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1 Introduction

The subject of self-similarity and the estimation of statistical parameters of time series in
the presence of long-range dependence are becoming more and more common in several
fields of science. Up to now there are only a few text books available, e.g. in [2], which
give a comprehensive overview of the techniques and estimators. The intention of this
paper is not to close this gap but to provide some basic information about self-similarity,
self-similar processes, and estimators of the so-called Hurst parameter H. It gives a rather
condensed introduction to self-similarity and contains a number of referenced papers which
can be used as a starting point for a more detailed study of this subject. In addition,
we provide two different estimators for the Hurst parameter of a time series: the R/S

analysis and a periodogram-based method.

The paper is organized as follows. In Section 2 we define the term self-similarity and
in Section 3 some of the properties of self-similar processes are presented. Section 4
introduces two important classes of self-similar processes and Section 5 is devoted to the
estimation of the Hurst parameter. The paper closes with a Section on the results of

estimators applied to a number of time series.

2 Definition of self-similarity

The most common way to define self-similarity of a process X = (X;, —oco < t < 00) is
by means of its distribution: if (X,;) and a’(X;) have identical finite-dimensional distri-
butions for all @ > 0 then X is self-similar with parameter H [11]. In our case, however,
we need a definition which is more related to the properties of time series and which is
more appropriate for the development of estimators for the self-similarity parameter H
[13].

Let X = (X4t =0,1,2,...) be a covariance stationary stochastic process with mean g,
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variance ¢°, and autocorrelation function r(k),k > 0. In particular we assume that X

has an autocorrelation function of the form

r(k) ~k PL(k), as k — oo, (1)



where 0 < § < 1 and L is slowly varying at infinity. For simplicity, we assume that L is
asymptotically constant. For each m =1,2,..., let X(™ = (X,gm), k=1,2,3,...) denote
the time series obtained by averaging the original series X over non-overlapping blocks of

size m, i.e. X™ is given by X,gm) = %(X(k,l)m + oo+ Xpmo1), k> 1.
Definition 1: A process X is called (ezactly) second-order self-similar with self-similarity
parameter H =1 — §/2if, forallm = 1,2,..., VAR[X™)] = ¢?>m~" and

r™ (k) =r(k) = %((k + 120 — 2k 1k — 1121, k>0, (2)

where (™) denotes the autocorrelation function of X (™),

Definition 2: A process X is called (asymptotically) second-order self-similar with

self-similarity parameter H = 1 — 3/2 if, for all k£ large enough,
r™ (k) — r(k), as m — oco. (3)

In other words, X is second-order self-similar if the corresponding aggregated processes
X are the same as X or become indistinguishable from X at least with respect to their

autocorrelation functions.

3 Properties of self-similar processes
The following properties of self-similar processes are equivalent:

e Hurst effect: The rescaled adjusted range statistic (see Section 5.1) is characterized

by a power law: E[R(m)/S(m)] ~ aym™ as m — oo with 0.5 < H < 1.

e Slowly decaying variances: the variances of the sample mean are decaying more
slowly than the reciprocal of the sample size, i.e. VAR[X™] ~ aym?"~2 as m — oo,
with 0.0 < H < 1. As a consequence, classical statistical tests and confidence

intervals lead to wrong results.

e Long-range dependence: the autocorrelations decay hyperbolically rather than ex-

ponentially, implying a non-summable autocorrelation function >, (k) = oo. This
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implies that even though the r(k)’s are individually small for large lags, their cu-

mulative effect is important.

e 1/f-noise: the spectral density f(-) obeys a power law near the origin, i.e. f(\) ~

asA\' 72 as A — 0, with 0.5 < H < 1, where f(\) = X, r(k)et.

The a; are finite, positive constants, which are independent of m or A, respectively.

In contrast, short-range dependent processes, i.e. H = 0.5, show the following properties:

o VAR[X™] ~ aym~'.
e 0 <Y, r(k) < oo.

e f(A) at A =0 is positive and finite.

