CLASSICAL CRYPTOGRAPHY

Classical ciphers are divided into three impor-
tant classes.

MONOALPHABETIC CIPHERS: so called
because letters of the plaintext alphabet are
mapped into unique letters.

POLYALPHABETIC CIPHERS: so called
because letters of the plaintext alphabet are
mapped into letters of the ciphertext space de-
pending on their position on the text.

STREAM CIPHERS: so called because a key
stream is generated and used to encrypt a plain-
text.



MONOALPHABETIC CIPHERS
SUBSTITUTION CIPHERS:

The keyspace is the set of permutations on
{0,1,2,...,25}. For a given key ,

Ex(z122- - 2n) = m(z1)7(22) - - m(2TN),
and

Dr(y1yz---yn) = 7 Y(y)m H(y2) -7 (ym),

Example 1: SHIFT (or CEASAR) CIPHERS:

This is a substitution cipher with permutation

x — w(x) = x4+ b mod 26,
for some 0 < b < 25.

Example 2: AFFINE CIPHERS:

This is a substitution cipher with permutation

x — w(x) = ax + b mod 26,
for some 0 < a,b <25, and gcd(a,26) = 1.
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EXAMPLE: CEASAR CIPHER

Given the encrypted message

L FDPH L VDZ L FRQTXHUHG

We have 26 possible keys. Therefore we can
easily use exhaustive search and try all possible
keys.

The permutation is
A B C D FEF F G H ... Y Z
d e f g h 1 7 k b ¢
and the original plaintext message is

1 came 1 saw 1 conquered

The CEASAR) CIPHER succumbs easily to
Ciphertext-Only attacks.



METHODS OF CRYPTANALYSIS

Ciphertext-Only: The opponent possesses a
string of ciphertext y.

Known Plaintext: The opponent possesses
a string of plaintext z, and the corresponding
Cciphertext string y.

Chosen Plaintext: The opponent has ob-
tained temporary access to the encryption ma-
chinery. He can choose a plaintext string x and
construct the corresponding ciphertext string

Y.

Chosen Ciphertext: The opponent has ob-
tained temporary access to the decryption ma-
chinery. He can choose a ciphertext string
y and construct the corresponding plaintext
string .



Types of Security

There are two fundamentally different ways cCi-
phers may be secure.

Unconditional Security: No matter how much
computer power is available, the cipher cannot
be broken

Computational Security: May mean one of
two things.

1. Given limited computing resources (e.g.,
time needed for calculations is greater than
age of universe), the cipher cannot be bro-
ken.

2. Provide evidence of computational security
by reducing the security of the cryptosys-
tem to some well-studied problem thought
to be difficult (e.g., factoring). Such sys-
tems are called provably secure.



FREQUENCY ANALYSIS

In most languages letters occur in texts with
different frequencies.

E.g., in English E is by far the most common
letter.

We have tables of single, double, and triple
letter frequencies derived from novels, news-
papers, etc.

Frequencies are different for different languages

Single Frequency Double Triple

E 127 TH THE
T .091 HE ING
A .082 IN AND
O 075 ER HER
I .070 AN ERE
N 067 RE ENT
S .063 ED THA
H .061 ON NTH



Cryptanalysis of Affine Ciphers

We consider Ciphertext-Only attacks.

Consider the ciphertext

FMNVEDKAPHFERBNDKRX
RSREFMORUDSDKDVSHVU
FEDKAPRKDLYFEVLRHHRH

By tabulating we get the following frequencies
in descending order

Letter | ## of Occurrences

TNIRITEO=
AROIOIOIO




Making a guess

In each guess we choose two potential candi-
date letters

The most frequently occurring letters (in de-
creasing order of occurrence) are R, D, FE, H, K.

Based on the frequency of occurrence of the
letters we will make a guess and then ‘try to
show that our guess makes sense’ .

Using our guess we will compute values a, b and
confirm that Er(x) = ax+b mod 26 is correct,
for all letters x.

T his involves solving a linear system consisting
of two congruences with two unknowns (the
unknowns are a,b).



Cryptanalysis of Affine Ciphers

1st guess: R —e and D — t, i.e., E(19) =
5,FE.(4) = 17, where Ei(x) = ax + b mod 26.
It follows that 4a 4+ b= 17 mod 26,19a + b
5 mod 26. Solving the system we get a
6,b =19, which is illegal since gcd(6,26) > 1.

2nd guess: R — e and E — t. Proceeding as
before this gives a = 13 which is again illegal
because gcd(13,26) > 1.

