SIMPLE DES

Simple DES is a block cipher which encrypts
an 8-bit block of plaintext using a 10-bit key
and outputs an 8-bit block of ciphertext.

The encryption algorithm involves five func-
tions executed in the following order:

1. an initial permutation IP,

2. a function fg,

3. a switch function SW that switches two
halves,

4. the function fy again,

5. the inverse IP~1 of permutation IP.

Steps 2 and 3 use keys K1 and K», resp., which
are generated via a key generation algorithm.



KEY GENERATION

Key generation involves three functions which
are applied in a five step sequence in order to
produce two subkeys:

1. a permutation P10 which permutes a 10-bit
input,

2. a left shift operation,

3. an 8-bit permutation that produces an 8-bit
output; this gives the first subkey Ky,

4. again the output from step 2 is subjected
to a second double left shift

5. an 8-bit permutation that produces a sec-
ond 8-bit output; this is the second subkey K».

Several alternatives could have been applied,
like, either using a larger key or using two in-
dependent keys.
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STRUCTURE OF SIMPLE DES

S-Boxes:
1 0 3 2] 0 1
13 210 12 0
SO_0213 51_30
1 31 3 2 21
Permutation P10:
3527 4 101 9 8 6
1 2 3 45 6 7 8 9 10

Permutation P8:

Permutation P4:

2 4 31
1 2 3 4
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BASIC FUNCTIONS OF SIMPLE DES

Encryption Algorithm on Key K:

y=FEr(z)=IP to fr, 0 SW o fi, o IP(x),
where

K = P8(Shift(P10(K))
Ko = P8(Shift(Shift(P10(K)))))

Example of Key Generation:

1. key: 1010000010 = K
2. P10: 1000001100
3. Split: 10000 01100
4a. L-Shift: 00001 11000
5a. Merge: 0000111000
6a. P8: 10100100 = K
4b. Double L-Shift: 00100 00011
5b. Merge: 0010000011
6b. P8: 01000011 = Ko

T hus the original 10-bit key K is being used to
generate two 8-bit keys K71 and Ko.



Decryption Algorithm on Key K:
x = D (y) =IP 1o fx, 0 SWo fr, o IP(y)

The functions are defined as follows:

1. Initial Permutation:
P - 2 6 31 485 7
"\'1 2 3 45 6 7 8
2. Inverse of the Initial Permutation:

p-1- 4 1 3 57 2 8 6
\1 2 3 45 6 7 8

Note that TP(IP~1(2)) = IP71(IP(2)) = =z,
for all xz. We must show that

Dg(Eg(z)) =z
The proof of this depends on the definition of
the function fg, which we define in the sequel.
A proof will be given when we outline Feistel
ciphers.



3. The Switch Function SW: Interchanges
the left and right 4 Dbits so that the second
application of fy operates on a different set
of 4 bits. (In the second instance FE, SO, S1, P4
remain the same and the key input is K».)

4. The Shift Function Sh:ft: Thisis a circu-
lar left shift (rotation) by one position on the
first 5 bits or last 5 bits.

5. The Function fg:

fx(L,R) = (L& F(R,5K),R),

where L, R are the leftmost and rightmost 4-bit
strings of the 8-bit input string to fg, and F
IS @ mapping from 4-bit strings to 4-bit strings
(not necessarily 1 — 1), and SK is a subkey
(either K7 or K- depending on the case).

Example: Assuming F(R,SK) = 1110 and
L =1011,R= 1101 we have

— (10116 1110,1101)
— (0101,1101)



5a. Expansion Operation E: expands a four
bit string into an 8-bit string

4 1 2 3 2 3 41
1 23 45 6 7 8

(so E is not a permutation). The output on
input ninongng IS represented by

ng N1 M3 N4

E(ninonzng) = N Ma T T

K1 = (k11,k12,k13, k14, k15, k16, k17, k18) IS now
XOR-ed to obtain

ng k11 n1 Dk n3zd ki3 nadkia

no ®kis n3 D kieg na D k17 n1 D ks
which is abbreviated by

PoO P01 P02 P03
Pio P11 P12 P13

These are now fed into the S-boxes: the top
row into SO and the bottom row into S1.



