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Several recent traffic measurement studies have convincingly shown the presence of self-similarity
in modern high-speed networks, involving a very important revolution in the stochastic modeling
of traffic. Thus the use of self-similar processes has opened new problems and research fields in
network performance analysis, mainly in simulation studies, where the efficient synthetic gen-
eration of sample paths (traces) corresponding to self-similar traffic is one of the main topics. In
this article, we justify the selection of interarrival time instead of counting processes for modeling
arrivals. Also, we discuss the advantages and drawbacks of the most important self-similar pro-
cesses when applied to traffic modeling in simulation studies, proposing the use of models based in
F-ARIMA, mainly due to their flexibility to capture both long- and short-range correlations. How-
ever, F-ARIMA processes have been little used in simulation studies, mainly because the synthetic
generation methods available in the literature are very inefficient compared with those for FGN.
In order to solve this problem, we propose a new method that can generate high-quality traces
corresponding to a F-ARIMA(p, d, q) process. A comparison with existing methods shows that the
new method is significantly more efficient, and even slightly better than the best method for FGN.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-
tics—random number generation, stochastic processes; I.6.m [Simulation and Modeling]: Mis-
cellaneous; C.2.m [Computer-Communication Networks]: Miscellaneous
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1. INTRODUCTION

Traffic modeling has traditionally been based almost exclusively on the assump-
tion of independence between the random variables that describe arrivals to a
network. The fundamental reason for this assumption has been the analytical
tractability. However, multimedia traffic is characterized by a high “burstiness”
and a strong positive correlation [Fendick et al. 1989; Li and Hwang 1993],
much more than in voice traffic [Willinger et al. 1996]. Moreover, several re-
cent traffic measurement studies have convincingly shown the presence of self-
similarity in modern high-speed networks [Leland et al. 1993; Paxson and Floyd
1995; Crovella and Bestavros 1997; Garrett and Willinger 1994; Beran et al.
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1995], involving long-range correlations over arbitrarily large time-scales, a
phenomenon usually referred to as long-range dependence (LRD).

All these findings have contributed to a very important revolution in the
stochastic modeling of traffic, since the impact of the correlation on network
performance may be drastic [Norros 1994; Likhanov et al. 1995; Erramilli et al.
1996]. Nevertheless, traditional models, like Markovian or autoregressive, ig-
nore the correlations beyond a particular lag intending to keep the analytical
tractability, and so it is said that they exhibit short-range dependence (SRD).
But their validity is in doubt since modeling LRD through Markovian or autore-
gressive processes requires many parameters, and giving physically meaningful
interpretations for the parameters becomes difficult.

Because of this, the rise of self-similar processes for network traffic modeling
purposes has been essential, due to their capability to exhibit LRD over all time
scales by making use of few parameters (parsimonious modeling).

Nevertheless, it is fair to say that some authors question the relevance of
LRD when finite buffers are considered [Grossglauser and Bolot 1996; Heyman
and Lakshman 1996; Ryu and Elwalid 1996], arguing that the impact of the
correlation on performance becomes insignificant beyond certain lag, and so
well-designed Markov traffic models are effective enough.

We must say that this discussion is not within the scope of this article, and
we focus only on simulation studies with self-similar processes, where a wide
range of research topics dealing with new problems arising in the application of
self-similar models to performance analysis have been opened [Willinger 1995].
One of the most important problems in this field is the synthetic generation of
sample paths (traces) of self-similar processes, since the existing real traces are
not generally valid for simulation studies for the following reasons.

—The number of existing real traces is not enough to perform simulations with
a large number of nodes, each generating independent traffic, or to study
the wide range of different correlation structures (LRD and SRD) [Leland
et al. 1993; Beran et al. 1995] and marginal distributions [Heyman et al.
1991; Garrett and Willinger 1994; Paxson and Floyd 1995; Krunz et al. 1995]
found in real traffic.

—The traces are not long enough in most cases, and simulation experiments in
the context of LRD will usually require very long independent sample paths
to reach certain statistical requirements.

For all these reasons, synthetic generation methods are essential. So, the aim
of this paper is twofold.