3rd guess: R — e and H — t. Proceeding
as before we obtain a = 3,b = 5. The en-
cryption function is E.(x) = 3x + 5 mod 26.
The decryption operation is easily seen to be
Di(y) = 9y — 19 mod 26. If we perform the
decryption operation Dy(y) = 9y — 19 mod 26
on the ciphertext we obtain the plaintext: al-
gorithms are quite general definitions of arith-
metic processes.



Cryptanalysis of Substitution Ciphers
We consider Ciphertext-Only attacks.

We tabulate the frequency of the 26 letters in
the ciphertext. We do the same for digrams
and trigrams.

We guess that the most frequently occuring
letter is e.

We use trial-and-error exhaustive analysis.

We look next at digrams and trigrams and
make a guess which is consistent with our pre-
vious choices.

In each step we verify if our guess is ‘“consis-
tent” and whether or not it leads to meaningful
plaintext.

Although there are 26! possible permutations
of the 26 letters, this frequency analysis leads
easily to conclusion even in plaintexts of length
as little as 200 characters.
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The Craft of Cryptanalysis

We will show how to decrypt the text

letter frequency letter frequency

A 0 N 9
B 1 O 0
c 15 P 1
D 13 Q 4
E 7 R 10
F 11 S 3
G 1 T 2
H 4 U 5
I 5 Vv 5
J 11 w 8
K 1 X 6
L 0 Y 10
M 16 Z 20

YIFQFMZRWQFYVECFMDZ PCVMRZWNMDZVEJBTXCDDUMJ
NDIFEFMDZCDMQZKCEYFCIMYRNCWJICSZREXCHZUNMXZ
NZUCDRJIXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
XZWGCHSMRNMDHNCMFQCHZJIMXJZWIEJYUCFWDINZDIR

to
our friend from Paris examined his empty glass

with surprise, as if evaporation had taken place
while he wasn't looking i poured some more
wine and he settled back in his chair face tilted
up towards the sun
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Based on the frequency table we conjecture
that Z — e.

Other characters occuring more than ten times
are C,D,F,J,M,R,Y .

We expect that they may decrypt to (a subset)
of t,a,o0,i,n,s, h,r.

Next we look at digrams of the form —Z and
Z—. By tabulation we find that DZ and ZW
occur four times each. NZ and ZU three times
each.

By looking at digram tables and since ZW oc-
curs four times, but W~Z not at all, and W oc-
curs less than any other characters we guess
W — d.

Since DZ occurs four times and ZD occurs
twice we could guess that D — r,s,t but is not
clear which one.
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Assuming Z — e W — d we |look back at the
Ciphertext and notice that ZRW and RZW oc-
cur near the beginning and RW later on in the
Ciphertext.

Since RW occurs frequently and nd is a com-
mon digram we guess R — n.

At this point we have completed the top pic-
ture.

Since NZ is a common digram while ZN is not
another guess we make is N — h

Assuming this is correct then segment ne—ndhe
suggests that C — a

At this point we have completed the bottom
picture.
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YIFQFMZRWQFYVECFMDZ PCVMRZWNMDZVEJBTXCDDUMJ

———————— e----e-—-------n--d---en----e----¢
NDIFEFMDZCDMQZKCEYFCIMYRNCWICSZREXCHZUNMXZ

-e---n------ n------ ed---e---e--ne-nd-e-e--
NZUCDRJIXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

-ed----- n----------- e----ed------- d---e--n
XZWGCHSMRNMDHNCMFQCHZIMXJZWIEJYUCFWDJINZDIR

-ed-a---nh---ha---a-e----ed----- a-d--he--n
XZWGCHSMRNMDHNCMFQCHZIMXJZWIEJYUCFWDJINZDIR
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Now consider M, the second most common Ci-
pherletter. The correspondence KNM — nh—
suggests that h— begins a word. So, probably,
M is a vowel, i.e., M — 1,o0.

Since a7 is much more likely than ao the cipher-
text digram CM suggests M — 1.

At this point we have completed the top pic-
ture.

Which letter is encrypted to o? Since o is a
common letter we guess it must be one of
D,F,J, Y. To avoid large strings of vowels it
appears that Y — o is the best choice.

Of the remaining letters we conjecture D, F, J —
r,s,t. We guess F' — r and J —t.