5b. S-Boxes: The first four bits (first row)
are now fed into S-box SO to produce a 2-
bit output and the remaining four bits (second
row) are fed into S1 to produce another 2-bit
output. The S-Boxes operate as follows: the
1st and 4th input bits are treated as a 2-bit
number that specifies a row of the S-box and
the 2nd and 3rd bits specify a column. The
output is now the entry of the S-box in that
(row,column). Similarly for S-box S1.

Example: Let poopoi1po2po3z = 0110 be the top
row. Then poopoz = 00 =0 and pg1pgr = 11 =
3 and the output is from row O and column 3
of S0, which is 2 (= 10 in binary).

Next the four bits produced undergo permuta-
tion P4 and this output is also the output of
F.
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CRYPTANALYSIS OF SIMPLE DES

Ciphertext-only Attack: Brute-force attack
is feasible, since there are only 210 possibilities
with 10-bit keys.

Known Plaintext Attack: We can describe
the relationship between a single plaintext block

P1P2P3P4P5P6P7P8

and a single ciphertext block

C1C2C3C4C5CCTCS

in terms of (nonlinear) mathematical equations
with unknowns the 10 bits of the key

k1kokskakskekrkgkokio.

This involves expressions of the previously de-
scribed encryption.
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For example, if

pPop1pP2P3
49049149243

are the two 4-bit output rows from the ex-
pansion operator in (5a) then we get a 4-bit
output zyzw from the two S-boxes.

If xzy is the 2-bit output of SO then the follow-
iNng equations are true

T = pop1p2p3 + pop1 + pop2 + p3
Yy = pop1P2pP3 + pop1P3 + PopP1+
pop2 +pop3 +po+p2+1

where additions are modulo 2.

A similar pair of equations is derived for zw
from the S-box S1.

On the surface, this is not an efficient crypt-
analysis because it involves too many equa-
tions and unknowns.
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FEISTEL CIPHERS

Feistel ciphers are based on designs of block
ciphers that maximize the effect of Shannon’s
“Confusion” and “Diffusion’ .

In order for the encryption to be reversible (i.e.
decryption) blocks generated must be unique.
This means the transformation is 1 — 1.

The block size cannot be too small because the
resulting cipher may not be sufficiently compli-
cated. At the same time a large permutation
of a block is not practical. Feistel proposed an
approximation to the ideal block cipher sys-
tem, for large block size, out of smaller easily
constructed components.

Input to the cipher is a plaintext of length 2n
and a key K.

13



The plaintext block is divided into two parts:
Lo (left) and Rg (right).

The two halves pass through r rounds of pro-
cessing and then combine to produce the ci-
phertext block.

The input (L;_1,R;_1) to the ¢+-th round is ob-
tained from the output of the (i — 1)-round as
well as a subkey. Subkeys are different from K
and from each other.

Each round is parametrized by the round sub-
key and has the same structure:

A substitution is performed on the left half by
applying a “round” function F' to the right half
of the data. Following substitution a permu-
tation is performed that consists of the inter-
change of the two halves of the data.
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DESIGN PARAMETERS

Block & Key Size: The larger the block (re-
spectively, key) size the greater the security
provided and the smaller the e(de-)encryption
speed. 64 bits is the currently accepted block
size, while 128 bits is the currently accepted
key size.

Number of Rounds: A typical size is 16 rounds.

Subkey Generation & Round Function: The
greater the complexity of the algorithm the
greater the difficulty of cryptanalysis.

Encryption/Decryption Speed: Thisisa ma-
jor concern in applications.

Ease of Analysis: The algorithm should be
easy to analyze in order to understand its weak-

nesses and increase user confidence.
15



FEISTEL ALGORITHM

Encryption: LE;y; = RE;
RE;+1 =LE;® F(RE;, Ki11),
1 =20,1,...,15.