4 Some self-similar processes

For the analysis and simulation of systems where self-similar processes are involved, there
is a need of processes which exhibit the properties described above. In this section, we
give the definitions of two processes of this type, namely the fractional Gaussian noise
(FGN) [8] and the class of fractional autoregressive integrated moving-average (FARIMA)

processes [6)].

These processes were introduced to facilitate parsimonious modeling of long-range depen-
dent time series. Traditional models, for instance autoregressive moving-average (ARMA)
and autoregressive integrated moving-average (ARIMA) processes, are only capable to
model the short-range portion of the correlations of empirical data sets, and even for
a large number of coefficients the long-range portion will remain unmodeled. An intro-
duction of ARMA and ARIMA processes is beyond the scope of this paper. We refer

interested readers to text books on time series analysis, e.g. [10].

FGN with parameter H € (0,1) is a stationary Gaussian process with mean p, variance

o?, and autocorrelation function r(k) = 1((k + 1)* — 2> + |k — 1]*"), &k > 0. Tt is



exactly self-similar, as long as 0.5 < H < 1. Its spectrum is defined by
2 o0
FO) = T sin(rH)T(2H + 1)(1 — cos \) S A+ 2mj |2 @

s i

FGN(H) can also be defined as the process which has the same correlation function as the
process of unit increments ABy(t) = By (t) — By (t — 1) of fractional Brownian motion

with exponent H.

Instead of using the increment process of fractional Brownian motion, we can also start
from Brownian motion and its discrete time analogue, the random walk. This will lead
to the class of FARIMA processes, since the random walk can also be defined as an
FARIMA(0,1,0) process, where for a FARIMA (p, d, ¢) process the orders p and ¢ are the

classical ARMA parameters and d = H — 0.5 is the fractional difference parameter.

With (1 — B)X; = a; being the representation of the FARIMA(0,1,0) process, where B
denotes the back-shift operator and a; a white noise process, we generalize this definition

for the FARIMA (0, d, 0) processes as follows:
(1-B)'X,=a;, for —05<d<0.5. (5)

The fractional difference operator (1 — B)? is defined by the binomial series (1 — B)? =
>0 (Z) (—B)*. The spectrum is

fO) =(2 sin%)‘” =[1—e?"2 for 0<A<T. (6)

Thus, f(A) ~ A72¢ = \172H 35 ) — 0.

If a good approximation of both the short-range and the long-range correlations is manda-
tory the FARIMA (p, d, q) processes with non-zero p and/or ¢ may be used. In these cases,
one may determine an estimate d of d with one of the methods described below and gen-
erate either a new sequence or a new spectrum from the original data set. To that end,
the long-range correlations are removed under the assumption that d is an appropriate
estimate of d of the underlying process, and the p + ¢ parameters are computed with
standard ARMA techniques [10]. For instance,

~ N ] )\ N
farMA@.g)(A) = fRARIMA(p.d.q)(A) (2510 5)“, (7)



5 Estimation of the Hurst Parameter

The properties of self-similar processes (see Section 3) lead to the following methods to

estimate H (see [13] and references therein):

1. time-domain analysis: R/S statistics,
2. analysis of the variances of the aggregated processes X™): wvariance-time plots, and

3. periodogram-based analysis in the frequency-domain: e.g. Whittle’s Maximum Like-

lihood Estimator (MLE).

In this paper we will focus on the alternatives 1 and 3.

5.1 R/S analysis

The feature that makes R/S statistics particularly attractive is its relative robustness
against changes in the marginal distribution, even for long-tailed or skew distributions.
On the other hand, for marginal distributions which are close to normality a dramatic loss
in efficiency is reported, and, to our best knowledge, no detailed analysis of robustness
of R/S statistics was carried out yet. Given an empirical time series of length N (X :
k =1,...,N), the whole series is subdivided into K non-overlapping blocks. Now, we
compute the rescaled adjusted range R(t;,d)/S(t;,d) for a number of values d, where
ti = |N/K|(i—1) + 1 are the starting points of the blocks which satisfy (¢; —1)+d < N.