—First of all, we justify the selection of interarrival time instead of counting pro-
cesses for modeling arrivals. Then, we discuss the advantages and drawbacks
of the two types of commonly used self-similar processes: Gaussian (FGN and
F-ARIMA) and Poisson (M/G/∞) self-similar processes. After discussion, we
propose to make use of Gaussian self-similar processes, choosing F-ARIMA
as the most suitable one, because of its flexibility for characterizing both long-
and short-range correlations.

—Finally, in relation to the synthetic generation of Gaussian F-ARIMA pro-
cesses:
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—we describe the most important methods, highlighting their poor efficiency
compared with some methods for FGN. For this reason, F-ARIMA processes
have generally not been used in simulation studies.

—In order to overcome this drawback, we propose a new generation method
for Gaussian F-ARIMA(p, d, q) that produces high-quality traces much
more efficiently than previous methods, and even slightly better than the
best method for FGN.

The rest of the article is organized as follows. In Section 2, we review the
main concepts related to LRD and self-similarity. In Section 3, we define the
most commonly used self-similar processes in modeling network traffic (FGN,
F-ARIMA and M/G/∞). Section 4 presents the above-cited discussion about in-
terarrival time versus counting processes, Gaussian versus Poisson processes,
and, finally, F-ARIMA versus FGN. Next, in Section 5, we describe the most
commonly used generation methods for F-ARIMA. Section 6 presents and de-
scribes a new generation method for F-ARIMA(p, d, q). Also, an extract of a per-
formance study of this new method is included in this section. Finally, Section 7
summarizes the main conclusions.

2. LRD AND SELF-SIMILARITY

It is said that a process exhibits long-range dependence when its autocorrelation
function is not summable (or, equivalently, its spectral density has a pole at the
origin); that is,

∑∞
k=0 ρ(k) = ∞, as in those processes whose autocorrelation

function decays hyperbolically:1

ρ(k) ∼ k−β , k→∞, 0 < β < 1. (1)

In opposition, it is said that a process exhibits short-range dependence when
its autocorrelation function is summable (or, equivalently, its spectral density
is bounded at the origin), as in those processes whose autocorrelation function
decays exponentially:

ρ(k) ∼ αk, k→∞, 0 < α < 1. (2)

Let X = {Xk, k= 1, 2, 3, . . .} be a stationary stochastic sequence and let X (m)

be the corresponding aggregated sequence (with aggregation level m), obtained
by averaging the original sequence X over nonoverlapping blocks of size m:

X (m)
k = 1

m
·

k·m∑
i=(k−1)m+1

Xi, k= 1, 2, 3, . . . .

The stationary sequence X is called exactly self-similar, with self-similarity
parameter H (the Hurst parameter [Hurst 1951]), if for all m, its finite-
dimensional distributions are identical to those of the aggregated sequence
m1−H X(m), that is,2

X d= m1−H X(m). (3)

1The symbol ∼ denotes an asymptotic relation.
2The symbol

d= indicates identical finite-dimensional distributions.
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The sequence X is called asymptotically self-similar if the previous condition
holds as m→∞.

Another less strict definition involves the second-order moments exclu-
sively [Cox 1984]. Thus the covariance stationary sequence X is called exactly
second-order self-similar if the aggregated sequence m1−H X(m) has the same
variance and autocorrelation as X for all m, that is, if the aggregated pro-
cesses possess the same nondegenerate correlation structure as the original
stochastic process. If the process is Gaussian, self-similarity and second-order
self-similarity are identical. Any of the following conditions is sufficient for
second-order self-similarity.

(1) The autocorrelation function is

ρ(m)(k) = ρ(k) = 1
2

[
(k+ 1)2H − 2k2H + (k− 1)2H] 1= gH(k) , ∀k> 0. (4)

For 1/2 < H < 1, we can see that [Cox 1984]

ρ(k) ∼ H · (2H− 1) · k2H−2; (5)

that is, it decays hyperbolically as in (1), so the process exhibits long-
range dependence.