Decryption: LD,,1 = RD;
RD;y1 =LD;® F(RD;, K1i6-i-1),
+1=20,1,...,15.
We can show by induction that LD; = RE1¢—;,
and RD; = LFE1g_;. This is true for the initial
step : = 0. Assume it is true for 2

RD;y 1 = LD;® F(RD;, K16—i—1)
= RF16_; ® F(LD;y1,K16-5—1)
= RFE16_; ® FF(RE16—i—1,K16-i—1)
= LFE16_i—1® F(RE16—i—1,K16-;)
® F(RE16—i—1,K16—i—1)
= LEj6—i—1

Hence, decryption is the inverse of encryption.
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FEISTEL ROUND

L {i-1} R{I-1}

FEISTEL ROUND _i

This is iterated for 16 steps. The reverse is
used for decryption.

In practical block ciphers confusion and dif-
fusion is amplified on some rounds with the
application of additional substitutions.

17



FEISTEL TYPE ALGORITHMS

T here are several algorithms differing in Block-
and Key-size used as well as the number of
Rounds.

Block Size | Key Size | # Rounds
DES 04 56 16
Double — DES 04 112 32
Triple — DES 64 168 48
IDEA 64 128 8
Blow fish 64| 32..448 16
RCS5 32,64,128 | 0..2,040 vbl
CAST — 128 64| 40..128 16
RC?2 64| 8..1,024 16
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DESIGN GUIDELINES

The National Bureau of Standards (NBS) sug-
gested the following guidelines in May 15, 1973:

1. High level of security

2. Complete specification and easy to under-
stand

3. Security must be based on the key, not on
the secrecy of the algorithm

4. System available to all users

5. Easily adaptable for diverse applications

6. Economical implementation in electronic
devices

7. Algorithm efficient to use

8. Algorithm must be easy to validate

9. Algorithm must be exportable

These principles were meant to enhance pub-
lic confidence and widespread use of the cryp-
tosystem.

19



DATA ENCRYPTION STANDARD

DES was adapted as a standard in Jan. 1977,
and is the most widely used cryptosystem, es-
pecially in financial transactions, PIN code gen-
eration, etc.

First published in the Federal Register of March
17, 1975.

Developed by IBM, it is a modification of an
older system known as LUCIFER.

Its most recent renewal was Jan. 1994, but it
will not be renewed again.

It is not considered ‘secure” for future trans-
actions. A recent call of proposals is expected
to lead to a successor of DES.

20



DES ALGORITHM
The DES algorithm is in three steps.
1. Given a plaintext = of 64 bits we compute

IP(x) = zg = LoRg, where Lg is the left half
and Rg the right half of xq.

L {i-1} R {i-1}

2. 16 iterations of a certain function are then
computed: L, =R;_1,R;=L;_1® F(R;_1, K;)

3. Compute IP~1(Ri5L15). This is the ci-
phertext block.

21



FUNCTION F : {0,132 x {0,1}48 — {0,1}32

1. The first argument of F', say A, is expanded
according to a function E : {0,1}32 — {0,1}48.
E(A) is a permutation of A with 16 of the bits
repeated twice.

2. The other argument, say J, of F' is 48 bits
long. We compute E(A) @ J and write the
result as eight six-bit strings B = B1 B> - - - Bg.

3. There are 8 S-boxes, Sq1,...,Sg which are
4 x 16 arrays with entries from O to 15 and
can be thought of as functions S; : {0,1}2 x
{0,1}* — {0,1}*. Given B; = biby---bg we
compute S;(B;) as follows: b1bg are the binary
representation of a row and bybzbsbg Of a col-
umn of S;. C; := S;(B;) is the entry of §;
written in binary.

4, C = (C1C»---Cg (32 bits long) is permuted
according to a permutation P and we define
F(A J)=P(C).

22



The function F used in the DES algorithm is
based on the following figure.

