(a,b) = 1 then the number 7, ;(n) of

primes p < n of the form p = ak 4+ b is asymp-
, 1

totically equal to M%

Bertrand’s Postulate For any integer there
IS always a prime between n+ 1 and 2n. A
beautiful elementary proof is due to Erdos.

Open problem of Hardy and Wright: Is
there a prime between n? and (n 4+ 1)27



Interesting Problems with Primes

Ulam’s Problem: Start with 1 and write con-
secutive integers in a counterclockwise spirall

100 99 98 97 96 95 94 93 92 91
65 64 63 62 61 60 59 58 57 90
66 37 36 35 34 33 32 31 56 89
67 38 17 16 15 14 13 30 55 883
68 39 18 5 4 12 29 54 87
69 40 19 6 1 11 28 53 86
70 41 20 7 8 10 27 52 85
71 42 21 22 23 25 26 51 34
72 43 44 45 46 48 49 50 83
(3 74 (5 76 77 79 80 81 82

Primes seem to line up in diagonals. Can you
prove or disprove this? Do experiments!
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What is ratio of primes of the form n24+n—+177
How about n2 4+ n + 41?7 Difficult problems!

No single variable polynomial with integer co-
efficients can generate all the primes! (Related
to Hilbert's tenth problem.)



EULER’S TOTIENT FUNCTION

o(n) is the number of non-negative integers
less than n which are relatively prime to n.

n_¢(n)| n ¢n)
10 4 [19 18
11 10 |20 8

12 4 |21 12
13 12 |22 10
14 6 |23 22
15 8 |24 8

16 8 |25 20
17 16 |26 12
18 6 |27 18

Some Important Values of ¢(n):
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n |o(n) = Conditions
p |p—1 p prime
p" | p"—p" ! p prime
s-t]P(s) - () gcd(s,t) =1
p-q|(p—1)-(¢g—1)|p,g prime




NUMBER THEORY

Example 1: It is easy to generate e such that
gcd(e,d(n)) = 1, since

[{e <n:gcd(e, ¢(n)) =1} = ¢(o(n))

Example 2: p = 101,9q = 113,n = 11413.
Then ¢(n) = (p—1)(g—1) = 11200 = 29527,
So any integer not divisible by 2,5,7 can be
used as a public key. We can choose e = 3533.
Using the Euclidean algorithm we easily com-
pute e~1 mod 11200 = 6597.

Example 3: p=5,9q=7,n = 35. Can choose
e—=11. Let the message be M = 12. How do
we compute 1211 mod 357

We will review several concepts from Number
T heory.



HOW IT WORKS

RSA Encryption: M — E(M) := M°¢ = C mod
n

RSA Decryption: C — D(C) := C%= M mod

n.

When and Why it Works: Recall that ¢(n) =
(p—1)(¢g — 1). For RSA to work M < n,
gcd(e,(p—1)(g—1)) = 1, p and ¢ are prime
and de=1(mod(p—1)(g—1)).

RSA works because: C¢ = (M¢)4 = Med =
M1+E(p=1)(a=1) (modn)

Assume that gcd(M,q) = gcd(M,p) = 1. Then
by Fermat’'s Little T heorem:

Cd = M(MmP-1Hk(a-1) = pr(1)k(P=1) = pr(modp)
Cd = M(MI~1Hk(P-1) = pr(1)ke—1) = p(modgq)

Therefore C% = M(modn).



Representations of Numbers

Representations in base b.

nmodb =aibF +ap_1bF" 14 ... 4agmodb
pr— ao

%] modb = apbF~1 4 ap (V¥ 24+ ... 4 aq
pr— a’l

I_%J mod b = a;
Using this fact we can write an algorithm for

changing the representation of a number into
any base.

Procedure base b expansion (n,b)
g.=n
k:=20
while ¢ = 0
ap = q mod b
q = {]
kE=k+1
endwhile
return (a;_q1---ajag)p

10



OPERATIONS ON NUMBERS

Addition of two k-bit numbers can be done in
time O(k).

010110101
11010010
110000111

Multiplication of two k-bit numbers can be
done in time O(k2).

1011
110
0000
1011
1011
100010

Both are well-known algorithms. Of course
there are “faster” algorithms (see Knuth's: “Art
of Computer Programming” ).