R(t:, d) = max{0, W(t;, 1), ..., W(t;,d)} — min{0, W (£, 1),..., W(t:,d)}, (8)

where

k 1 d
W(tz, k) - ZXti‘Fj*l - k - (a ZXti+j1> y k = 1, ey d (9)
j=1

J=1

S?%(t;,d) denotes the sample variance of X, ..., Xy, 1 4-1. For each value of d one obtains a
number of R/S samples. For small values of d there are K samples. The number decreases

for larger values of d because of the limiting condition on the ¢; values mentioned above.
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One computes these samples for logarithmically spaced values of d, i.e. d;;1 = m - d; with
m > 1, starting with a dy of about 10. Plotting log R(¢;,d)/S(t;,d) vs. logd results in
the R/S plot, also known as poz diagram.

Next, a least squares line is fitted to the points of the R/S plot, where the R/S samples of
the extremal values of d are not considered. The R/S samples of the smallest values of d
are dominated by short-range correlations and samples of large values of d are statistically
insignificant if the number of samples per d is less than say 5. The slope of the regression
line for these R/S samples is an estimate for the Hurst parameter H. Both the number of
blocks K and the number of values d should not be chosen too small. In addition, some
care has to be taken when deciding about the end of the transient, i.e. which of the small
values of d should not be taken into consideration for the regression line. In practice, it
should be checked whether different parameter settings lead to consistent H estimates for

X with different aggregation levels m.

5.2 Periodogram-based analysis

If more information on the H-estimate, such as confidence intervals, or on the estimator
itself, such as efficiency and robustness, are needed periodogram-based estimators are
used. The main idea of these methods is to assume a certain, of course self-similar, process
type, for instance FARIMA (p, d, q), and to fit the parameters of this process to the given
empirical sample. The fitting should be optimal in the sense that the periodogram of
the sample and the spectral density of the process are minimizing a given goodness-of-fit

function.

As mentioned above, the spectral density of self-similar processes obeys a power law near
the origin. Thus, the first idea to determine the Hurst parameter H is simply to plot
the periodogram in a log-log grid, and to compute the slope of a regression line which is
fitted to a number of low frequencies. This should be an estimate of 1 — 2H. In most of
the cases this will lead to a wrong estimate of H since the periodogram is not appropriate
to estimate the spectral density [10]. More sophisticated methods have to be applied to

obtain useful estimates of H.

Several periodogram-based estimators can be found in the literature. In this paper we



will focus on an MLE as presented in [1, 13] which is based on Whittle’s approximate
MLE for Gaussian processes [12]. For Gaussian sequences this estimator is asymptotically

normal and efficient [4, 3].

The spectral density of the self-similar process is denoted by f(X;6), where the parameter

vector of the process @ = (61, ..., 0,) is structured as follows. #; = o2 is a scale parameter,

where o2

process, i.e., X; = 7% @;X;_; +¢;. This implies [T _log{f(};(1,02,...,0u))}dX = 0.

is the variance of the innovation e of the infinite AR-representation of the

f denotes the Hurst parameter H. If necessary, the parameters 03 to 0, describe the
short-range behavior of the process. For FGN and FARIMA(0, d, 0), only 0 and H have
to be considered. With n = (f,,...,60y), the Whittle estimator 7 of n minimizes the
quality-of-fit function

I
-/ o™ (10

where I(-) denotes the periodogram of the given time series of length N and is defined by

X ZJ)\Z 11
27rN|Z © (11)

H is given by 6, and the estimate of o2 by

L I
o= [ oy 12

The approximate 95%-confidence interval of His given by

Vi
H+1.964)—= 1
961/ 7 (13)

where V' = 2D~! and the matrix D is defined by

1 0
Dy =5, . 00;

(A ) 10gf( )dA (14)

For implementation details, we suggest to have a look at Chapter 12.1 of [2], where an S+

listing of the Whittle estimator is provided. Given some knowledge in numerical analysis,



no special library functions are necessary to implement the above formulae. However,

FFT, vector, and matrix functions would make the programming more convenient.