32 hits

Q

S1 S2 S3 A S5 S6 S7 S8

32 bits
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BASIC FUNCTIONS

IP is the initial permutation:
IP(z1,22,...,764) = (258,250, ..,%7) :

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
590 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

~NO Wk, P~MN

and IP~1 is its inverse. The expansion E and
permutation P functions are

32 1 2 3 4 5 16 7 20 21
4 5 6 [ 38 9 29 12 28 17

3 9 10 11 12 13 1 15 23 26
12 13 14 15 16 17 5 18 31 10
16 17 16 19 20 21 2 38 24 14

20 21 22 23 24 25 32 27 3 9
24 25 26 27 28 29 19 13 30 6
28 29 30 31 32 1 22 11 4 25

24




S-box 1:

14, 4, 13, 1 5 11, 8 3, 10, 6,
0, 15 7, 4 2, 13, 1, 10, 6, 12,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9,

15, 12, 8, 2 9, 1, 7, 5 11, 3,

S-box 2:
15, 1, 8, 14, 6, 11, 3, 4, 9, 7
3, 13, 4, 7, 15, 2, 8 14, 12, 0, 1,
4 8
6

~

0, 14, 7, 11, 10,

13, 8 10, 1, 3, 15 4, 2, 11, , 7,
S-box 3:

10, 0O, 9, 14, 6, 3, 15, 5 1, 13, 12,

13, 7, 0, 9 3 4, 6, 10, 2, 8, 5,

13, 6, 4, 9, 8 15, 3, 0, 11, 1, ,

1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14,
S-box 4:

7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3,

3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5

S-box 5:

2, 12, 4, 1, 7, 10, 11, 6 5 3
14, 11, 2,12, 4, 7, 13, 1 0 5
4, 2, 1,11, 10 13, 7, 8 15 9, 12
11, 8 12, 7, 1, 14, 2, 13 5 0

S-box 6:

12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3,

10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13,

9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4,

4, 3, 2,12, 9, 5 15, 10, 11, 14, 1,
S-box 7:

4, 11, 2, 14, 15, O, 8, 13, 3, 12, 9,

13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5,
1, 4, 11, 13, 12, 3 7, 14, 10, 15, 6
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0,

S-box 8:

13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3,
1, 15, 13, §&, 10, 3, 7, 4, 12, 5, 6,
7, 11, 4, 1 9 12, 14, 2, 0, 6 10,
2, 1, 14, 7 4 10, 8, 13, 15, 12 9,

The eight S-boxes 51,...,S5%s.

12,
i1,

7,
14,

13,
10,

6,
12,

7,
12,
8,
15,

14,
11,
13,

~

oaros

~ ~

U W oo

w0 @ o

auoP

M

SIS

~

PN

11
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COMPUTATION OF KEY SCHEDULE

The key K is a bitstring of length 64: 56 bits
are used for the key and 8 for parity check. Bits
in positions 8,16, ...,64 are defined so that the
number of 1s in each byte is odd. The parity
check bits are ignored in the computation.

1. Given K discard the parity check bits and
permute the remaining according to permuta-
tion PC—-1: PC — 1(K) = CopDg, where Cq, Dg
are the two 28-bit long halves of K.

2. For 1 =1..16, C; = LeftShift;(C;,_1),D; =
LeftShift,(D;_1) and K, = PC—-2(C;D;). Here,
LeftShift; is a left-shift one position if ¢ =
1,2,9,16, and two positions, otherwise. AIsO
PC — 2 is a fixed permutation. K; has 48 bits.

Decryption is done by using the key schedule
in reverse order: Kig,...,K7.

26



PERMUTATIONS PC-1 and PC-2

57

1
10
19
63

Z
14
21

PC —-1:

49
53

2
11
55
62

6
13

41
50
59

3
47
54
61

5

33
42
51
60
39
46
53
28

25
34
43
52
31
38
45
20

17
26
35
44
23
30
37
12

18
27
36
15
22
29

PC —2:

14

3
23
16
41
30
44
46

17
28
19

.
52
40
49
42

§)

4
20
37
45
56
36

11 24
15
12
27
31
51
39
50

1
21
26
13
47
33
34
29

5
10
3
2
55
48
53
32

Note: PC — 2 generates 48 bits.
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Computation of Key schedules

CO0 D_0
LS 1 LS 1
c1 D 1 PC-2 K_1
LS 2 LS 2
LS 16 LS 16
C 16 D_16 PC 2 K_16

There are 16 rounds to the key computation.

28



DES DESIGN PRINCIPLES

Do the S-boxes contain hidden trapdoors to
allow NSA to decrypt easily? NSA asserted
the following properties in 1976:

PO: All the rows of all the S-boxes are permu-
tations of O0,1,...,15.