Exponentiation of two k-bit numbers can be
done in time O(k3).
11



Example: p=5,g=7,n = 35.
Can choose e = 11. Let the message be M =
12. To compute 1211 mod 35.
First write (11)19 = (1011)». Then calculate

M1l — pg12340-2241.2141.20
_ (M1'22+0'21+1'20)2M

_ ((M1'21+0'20)2M)2M
= ((M?)*M)*M

The formal algorithm is as follows: Compute

the binary representation of e = Zf:_é eiQi, where
k = [logo] and perform the following algo-
rithm:

Procedure exponentiation (x,e,n)
z. =1
for : =k — 1 downto O do
z:=z2modn
if e, =1 then z .=z -x modn
return z® mod n

12



TIMING ATTACKS ON RSA

This is similar to a burglar observing how long
it takes for someone to turn the dial of a safe.
It is applicable to other cryptosystems as well.

A cryptanalyst can compute a private key by
keeping track of how long it takes the com-
puter to decipher messages. The exponent is
computed bit-by-bit starting with the low-end
bit.

For a given ciphertext it is possible to time
how long it takes to perform modular expo-
nentiation. We can therefore determine un-
known bits by exploiting timing differences in
responses. (This attack was implemented by
Koeher in 1996.)

The problem is eliminated by using any of the
following remedies: (a) constant exponentia-
tion time, (b) random delay, or (c) blinding by
multiplying the ciphertext with random num-
ber prior to exponentiation.

13



EUCLIDEAN ALGORITHM

Finding the gcd(a,b) without the factorization
of a and b uses the Euclidean Algorithm. With-
out loss of generality assume a > b.

Lemma: Let a = bg+ r where a,b,q and r < b
are integers. Then gcd(a,b) = gcd(b, ).

Proof: Given a = bg+r where a,b,,gqand r < b
are integers. Let d be any number such that
dla and d|b. Then it follows that d|(a — bq).
Since (a—bqg) = r then d|r. Thus any divisor of
a and b also divides r. This implies gcd(a,b) =
gcd(b,r). Since r = a—bg we have r = a mod b.
We iterate (ro =a,r1 =b,7ro =1r,q1 = q):

ro =qir1 +7ro O<ro<mrm
1 ZQQTQ—I-’I“3 O<’I“3<’I°2

ri = qi+1Ti+1 T ri42 0 <7ripo <ripq
We define gcd(x,0) = z. Note that the se-
quence rg > rq1 > -+ > ryn IS decreasing. Hence
there exists a term r, such that Tn4+1 =0 and
gcd(rp,0) = rn. Therefore gcd(a,b) = .
14



Let f, be the n-th Fibonacci number. Recall:
Jo= /i =1,fn = fpn-1+ fn—2. Solving this
difference equation (by guessing that f, = R",
for some R) we obtain f, = ((1 + v/5)/2)".

Beauty and the Golden Mean:

The rectangle is "aesthetically most pleasing”
when cutting a square the remaining portion
is congruent to the original rectangle! (Con-
struction of the Parthenon uses this principle!)

a a—>b

The big rectangle has dimensions a X b.
The small rectangle has dimensions b x (a —b).
Congruence means they are similar, i.e.,

b 1
R:=2= R= .
b a—>b 1—-R
Solving for R we obtain R?2 = R+ 1 and hence

R=(1+5)/2.

15



We show by induction r,_; > f;. Initial step
1 = 0 is easy. And

Tn—(i41) = Gn—iTn—i T Tn41—;
> Tp—i T Tnt1—i
> i+ fi—1 = fit1

It follows that a =rg > fr, and n = O(loga).

Procedure gcd(a, b; positive integers)
r .= a,
Yy = b;
while y # 0 do
r.=x mod y
ri=y
yi=r
end while
return x

Theorem: If a and b are positive integers,
then there exists integers s and t such that
gcd(a,b) = sa+ bt. Moreover, s,t can be com-
puted in time logarithmic in the input.