In practice, there are two problems which may have an effect on the robustness of the

estimator:

e Deviations from the assumed model spectrum: i.e. deviations at higher frequencies
lead to a bias in the estimate of H. One possible solution is to estimate H only
from periodogram ordinates at low frequencies. For large data sets, one can also
aggregate the data over non-overlapping blocks of length m and compute several

H™) for the XM,

e Deviations from Gaussianity: Gaussianity can often be achieved by transforming
the data but then it has to be proven that the estimates of H for the original and
the transformed data sets are identical [7]. For instance, this is the case for the

log-transformation Y = log(X).

5.3 Some experiments

In this section, we suggest some experiments which may be carried out in order to obtain

a better understanding of the given data set.

As already mentioned above, both the R/S and the periodogram-based analysis should
be applied both to the original and the aggregated data sets in order to filter out some
effects of the process behavior at higher frequencies. A first check of the validity of the

results is to compare the H-estimates of both estimators.

If the estimate does not clearly indicate long-range dependence, i.e. H is considerably
larger than 0.5, one should re-shuffle the data set to destroy the given correlation structure
and redo the estimation. For short-range dependent data sets the estimates for the original
data set and the re-shuffled data set will show only small difference, whereas for long-
range dependent data sets the difference will be more obvious. Of course, this is rather

an indication of long-range dependence than a proof.

If the estimate is close to 1.0 one should also apply the estimators to the differenced data



H Hgys Hypirie(FGN) Hy e (FARIMA(0, d, 0))
0.5 0.51 0.50 [0.49,0.51] 0.50 [0.48,0.51]
0.6 0.61 0.59 [0.57,0.60] 0.61 [0.59,0.62]
0.7 0.67 0.67 [0.66,0.68] 0.71 [0.69,0.73]
0.8 0.77 0.75 [0.75,0.76] 0.81 [0.79,0.82]
0.9 0.87 0.84 [0.84,0.85] 0.91 [0.89,0.92]
Table 1: H estimates for the FGN sequences
H Hps Hyyhitne(FGN) Hyy hirie(FARIMA(0, d, 0))
0.5 0.55 0.50 [0.48,0.51] 0.49 [0.48,0.51]
0.6 0.62 0.58 [0.57,0.59] 0.60 [0.59,0.62]
0.7 0.72 0.68 [0.66,0.69] 0.72 [0.70,0.73]
0.8 0.80 0.75 [0.74,0.76] 0.80 [0.79,0.82]
0.9 0.86 0.83 [0.82,0.84] 0.90 [0.88,0.91]

Table 2: H estimates for the FARIMA(0,d,0) sequences

sets, Y = (1 — B)*X, k=1,2,..., B denoting the back-shift operator, to be sure that

the large H-value is not caused by instationarity.

6 Examples

In this Section, we apply the H estimators to a variety of data sets. We used the R/S
analysis with K = 8, 30 values for d starting from dy = 10, and rejecting the d values
with less than 4 R/S values for the computation of the regression line. The slope of the
regression line was computed starting with d to dy4 to rule out short-range influences. The
Whittle MLE of H was computed both under the assumption of an underlying FGN and
a FARIMA(0,d,0) process. In the Whittle case, we also provide 95%-confidence intervals

for the estimates.