P1: S-boxes are not affine transformations of
their input.

P2: Change in an input bit, changes at least
two output bits of the S-box.

P3: For any x and any S-box S, S(z),S(xz @
001100) differ by at least two bits.

P4: For any string z, bits b, and S-box S,
S(z) # S(z & 11b600).

P5: For any S-box, and any fixed input bit the
number of inputs for which a fixed output bit
has the value O (or 1) is always between 13
and 19.

29



BREAKING DES
No further properties have been acknowledged.

There is a lot of controversy regarding DES se-
curity. Is a keyspace of size 256 large enough?

Diffie and Hellman, as early as 1977, proposed
the construction of special purpose machines
for breaking DES, at a cost of $ 20 million.

In 1993, Mike Wiener (of Entrust, an Ottawa
based software firm) proposed a detailed de-
sign of a machine based on a key search chip
which is pipelined so that all 16 encryptions
take place simultaneously.

In Jan. 29, 1997, RSA-Labs issued a challenge
(with a ten thousand dollar reward) to find a
DES key for a plaintext message preceded by
three known blocks containing the phrase “the
unknown message is”’. A project began Feb.
18, 1997, involving 70,000 systems worldwide.
It ended 96 days later with the correct key!

30



DES has strong “diffusion” behavior. Small
change in plaintext or key causes significant
change in ciphertext (avalanche effect). As a
test, two plaintexts that differ on only one bit

08 08 08 08 0% 0% 08 0°
107 0% 0% 08 0% 08 0% 0°
and a key
0°1 1021012 0102102 120310
021302 021203 021302 0120210
were used and generated blocks that differ as
follows:

Round #£ | # of Bits that differ

o) 1
4 39
3 29
12 30

16 34
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MODES OF OPERATION

DES is used in banking, government and pri-
vate industry.

Implementations are either in Software or Hard-
ware (specially designed chips).

Four modes of operation have been developed
in order to satisfy a variety of requirements.
On input string x1,xo,... of blocks the output

IS y1,y2,- ...

ECB (Electronic CodeBook): Same key K is
used throughout. Since only one key is used it
IS less secure, but it is useful for the transmis-
sion of small amounts of data, e.g., transmis-
sion of encrypted keys.

CFB (Cipher FeedBack): Start with initial vec-
tor yo = IV and define y; = Ex(y;—1 ® x;). SO
the ciphertext is used in the encryption like a
stream cipher.

32



CBC (Cipher Block Chaining): A key stream
is generated from initial value zg = IV and rule
z; = Er(z;_1). The ciphertext is y; = z; ® x;.

OFB (Output FeedBack): Set yg = IV, z; =
Ex(yi—1), and y; = z; ® z;.

There are also k-FeedBack modes for CBC and
OFB.

OFB is used frequently in satellite transmis-
sions.

CBC and CFB are useful for Message Authen-

tication Codes (MACs) appended to the end
of the message.

33



CHOSEN PLAINTEXT ATTACK

Given z,y (plaintext, ciphertext pair) such that
y = Er(x) we are interested in computing K.

With Exhaustive Search: Try all 2°° keys by
exhaustive search. This requires zero memory
but on average 2°% keys will be tried before we
succeed.

With Large Memory: Given plaintext z tab-
ulate (yg, K), yr = Ex(x) for all 2°° keys K,
sorted lexicographically. Later, given a cipher-
text y which encrypts z, compute key with ta-
ble lookup. Here time is constant but memory
requirement is large. This approach has advan-
tage only when several keys are to be found.

A Time/Memory Tradeoff: Since the block
size of plain-/cipher-text is 56 bits but key-
Size is 64 Dbits we need a reduction function
R:{0,1}%% — {0,115,
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Given string z define the function {0,1}°° —
{0,1}5°: K — ¢.(K) := R(Ex(z)). Let m.t be
parameters, which are chosen to satisfy m =~
t ~ N1/3, where N = 256,

Construct an m x t matrix of bitstrings as fol-
lows: 1. The first column is chosen at random,
i.e., choose K, g,i=1,...,m, at random.