16



Example: 1 = gcd(50,21)
50mod21 =8 & 8=50-(2)21

21mod8=5 <« 5=21-(2)8
8mod5=3 & 3=8-(1)5
5mod3=2 & 2=5-(1)3

3mod2=1 & 1=3-(1)2
Reversing the steps we have

8 = 50 — (2)21

5=21-(2)8

5=21—(2) (50 — (2)21)

5 = (5)21 — (2)50

3=8-(1)5

3 = (50 — (2)21) — (1) ((5)21 — (2)50)

3= —(7)21+ (3)50

2 =5_(1)3

2 = ((5)21 - (2)50) — (1) (—=(7)21 + (3)50)
2 = (12)21 — (5)50

1=3-(1)2

1 =(—(7)21+ (3)50) — (1) ((12)21 - (5)50)
1= —(19)21 + (8)50

This can be used to compute modular inverses,
e.g. 501 mod 21 = 8.

17



FACTORING ATTACKS

The encrypted message can be decrypted if the
decryption key is known.

One approach to attacking RSA is to try to
factor n.

If that were possible then one could compute
p,q such that n = pq.

Since e is public we can solve the linear con-
gruence

ex=1mod(p—1)(g—1)

to compute the inverse of e modulo n, which
IS equal to the decryption exponent d.

However, factoring is not an easy problem to
solvel

18



CHINESE REMAINDER THEOREM

Find a number x that leaves a remainder of 1
when divided by 3, 2 when divided by 5 and 3
when divided by 7. Means: find x such that x =
1lmod3, xr=2mod5 and z =3 mod 7. The
solution to this problem is: =z = 52 mod 105.
How is this solution found?

Theorem: Let mq1,mo,...,mp be pairwise rel-
atively prime positive integers. The system:

x = a1 Mod mq
xr = ap> mod mo

T = ap, Mod mnp

has a unique solution modulo m = mimo... mp.

Proof: Let m = mimo---my and M = mﬂk
For each value M, find its inverse y,. modulo my
(i.e., Mry., =1 modmy). Then z = a1 Mqy; +
a>Moy> + --- + anMnpyn. This completes the
proof.

19



For n = pq, the mapping Z; — Z; X Z7 : x mod
n — (x mod p,x mod ¢q) is one-to-one. Since,
175 = ¢(n) = ¢(p) - (q) = |Z}| - |Z7] it is also
onto.

The Chinese remainder theorem provides for
solving congruences with composite modulus
by inverting the above mapping. Here is how
It works.

Suppose we have a pair (a1,a3) € Z;x Z;. Con-
sider by = ¢~ mod p and b> = p~1 mod q. Put
a = a1b1q + a>bop and observe that

a = ai1biq—+ arbop =a; Mmod p

a = ai1b1q + arbop = ao> Mmod q
Example: Solve x = 5mod 7, = 6 mod 11.
We compute 77! mod11 = 8 and 11! mod
7T =2. SOoa=5-2-1146:-8-7 = 446 =
61 mod 77 is the solution of the two congru-
ences simultaneously.

20



Zn. the set of integers O < a < n is an additive
group modulo n.

Z*. the set of integers 0 < a < n which are
prime to n is a multiplicative group modulo n.

Example: Group tables of (Zg,+) and (Z¢,-):

(Ze,+)|0 1 2 3 4 5
0O |0123 45
1 123450 (Z5)|15
2 2 34501 1 |15
3 345012 5 |5 1
4 (45012 3
5 5012 3 4

Fermat’s Little Theorem: If p is prime and
p fa then aP~1 =1 mod p.

a® mod 7

20 =64=1mod7

306 =729=1mod 7

45 =4,096=1mod 7
56 =15,6251=1mod 7

OO b WNL

21



Proof: Let a be such that p /Ja. List all the
elements of Z.

xl $2 o o o xp—l
a. a-r] a-xrp - a4-Tp_]
122 - xy—1 = (axy)(ax2)--- (azy,_1)

aP~Y(zyzp - mp_1)

The group Z; IS cyclic, in the sense that there
is a generator g such that Z% = {¢%¢%,..., "7 1}.

This fact was first proved by Gauss who also
proved something more general:

For all m, Z7, is cyclic if and only if m is of the
form 1,2,4, p% 2pF, where p is an odd prime
and k is a positive integer.

The order of an element a &€ Z; is the smallest
i = 1 such that ¢’ = 1.