At this point we have completed the bottom
picture.
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-ed-a--inhi--hai--a-e-i--ed----- a-d-~he--n
XZWGCHSMRNMDHNCMFQCHZIMXJIZWIEJYUCFWDJINZDIR

o-r-riend-ro--arise-a-inedhise--t---ass-it
YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

hs-r-riseasi-e-a-orationhadta-en--ace-hi-e
NDIFEFMDZCDMQZKCEYFCIMYRNCWICSZREXCHZUNMXZ

he-asnt-oo-in-i-o-redso-e-ore-ineandhesett
NZUCDRJIXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

-ed-ac-inhischair-aceti-ted--to-ardsthes-n
XZWGCHSMRNMDHNCMFQCHZIMXJZWIEJYUCFWDINZDIR
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BEAUFORT CIPHER

Invented by Sir Francis Beaufort is the precur-
sor to the Vigenere cipher.

Arrange the English alphabet on a 27 x 27
square.

The key is derived from a name, place, poem,
etc, and agreed by both users, and applied as
follows:

Find the first letter of the message text in the
side column.

From the letter, trace horizontally across the
table until finding the first letter of the key.

At the top of the column find the ciphertext
letter.

Reverse these steps for decryption.
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ABCDEFGHIJKLMNOPQRSTUVWXY Z

NNHES<TCEHLalT0z2zx~S~"ZQEmoQm~

ABCDEFGHIJKLMNOPQRSTUVW XY Z
BCDEFGHIJKLMNOPQRSTUVWXY ZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXY ZABC
EFEFGHIJKLMNOPQRSTUVWXY ZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXY ZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXY ZABCDEFGH
JKLMNOPQRSTUVWXY ZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXY ZABCDEFGHIJK
MNOPQRSTUVWXY ZABCDEFGHIJKL
NOPQRSTUVWXY ZABCDEFGHIJKLM
OPQRSTUVWXY ZABCDEFGHIJKLMN
PQRSTUVWXY ZABCDEFGHIJKLMNO
QRSTUVW XY ZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY
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POLYALPHABETIC CIPHERS

HILL CIPHERS:

The keyspace consists of the n x n invertible
matrices. If k is an n X n invertible matrix then

Ep(z) = xk, Dy(y) = yk L.

PERMUTATION CIPHERS:

For a given permutation « let k7, = 1 if (i) =
J, and k,}rj = 0, otherwise. This is a Hill cipher
with matrix k™ = (k7).

VIGENERE CIPHERS:

Let £ = (k1,ko,...,kn) be an n-element vector.
Then

Ep(z) =z +k, Dipy) =y—k
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Cryptanalysis of Vigenere Ciphers
We consider Ciphertext-Only attacks.

First we consider two techniques to compute
the block size m.

Kasiski’'s Observation: Two identical pieces
of plaintext will be encrypted to the same ci-
phertext whenever their occurrence of plain-
text is x positions apart, where x = 0 mod m.

Kasiski’'s Test: Search the ciphertext for pairs
of identical strings of length at least 3.

Record distances between the starting posi-
tions of the two segments.

If we record several such distances dq,do,...
then we can conjecture that m|gcd(dq,do,...).
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Friedman’s Test uses Index of Coincidence:
Let I.(x) = probability that two random ele-
ments of the n-letter string = are identical.

Let fo, f1,...,fo5 be the # of occurrence of
A, B,..., Z, respectively in the ciphertext.

$720 (5) _ 525, £i(fi — 1)

ele) == n(n— 1)

(1)

Now recall the frequency table

Single Frequency
127
.091
.082
.075
.070
.067
.063
.061

TnNnZ2—=0>»-4dm
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From this table we can get the expected value
of I.(z); p? is the probability that in the string
x both elements chosen at random are equal
to the -th letter.

Here, p; be the expected probability of occur-
rence of the :-th letter in the English language.

Now English text and random strings differ:

Ciphertext English Text | Random String
Ie(x) in Y20p? = [26(1/26)? =
Formula (1) | 0.065 0.038

Friedman’s Method: Guess m. Partition the
ciphertext y into m columns y1,y»>,...,ym €ach
of length n/m.

If our guess m is the correct block size then
I.(y;) ~ 0.065, while if m is not correct then
I.(y;) ~ 0.038.
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Example

Consider the ciphertext obtained from Vigenere
cipher.

CHREEVOAHMAERATBIAXXWINXBEEOPHBSBQMQEQERBW
RVXUOAKXAOSXXWEAHBWGIMMOMNKGRFVGXWTRZXWIAK
LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX
VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR
ZBWELEKMSJIKNBHWRJIGNMGJ SGLXFEYPHAGNRBIEQJT
AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBT
PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP
WQATITIWXNRMGWOIIFKEE

We will analyze this ciphertext. Our method
will be the following.

1. We will make a guess for the block size and
subsequently use, (a) Kasiski's method, and
(b) Friedman’'s method to compute m. Both
methods will give the same value for the
block size.