2. Define recursively K;; = gz(K; 1), for
t>g2>1.

3. Construct a table of ordered pairs (first and
last columns) T = (K4, K; o) sorted by their
first coordinate.

Rather than search the whole m x t matrix,
search for the key K by looking only at the
table T (which of course has only 2m entries).
To do this we need an algorithm!

K may not occur in the m xt matrix. However,
if it did we could argue as follows.
35



KlO — 9z Kl,l —9x ... 9z Kl,t
K2 0 — 9z K2’1 —9x ... 9z KQ,t
Km,o _>g.7) Km,l _>gf]} o o —)gw Km,t

Assume K = K for some 1 < m,y <.

t—g0
Ky = g2(K)
= g} " (92(K))
= g} "(R(Eg(2)))
= g3 "(R(y))
Let y;, 1 < j <t be computed from

_ ) RQy) if =1
Vi gx(yj—l) if2<5<t

Thus, if K = K;;_; then y; = K;; (the reverse
may not be true).

Since, R : {0,154 — {0,115% on the average
any 56-bit string has 2% = 256 preimages. We
need to check whether or not EKi’t_j(CB) =y to
see if indeed Kj;; ; is the key K. Kj;; ; was
not stored, but is easily computed from K;o-

36



Choose m =~ t ~ (256)1/3 and execute the fol-
lowing

Algorithm :
1. compute y1 = R(y)
2. for j =1 tot do
if y; = K;; for some ¢ then
compute K;_; from K; g by iterating gz
if y= EKi,t—j(m) then
put K = K, ;_; and quit
compute Y41 = go(y;)

is easily seen that if N = mt? ~ 2°% then

T o0 AW

I

Pr3, j(K = K;;_ ;)] ~ (0.8)mt/N = (0.8) N~1/3.

Construct N1/3 tables using N1/3 different re-
duction functions. Each table has two columns
and each column has 56-N1/3 bits, which gives
a total storage requirement of 112 - N2/3 pits.
Precomputation time is O(N).

With binary search step 3 takes O(logm) time
units. If step 3 is never successful it takes N2/3
time units.
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MULTIPLE DES (USED IN INTERNET)

Double DES requires two keys K1, Ko applied
to a plaintext:

z — Ep,(z) — Eg,(Eg,(z))

Triple DES requires three keys K1, Ko, K3 ap-
plied to a plaintext:

r — Eg, () = Ex, (B, (7)) — Eg(Eg,(Ek,(2)))

Triple DES with two keys, requires two keys
K4, K> applied to a plaintext:

z — Eg,(z) = Dg, (B, (2)) = Ex; (Dg,(Eg, (2)))

Is double DES reducible to DES? I.e., given
K1, K> does there exist K such that Ex(x) =
Ey,(Eg,(z))? No! It can be shown that the
set of DES encryption functions under compo-
sition is not a group! (see CRYPTQO'92).
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MEET IN THE MIDDLE ATTACK

The idea of meet-in-the-middle attack is due
to (Diffie-Hellman, 1977):

If y= FEg,(Fk,(x)) then Ei (z) = Dk, (y)
Procedure Plaintext Attack on (z,v):

1. Encrypt = with 22 keys.

2. Decrypt y with 2°° keys.

3. Tabulate results and check for matching
pairs. Check entries of one table against en-
tries of another. If a match occurs on a pair
(K1, K»>), check whether this pair works on a
new plaintext/ciphertext pair. If not discard!
For the given plaintext x, there are 264 possible
Ciphertexts that could be produced by double
DES using 2112 possible keys. On average,
2112 /9564 — 248 Kkeys will produce the given ci-
phertext y. This procedure will produce about
248 “false alarms” on the given pair (z,v).

With additional 64 bits of plaintext/ciphertext
pairs the false alarm rate is reduced to 248/264 =
2—16 je. the probability the correct keys are
determined is 1 — 216
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LINEAR CRYPTANALYSIS
Linear cryptanalysis for DES was first described

by Matsui in Eurocrypt 1993. This is based on
the idea of finding a linear approximation to
describe the DES transformation.

1. Consider a Cipher with n-bit plaintext and
ciphertext blocks and m-bit keys. Let = =
x1---xn be the plaintext, y = y1---yn the cCi-
phertext, and K = Ky .- K;, the key.