22



Lagrange’s Theorem: If H is a subgroup of
the group G then |H| divides |G].

Proof: Define the equivalence relation on el-
ements of the group G-

a%b<:>ab_1€H

‘T he equivalence classes are easily shown to be
the cosets Ha = {ha : h € H}. They all have
the same size, namely |H|. It follows that |H|
divides |G]|.

For a generator g of Z, the element gk has
—1

p
gcd(p—1.8)" Moreover

order

g" generates Z, < 9gcd(p—1,k) = 1.
The group Z7 has ¢(p — 1) generators.

Euler’'s Theorem: If a is an integer which is
prime to n, then a?(™ =1 mod n.

23



Totient Function Attack on RSA

Is there an “efficient” algorithm which given n
(a product of two primes) as input will com-

pute ¢(n)7
Assume such an algorithm n — ¢(n) exists!

We can prove n+ 1 — ¢(n) = p+q. This is
because
p(n) =m—-1)(¢—1)
=pg—p—q+1
=n—p—q+1
It follows that ¢(n) = (p—1)(n/p—1) = n —
n/p —p-+ 1 and consequently

p°—(n+1—¢n)p+n=0
By solving this quadratic we obtain

nt+1—a¢(n)£/(n+1-¢(n))2—4n

2
Thus, assuming an ‘“efficient” algorithm n —
o(n) exists, there is an ‘“efficient” algorithm
for factoring n.

p:

24



CHOSEN CIPHERTEXT ATTACK

RSA is vulnerable to chosen ciphertext attacks
as the following argument indicates.

T he following attack indicates that RSA is not
good for signing!

Assume a cryptanalyst listening to communica-
tion reads a ciphertext C and wants to recover
M such that M = C9 mod n.

Cryptanalyst chooses a random r < n and uses
the public key to compute

1

r=r°modn,y=xzC modn,t =7~ modn

and gets y signed with the private key d, i.e.
v = y% mod n. Cryptanalyst can now compute

tu=r"1(zC)=r12%C%=r~1rM = M mod n

A remedy we will discuss later is to use hashing.
25



RSA-BIT ATTACKS
Assume n = pq and n is odd.

RSA bit attacks ‘target” specific bits of RSA
output, e.g. the least significant bit.

Knowledge of the least significant bit of an
RSA encrypted message is equivalent to ‘“lo-
cating” the message in a certain subinterval of
[0,n]. More precisely,

We define: Parity(M®€ mod n) = low order bit
of M, i.e. O if M is even, and 1, otherwise.

Half(M® modn) =0 if 0 < M < n/2, and 1,
if n/2 < M <mn, ie, Half(M®modn) =0 &
2M < n. Hence,

Half(M¢ modn) = Parity((2M)€ mod n)
Parity(M® modn) = Half((M/2)¢ mod n)

26



Then we have:

Half(M¢ modn) =0 s M e
Half(2M)* modn) =0 & M €
Half((AM)* modn) =0 < M €

0,5)
0,%) U531

'O n)U[n 3n

[n 5n)U[ n

By using binary search we can locate preasely

the value of M.

This means if there is an efficient algorithm
for computing the low order RSA-bit (i.e., the
Parity function) then there is an efficient al-
gorithm for computing the original message.

Thus the low order RSA bit is as secure as

RSA.

27



QUADRATIC RESIDUES

aP—1 — 1_(a —1)(a —|—1)—Omodp We
define the Legendre symbol by

(

=+1modp & a=0modp

a +1 |fa
<;>:< 1 ifaz =—1modp & a0 modp
O ifa=0modp

Ir\)‘
= =

This |mpI|es that

—1
apT = (E) mod p
p
More generally, given the prime factorization

n = pylpy2---p,* we define the Jacobi Symbol

B=G) ) ()

Example 1: If you know the factorization of
9975 =3-52.7-19 then we compute:

(57) = (57) ()7 (%) (7
5 @) ()
(=1)- (=1 (-1 - (-1) = -1

28



Computing the Jacobi symbol does not require
the factorization of n. A “Euclidean style” al-
gorithm will be discussed in the sequel. As-
sume m,n are odd. Then we have the following
properties.