2. Assuming now that m is known we will use
frequency analysis and the mutual index of
coincidence to decipher the text.
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Kasiski’s Method: The cipher text string CHR
occurs in four places in ciphertext and at the
positions:

1,166,236,286.

The distances from the first occurrence are
165,235, 285.

Since gcd(165,235,285) = 5 our guess for the
block size is 5.

Friedman’s Method: We compute the index
of coincidence for the given ciphertext.

For each guess m, we have blocks of size n/m.
So we have block size 5 as the best guess.

Ic

0.045

0.046,0.041

0.043,0.050,0.047
0.042,0.039,0.046,0.040
0.063,0.068,0.069,0.061,0.072

U‘I-bool\.)l—*g
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Assume we know the block size m

Mutual index of coincidence: MI.(z,z') is
the probability that a random element of x is
identical to a random element of «’.

Let fo, f1,..., fos, (. f1, - - -» fog De the frequency
of occurrence of A, B,...,Z, respectively in the

strings z,2’. So we have the formula.

/
Mlc(aj, x/) Z Of’Lf (2>
nn
Since we know m we can partition the cipher-
text y into m blocks yq1,...,ym.

Assuming K = (ki,ko,...,km) is the key being
used we can estimate MI.(y;,y;).

Take a random character in y; and a random
Character in y;. The probability that both
characters are A is p_j.p_ k- The probability
that both characters are B'is P1—k;P1—k; etc.
Hence,

25



25 25
MI(yiy) = > Ph—k;Ph—k; = > PhPh+k;—k;-
h=0 h=0
Note that the mutual coincidence depends on
the relative shift k; — k;. Moreover, the mu-
tual coincidence of the relative shift k; — k; is
the same with the mutual coincidence of the
relative shift k; — k.

Relative Shift | Expected value of M1,
0.065
0.039
0.032
0.034
0.044
0.033
0.036
0.039
0.034
0.034
0.038
0.045
0.039
0.043

===
Do LoV NOOMWN RO
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Next we tabulate the relative shifts between O
and 13.

The mutual coincidences vary from 0.031 to
0.045 if the relative shift is nonzero

The mutual coincidence is 0.065 if the relative
shift is O.

This observation is being used to formulate a
likely guess for the shift £ = k; — k;.

Now fix y,. Let y?,y},yf,... be the result of
encrypting y; by eg,eq,eo,....

Tabulate the mutual indices MIc.(y;,y?).

When g = ¢ the mutual index of coincidence
should be 0.065.

When g # ¢ the mutual index of coincidence

should be between 0.031 and 0.045.
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Tabulate, by computer, the 260 values

MIe(y;,y)), 1 <i<j<5,0<g<25

For each (i, 7) look at the values of Mlc(yz-,y?)
which are close to 0.065. If the value is unique
we conjecture it is the value of the relative
shift.

Six such potential values are boxed in the table.

Pair | Relative Shift
(1,2) 9
(1,5) 16
(2,3) 13
(2,5) 7
(3,5) 20
(4,5) 11

T he resulting equations are

ki—ko=9 ki1—ks=16

ko —k3z3 =13 ko —kg=7

k3 — ks =20 kg — ks =11
The key is (kl,kl—l-].?,kl + 4, k1—|—21,]€1—|—10>,
for some k1 < 25, which is a cyclic shift of
ARFEV K. The key is easily found: JANET.
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Observed Mutual Indices of Coincidence

iy value of MI:(yi,y?)
1] 2 028 027 .028 .034 .039 037 .026 .025 062

044 026 037 043 037 043 037  .028
041 .041 034 037 051 045 042  .036
TT3 [ 039 033 040 034 028 053 .048 033 029
056 .050 .045 .039 .040 036 037 032 .027
037 036 .031 .037 055 .029 024 .037
TT4 | 034 043 025 027 038 049 .040 032 029
034 030 044 044 034 039 045 044 037
055 047 032 .027 039 037 039 .03
T 75 043 033 028 046 043 044 039 031 026

030 036 .040 041 024 019 .048 044
028 038 044 043 047 033 026 046
73] 046 048 041 .032 036 035 .036 030 .024

039 034 .029 040 041 033 037 045
033 033 027 033 045 052 042 .030
5174 | 046 034 043 044 034 031 040 045 040
048 044 033 024 028 042 039 026 034
050 035 032 040 056 043 .028 028

215 .033 .033 036 .046  .026 018 .043 |.080} .050
029 031 .045 039  .037  .027 .026 .031 .039
.040 037 041 .046 .045 043 .035 .030

34| .038 .036  .040 033 .036  .060 .035 .041 .029
.058  .035 .035 034  .053  .030 .032 .035 036
.036 .028  .046 .032 .051 032 .034 .030

3|15 .035 034 034 .036 030  .043 .043 050 .025
041 .051 .050 .035 032 .033  .033 .052 031
027 030 |.072 035 .034 032 .043 .027

415 .052 038 .033 038 .041 043 037 .048  .028

028 036 033 033 032 .052 034 .027
039 .043 033 027 030 039 048 .035

B

The almond tree was in tentative blossom.
The days were longer often ending with mag-

nificent evenings of corrugated pink skies. The
hunting season was over
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Cryptanalysis of Hill Ciphers

We consider Known Plaintext attacks. First,
assume we know the “block” size n.