2. Find fixed locations a1 < as < -+ < ag <
n,BL<Bo< - <Bp<ny<ym< --<v%<Im
such that

(a1 @ DTa,)D(Yg, @ - Dyg,) = Kyy D DKy,

holds with probability = 1/2 (the further from
1/2 the more effective the equation).

3. Compute results of LHS for a large number
of pairs (z,y). If result is 0 more than half the
time then guess RHS is 0 (Same for 1). This
gives a linear equation on key bits. Now try
to get more such equations. DES key can be
found given 247 known plaintexts.
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DIFFERENTIAL CRYPTANALYSIS

First proposed by Murphy, 1990, for ‘“the Crypt-
analysis of FEAL-4 with 20 chosen plaintexts”

and further elaborated by Biham and Shamir
in a series of papers. The idea is this:

Consider the initial plaintext x as two 32-bit
halves zg,x71. Each round of DES produces
only one new 32-bit half. If z; is the new 32-
bit block then z;41 = x;_1 © F(x;, K;).

Start with two known 64-bit messages =z, x*
with known XOR difference Az = =z @ z* and
consider the difference of intermediate halves
Aripy = Tip1 Drjy
= (-1 ® F(z;, K;)) ®x}_{ ® F(x}, K;)
= Ax;_1 ® (F(z;, K;) @ F(x], K;))
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Assume that many pairs (z;,z}) with a given
Azx; yield the same output difference if the
same subkey K, is used.

Ie, F(x;, K;)®F(x}, K;) is a “function” of Ax;,
with high probability.

T herefore if we know Ax;_1 and Ax; then we
know Az, 1, with high probability.

If a number of such differences is determined
then it is possible to determine the subkey
used.
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Outline of Differential Cryptanalysis:

1. Begin with two plaintext messages x, z*
with a given difference and trace through a
probable pattern of differences after each round
to yield a difference for the ciphertext.

2. Next submit z,x™ for encryption to deter-
mine the actual differences under the unknown
key.

3. If there is a match between the two values
we suspect all intermediate rounds are correct.

4. Repeat many times to determine all key
bits.

T his method can be used to “break’” DES with
a small number (up to eight) of rounds.
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IDEA

The International Data Encryption Algorithm
is based on sound theoretical foundations and
is considered one of the most secure block ci-
phers available today. It is also used in e-mail
security program PGP.

Plaintext blocks are 64 bits, Keys are 128 bits,
and the same algorithm is being used for en-
cryption and decryption.

Diffusion and confusion is created by three al-
gebraic groups: (1) XOR, (2) Addition mod
(21641), and (3) Multiplication mod (216 41)
(this last one is also viewed as an S-box).

All operations “operate” on 16-bit blocks. Data
blocks are divided into four sixteen bit blocks
X1, X2,X3,X4. There are 8 rounds, and each
round has 14 steps.
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IDEA Rounds: X1 X0X3Xyq — Z1/4>4374.

14.

(X1 - K1) mod (216 4 1)
(X2 + K3) mod (210 4 1)
(X3 + K3) mod (216 41)
(X4 - K4) mod (216 4 1)
XOR(1,3)

XOR(2,4)
Multiply(5, K5)

Add(6,7)

Multiply(8, Kg)

Add(7,9)

Y7 := XOR(1,9)

Yo = XOR(3,9)

Y3 := XOR(2, 10)

Ya := XOR(4,10)

Except for the eighth (last) round, swap Y5 and
Y3, and this is the output of the round. Let the
output be Y7Y>Y3Y,. After the eighth round
also perform the Output transformation:

1. 74
2. 7
3. Zs
4. 74

= (Yl . Kl) mod (216 + ].)
= (Y2 + K») mod (216 4-1)
‘= (Y3 + K3) mod (21° 4 1)
= (Y4 . K4) mod (216 + ].)
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Subkey Generation: Algorithm uses a total
of 52 subkeys: six in each of the eight rounds
and four in the last output round.

Original key K is divided into eight 16-bit sub-
keys. First six are used in Roundl and remain-
ing two in Round?2.