1. azbmodn:><%)=<%)
2a. (2)=1if n==+1mod8
2b. (2)=-1if n=+3 mod 8

2c. (%t) = (%)k (%) for ¢+ odd
s (=)

4q. () = — %) ifa=b=3 mod4
.

Example 2: If you do not know the factoriza-
tion of 383 then we use the following algorithm
to compute:

= (ﬂ otherwise
m

(219) __ (383\ _  [(164)\ _ 2)2_(41>

383) — 219) — 219) — 3190 2190
(41 _ (219 B ﬁ)
219) — 21 41

29



Definition: a is a quadratic residue modulo p
(denoted a € QRp) if and only if 3b € Z5(a =
b2 mod p).

Important: Fora c Z7, a € QRp & (%) = 1.

=: Assume a = b° mod p, for b € Z%. Then

~1 —1
a7 = (b2)pT =p—1 =1 mod p.

<: Take a generator g of Z7. It follows that

a = g%, for some i. Assume (%) = 1. There-
p—1 p—1 i(p—1)

fore a 2 =1 mod p and hence a =g 2 =
1 mod p. It follows (p — 1)|@. Hence i is
even and a € QRyp.

This has significant applications for primality
testing.

30



Test for Pseudo-Primes

Input: n

Pick random a € [1, n]

Compute g := gcd(a,n)

If g =1 then n is composite

If g =1 then compute e :=a"" 1 mod n
If e 21 then n fails the test

If e=1 then n passes the test

What is the probability that a composite num-
ber passes the test? It seems that by repeating
the test you increase your chances for a correct
answer!

Unfortunately there are composite numbers that
pass the test for all “bases” to which they are
relatively prime (these are known as Carmichael
numbers, and there are infinitely many of them!)

31



PROBABILISTIC PRIMALITY TESTS

No polynomial time algorithm is known for pri-
mality testing. The problem is known to be in
NPNco— NP.

In probabilistic primality tests we construct a
sequence {P, C Z} : n > 1} of sets such that
(a) P, =10, if nis prime, (b) it is easy to check
membership in Py, and (c) Prlx € Z} : = &
Pp] < ¢, for some constant ¢ < 1 independent
of n.

Input: n

1. Choose random 1 <a <n

2a. if a € P, Output PRIME

2b. if a € P, Output COMPOSITE

Theorem: If algorithm outputs COMPOSITE
then n is indeed composite. Moreover, if n is
composite then Pr[Output is PRIME] < c.

Since ¢ < 1, we can reduce the error by it-
erating the test a sufficiently large number of
times.

32



SOLOVAY-STRASSEN TEST

Input: n (odd)
1. Choose random 1 <a<n

n—1

2a. if (%) =a 2 modn Output PRIME
n—1
2b. if (4)#a 2 modn Output COMPOSITE

Theorem: (Solovay-Strassen) If algorithm out-
puts COMPOSITE then n is indeed composite.

Let P, = {a € Z} : (%) = "7 mod n}. We
prove Pr[Z;;\ Pp] < 5 Indeed, first of all observe
the above set is a subgroup of Z;. By Lan-
grange’'s Theorem in group theory the claim
will follow if we prove that |‘%_|§ a proper sub-
group, i.e., {a € Z} : (%) =a 2 modn} # Z.
W.l.0.g. assume n = pq. Take u & QRp. By
Chinese remainder theorem there is an a € 7,
such that a = umod p,a = 1 mod q. Hence,
(%> — (9) . (g) = (-1) - (4+1) = —1. Since,

p
n—1 n—1
@'z =12 =1modg, it follows that (£) #

n—1

a 2 mod n.
33



MILLER-RABIN TEST
Input: n (odd)
1. Choose random 1 <a<n
Write n — 1 = 2Fm, with m odd
2a. If a™ =1 modn or dl < k(anm = —1 mod n)

then Output PRIME
2b. else Output COMPOSITE

Theorem: (Miller-Rabin) If algorithm outputs
COMPOSITE then n is indeed composite.

Assume nkis prime. Thken1 a1 = az:m = 1 mod
. — ~1

n, i.e., a2 ™ —1 = (a? m;1)<a2 m41) =

0 mod n. Hence, either ¢2° ™ = 1 modn or

a2"'m = _1modn. Continuing we obtain

that ™ = 1 modn or di < k(anm = —1 mod
n), i.e., the test will output n is PRIME.