Assume we have n plaintext-ciphertext pairs

(X]_,Y]_), (X27 Y2)7 R (X’n7 Yn)

If k is the unknown n X n matrix then

Y, = Xk, forall :=1,2,..., n.

If X =[X1,Xo,...,Xn],and Y = [Y7, Y5, ..., Y]
are the corresponding row matrices then Y =
Xk and hence k = X1y

If X is not invertible then we must look for
another set of plaintext-ciphertexts.

If n is not known then we could simply try by
exhaustive search n = 2,3, ... until the correct
value is found.
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STREAM CIPHERS

In addition to the plaintext, ciphertext and key
spaces, stream ciphers are endowed with a key
stream alphabet L and a key stream generator

F=A{f1,fo,...}, where
fi  KxP~ oL

A key stream /41,4>,... IS generated and used
to encrypt a plaintext £ = xjxo--- according
to the rule:

E€1 (%1)E€2($2) T

where

Ei — fi(kamla R 7$’i—1)7
and k£ € K.

For each ¢ € L the encryption and decryption
functions Ey, D, satisfy Dy,(E,(p) = p, for all
p € P.
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We can think of block ciphers as special cases
of stream ciphers where the key stream is con-
stant.

A stream cipher is synchronous if the keystream
IS independent of the plaintext, i.e. keystream
is generated only as a function of the key (k is
called the 'seed").

A stream cipher is periodic with period d if
Ei—|—d = /¢;, for all + > 1.

The Vigenere cipher with keyword length m is
a periodic stream cipher with keyword length

m.

Stream ciphers often described in binary 0,1
alphabets: e.g., Ey(x) =z + ¢ mod 2,Dy(z) =
x4+ ¢ mod 2.
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We can generate a synchronous keystream via
a linear recurrence relation of degree m:

m—1

7=0
where we start with kq,ko,...km, set ¢; = k;,
for + < m, and cp,c1,...,cp—1 are predeter-

mined constants.

Example: Assume m = 4 and the keystream
is generated via £;44 = ¢; + {;4.1 mod 2, where
1> 1.

Keystream initialized with any nonzero string,
e.g. starting with (1,0,0,0) we obtain the
stream:

1,0,0,0,1,0,0,1,1,0,1,0,1,1,1,...
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An appealing aspect of keystream generation
IS that it can be produced efficiently in hard-
ware using a Linear Feedback Shift Register
(LFSR).

€

Following operations performed at each time
unit:

k1 is tapped as the next keystream bit

ko, ks, ..., km would each be shifted one stage
to the left.

the new value k,;, would be computed to be

m—1

> kit
j=0

where the cj'S are constants O or 1 specified
by the register.
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Example of LFSR

Consider the key k = 8 and the plaintext:

rendezvouz

Plaintext is converted to integers.

The keystream starts with key 8, and gen-
erated with the autokey cipher which shifts
the plaintext characters by one position and
Ciphertext is obtained by adding the columns
modulo 26:

b1 =kl =x; 1
Eg(x) = x + £ mod 26, Dg(y) =y — ¢ mod 26

We have the following encryption

plain: r e n d e z v o u S8
keys: 17 4 13 3 4 25 21 14 20 18
8 17 4 13 3 4 25 21 14 20

cipher: 25 21 17 16 7 3 20 22 8 12
Z V R QH D U J I M

For decryption we reverse the previous steps.
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Cryptanalysis of LFSR: We consider Known
Plaintext) attacks.

Ciphertext is the sum modulo 2 of plaintext
and the keystream:

=0
which is a linear equation in m unknowns. In
matrix form it can be written as (4,,,4-1,...,%m) =
by ¥ Y
(cor-rem-1) | 2 2
which implies that (cg,...,cm_1) =
01 4o /. -1
by ¥ Y
(€m+17'°-7€2m) 52 53 : Em—|—1

T hus for a given block size m if the stream is at
least 2m bits long we can “break” the stream
cipher easily, provided the matrix is invertible.
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