Rotate key 28 bits to the left. Subdivide into
eight subkeys. The previous two subkeys and
the first four subkeys are used for Round?2.
The remaining four subkeys are used for Round3.
Rotate key 28 bits to the left and so on until
the end of the algorithm.

Decryption: The first four decryption subkeys
DK of decryption Round: are derived from the
first four encryption subkeys F K of encryption
Round(10 — %) according to the following rule:

DK1=EK1_1 DK4:EK51
DKo- —FE K3 DKs3 —FE K> (ROUI’]dS 2..8)
DKo> —FEKyo DK3 —E K3 (ROUﬂdS 1 & 9)

For the first eight rounds, the last two subkeys
of decryption Round: are equal to the last two
subkeys of encryption Round(9 — 7).
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Speed: Current software implementations of
IDEA run twice as fast as DES.

Cryptanalysis: Brute force attacks are impos-
sible because the search space has size 2128

Few theoretical studies have been done, but by
design it seems to be immune to differential
cryptanalysis.

A class of weak keys has been discovered such
that if used an attacker can easily identify them
in a chosen plaintext attack. However these
are ‘specially” constructed and it is unlikely
they will ever be used.

IDEA has several variants and modes of oper-
ation.

Many open questions remain: IsIDEA a group?
Can the cipher be broken?
47



BLOWFISH ALGORITHM

A 64-bit, variable key, Feistel-type cipher.
Characteristics:

1. Speed: encrypts data on 32-bit micropro-
cessors at the rate of 16 c;clock cycles per
byte.

2. Compactness: Can run in less than 5K of
memory.

3. Simplicity: Easy to implement.

4. Variability: Flexible key size as long as 448
bits to enhance security.

Key EXxpansion: Converts key of up to 448
bits into several subkey arrays totaling 4168
bytes. Keys stored in a P-array of 18 32-bit
subkeys Pq,...,P1g. They are generated with
the Blowfish algorithm.

Data Encryption: A single function is iter-
ated 16 times; each round uses a key- and
data-dependent permutation. Two types of
operations are performed: XORs and additions
on 32-bit words.
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S-boxes: Four 32-bit S-boxes with 256 bits
each: Si,o,SZ-.l,...,Si,255, 1=1,2,3,4.

Function F : {0,1}32 — {0,1}32. Divide input
uw into four parts a,b,c,d and define F'(u) by

((S1,a+ S2) mod 2% @ 83 ) + 84 ¢ mod 2%
Encryption z € {0,1}%%:

Divide z into two halves z = xR
for : =1 to 16
x, =x1 P F;
zr = F(zr) DR
swap xy and zp
swap z;, and zp (i.e., undo last swap)
rr =2R D P17
rr =x1,® P13
Output: zyxp
Decryption: Same as Encryption except for
reversing Pq,..., Pisg.

No successful cryptanalysis known. Certain
weak keys have been discovered.
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_ _ CAST
Variants exist depending on key size: CAST-

64, CAST-128, CAST-256. CAST-64 uses six
S-boxes with 8-bit input and 32-bit output.

Function f: {0,1}32 — {0,1}32: Divide input
x into four 8-bit quarters x1,x5,x3,x4 and 16-
bit subkey into two 8-bit halves exsxg. Process
x; through i-th S-box, for ¢ = 1,...,6. XOR
six S-box outputs to form output f(x).

S-boxes & Subkeys: S-boxes are implemen-
tation dependent and rather complicated. Let
Kq,...,Kg be the eight bytes of the key K.
Then the subkeys are:

Round; : Ko;_1,Kp;,1=1,2,3,4
Rounds : K4, K3, Roundg: Ko, Kq
Round; : Kg, K7, Roundg: Kg, K5

Encryption: Divide input into two halves. Al-
gorithm has 8 rounds. In each round the right
half is combined with some key using a func-
tion f and then XORed with left half to form
a new right half.
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OTHER BLOCK CIPHERS

MADRYGA

RC5 ALGORITHM

RC2 ALGORITHM

FEAL

REDOC

L OKI

KHUFU and KHAFRE

MMB

SKIPJACK

GHOST

SAFER
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