We also state without proof.

Theorem: If n is composite then
Pr[Output is PRIME] < 1/4.

34



GENERATING RSA PRIMES (Heuristic)

1. Choose a k-bit odd integer p at random.

2. Test divide p by all small primes, i.e., less
than or equal some small prime.

3. If p passes the above test then apply the
Miller-Rabin test for r different “bases”.

4. If p passes all these tests then it is prime
with high probability > 1 —-4"".

5. If pis not prime then change p to p+2 and
go to step 1.

35



CONGRUENCES

Congruences are like equations but with the

equality sign = replaced by the congruence
sign =. A linear congruence has the form
a-x=bmodn (1)

where z is the unknown variable.

Congruence (1) has a solution iff gcd(a,n)|b.
If xg is one solution then any other solution is

T = 0 —I—Wﬁm), where 0 < i < gcd(a,n).

Higher degree congruences can also be solved,
e.d.,
2" =1 modn (2)
Similarly we can determine exactly when
"= -1 modn (3)

has a solution. E.g., to solve (2) and (3) take
“discrete logarithms' of both sides and reduce
to linear congruences.
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DECRYPTION EXPONENT ATTACK

Assume we have an efficient algorithm A, which
given the encryption exponent e of RSA as in-
put it outputs the decryption exponent of RSA.
We use this to give an efficient Las Vegas al-
gorithm for factoring n.

1. Choose a random integer 1 <w <n-—1 and
compute z ;= gcd(w,n). If 1 < z < n then you
have a prime factor. Quit and report success.
Prigcd(w,n) = 1] = £ — (1 — La-1).

2. Compute d := A(e), which satisfies ed =
1 mod ¢(n). Write ed — 1 = 2% where r is
odd and compute v := w" mod ¢(n). Clearly,
25r = 0 mod ¢(n), which implies v2° = w2’ " =
w9 =1 mod n. It follows that

(2 4+1) (v

272 1 1) .. (v+1)(v—1) = 0 mod n

37



3. This gives rise to the following test:
If v =1 mod n quit (failure)
while v 2 1 mod n do

Vg = U
v =v2 modn
If vg = —1 mod n then quit (failure)

else compute gcd(vg + 1,n) (success)

4. If successful, at the end of the while loop
we find a value vg such that v = 1 mod n, #
1 modn. If vg = —1 mod n then the algorithm
fails. Otherwise we have that vg satisfies

,08 =1 modn,%= 1 modn,vg Z —1 mod n,
which of course can be used to factor n.

Theorem: Pr[success] > 3.

Proof: The algorithm may fail in one of the
following two ways:

(1) w'"'=1modn

(2); w2T=—-1modn0<t<s—1,
which gives rise to s + 1 congruences. Any
solution of the system leads to failure.
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Write p—1 = 2'py,g— 1 = 2Jg1. Both pq,qq are
odd. Therefore we have that

2itin gy = o(n)led — 1 = 2°r.
which implies i 4+ j < s and piq1]|r.

We know that ™ = —1 mod n has a solution <
vo(m) < vo(p—1),v5(q—1). We can count the
solutions by reducing to a linear congruence
m index(x) = index(—1) mod ¢(n). The same
applies to congruences of the form 2™ =1 mod
n which always have solutions.

[ (1) gcd(r,p—1)gcd(r,qg—1)
(2); gcd(2lr,p —1)gcd(2ir,q — 1),
# solutions if ¢ < min{i,j}
(Q)t 07
otherwise

Observe that

ng(Tap _ 1) — D1
gcd(r,q—1) =q1
gcd(2lr,p — 1) = 2Minthily,
gcd(2tr, q — 1) = 2Min{tilg,

39



Without loss of generality assume 7 < 5. By
the above we have

n - Pr[ failure] <pjiq1+
p1g1(1+22 4 2% 4 ... 4 220~ 1))
=p1g1(1 4 (2% — 1)/3)
= p1q1(2/3 + 2%/3)
el 4 P1@a 27

_ 219%611 + ¢(3n§

_ 2pi1gq
=230+
It follows that
Pr[ failure]

Il IA IA
)
N
T

Wl
W[

This proves the theorem.
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