First, to check their accuracy, we estimate the Hurst parameters of artificially generated

fractional noise sequences. We used the algorithm of Hosking [6] to compute several FGN

9



m Hyys Hywhirne(FGN) Hywhirne(FARIMA(0, d, 0))
1 0.88 1.18 [1.18,1.18] 1.30 [1.30,1.30]
100 0.81 1.06 [1.02,1.10] 1.06 [1.02,1.09]
200 0.80 0.92 [0.87,0.96] 0.97 [0.92,1.03]
300 0.83 0.93 [0.87,0.99] 0.98 [0.91,1.04]
400 0.86 0.89 [0.82,0.96] 0.93 [0.86,1.01]
500 0.86 0.85 [0.78,0.93] 0.88 [0.79,0.96]
600 0.88 0.86 [0.78,0.94] 0.88 [0.79,0.97]
700 0.86 0.81 [0.72,0.90] 0.83 [0.74,0.94]
800 0.88 0.86 [0.77,0.96] 0.89 [0.79,1.00]
Table 3: H estimates of the aggregated I frame sequences
m Hyys Hywhitne(FGN) Hywhirne(FARIMA(0, d, 0))
1 0.85 1.00 [1.00,1.00] 1.11 [1.09,1.12]
10 0.84 0.92 [0.91,0.92] 0.99 [0.95,1.03]
20 0.87 0.88 [0.87,0.89] 0.95 [0.90,1.01]
30 0.90 0.90 [0.88,0.91] 0.97 [0.90,1.04]
40 0.93 0.86 [0.84,0.89] 0.93 [0.85,1.01]
50 0.93 0.91 [0.89,0.92] 0.98 [0.89,1.07]
60 0.94 0.88 [0.85,0.90] 0.94 [0.84,1.04]
70 0.97 0.90 [0.87,0.92] 0.98 [0.88,1.09]
80 0.97 0.89 [0.87,0.92] 0.99 [0.87,1.10]

Table 4: H estimates of the aggregated GOP sequences
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and FARIMA (0, d, 0) samples of length 10,000 for different H values. Table 1 shows the
H estimates for the FGN sequences and Table 2 for the FARIMA(0, d, 0) sequences.

These tables clearly show that the estimators provide a good estimate for the originally
used H value. Comparing the three H values, they are the same in tendency but in some
cases the two confidence intervals do not even overlap or the H r/s value does not lie in
either interval, e.g. cf. last line of Table 1. If this behavior already occurs for time series
where the H value is known in advance one has to be very careful in analyzing empirical

sequences.

The next two tables show the H for two different frame size traces of the compressed Star
Wars movie. Each of the sequences contains more than 171,000 single measurements.
Both sequences were log-transformed and aggregated with different levels m before the
estimators were applied. The log-transform was necessary to obtain Gaussian marginals,
and the aggregation was used to filter out high frequency influences. The detailed sta-
tistical description of the video sequences is beyond the scope of this paper, and can be
found in [5] for the first sequence, which is named I frame sequence in the following, and

in [9] for the second sequence, which is named GOP sequence.

Table 3 shows the H estimates of the I frame sequence. For aggregation levels larger than
m = 300 the three estimates are consistent in the sense that the confidence intervals of the
ﬁWhittle overlap and H r/s lies in at least one of the intervals. The results indicate that
the Hurst parameter of this time series is located in the interval [0.8,0.9]. For modeling

purposes an H value of 0.86 is a reasonable choice.

Table 4 shows the H estimates of the GOP sequence. In this case, it is rather difficult
to draw a conclusion from the estimates. The H r/s are increasing for increasing m from
0.85 up to 0.97 . The I/LI\Whittle(FGN) lead to a rather consistent estimate of about 0.89,
whereas the ﬁWhittle(FARIMA(O, d,0)) lead to an estimate of about 0.98 . Since the H
estimates are close to 1.0 a test on instationarity should also be considered for a more
detailed analysis. In addition, it should also be checked whether the high frequency
behavior leads to a biased result. In this case, the experiments should be repeated with
a class of processes which facilitate the modeling of the high frequency behavior, e.g.

FARIMA (p, d, q) with p > 0 or ¢ > 0.
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