(2) The variances satisfy

Var
(
X(m)) = Var

(
X
) ·m2H−2, 1/2 < H < 1, ∀m> 1. (6)

(3) The spectral density is

f (λ) = c · |eλ − 1|2 ·
∞∑

i=−∞
|2πi + λ|2H−1, λ ∈ [−π, π ], 1/2 < H < 1, (7)

where c is a normalization constant such that
∫ π
−π f (λ) dλ = Var(X ).

The behavior of spectral density near the origin is obtained by Taylor
expansion at zero:

f (λ) ∼ |λ|1−2H. (8)

If (4) is satisfied asymptotically (as m→∞), the sequence is called
asymptotically second-order self-similar [Cox 1984]:

lim
m→∞ ρ

(m)(k) = g(k), ∀k> 0. (9)

It has been shown that a second-order stationary process whose autocorrela-
tion function decays hyperbolically is asymptotically second-order self-similar
(see proof in Tsybakov and Georganas [1997]). For this reason, although long-
range dependence and self-similarity are not equivalent concepts, they are often
utilized without distinction.
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3. SELF-SIMILAR PROCESSES

Next, we describe the most commonly used self-similar processes: FGN,
F-ARIMA, and M/G/∞.

3.1 Fractional Gaussian Noise (FGN)

Let BH(t) be an FBM process.3 Then, the sequence of increments, Xt = BH(t)−
BH(t−1), is an exactly self-similar stationary Gaussian process with zero mean,
referred to as fractional gaussian noise (FGN). In fact, the FGN process is the
only stationary Gaussian process that is exactly self-similar [Samorodnitsky
and Taqqu 1994].

The autocorrelation function and the spectral density for FGN are given,
respectively, by expressions (4) and (7).

In spite of their rigid correlation structure, FGN processes are a good ap-
proximation of the aggregation of more complex LRD Gaussian processes
[Samorodnitsky and Taqqu 1994].

3.2 Fractional ARIMA Processes

Fractional autoregressive integrated moving average (F-ARIMA) processes are
a generalization of the widely used ARIMA models introduced by Box and Jenk-
ins [Box et al. 1994].

An ARIMA(p, d, q) process, Xt, satisfies the equation

φp(B) · (1− B)d · Xt = θq(B) · εt, (10)

where d is an integer, B is the backshift operator (B j · Xt = Xt− j), φp(B) is a
polynomial of order p in B, θq(B) is a polynomial of order q in B, and εt is a
renewal process with zero mean and variance σ 2

ε .
Equation (10) can be generalized in a natural way by allowing d to assume

any real value.
If d is an integer, then

(1− B)d =
d∑

k=0

(
d
k

)
(−1)kBk, (11)

with the binomial coefficients

(
d
k

)
= d!

k!(d− k)!
= 0(d+ 1)
0(k+ 1) · 0(d− k+ 1)

. (12)

3Fractional Brownian motion (FBM), introduced by Mandelbrot [Mandelbrot and Ness 1968] is a
statistically self-similar continuous time process; namely, it verifies Yat

d= aHYt, ∀a > 0.
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As the gamma function (0(x)) is also defined for all real numbers, and only the
first d+ 1 terms in (12) are nonzero if d is a positive integer,4 the expression (11)
can be extended to any real number d by

(1− B)d =
∞∑

k=0

(
d
k

)
(−1)kBk. (13)

Thus, the expression (10) can also be extended to noninteger values of d,
giving rise to fractional ARIMA processes, whose definition was proposed by
Granger and Joyeux [1980] and Hosking [1981].

F-ARIMA processes have zero mean and variance σ 2
ε , and they are stationary

and invertible for − 1
2 < d < 1

2 , if all solutions of φp(B) = 0 and θq(B) = 0 lay
outside the unit circle.

The spectral density of a F-ARIMA(p, d, q) process has the form

f
(
λ, σ 2

ε , d, φp, θq
) = σ 2

ε

2π

(
2 sin

(
λ

2

))−2d ∣∣θq(eλ)
∣∣2∣∣φp(eλ)
∣∣2 , (14)

and its behavior at the origin (λ→ 0) is given by

f (λ) ∼ fARMA(0) · |λ|−2d. (15)

That is, for 0 < d < 1
2 spectral density has a pole at the origin and, there-

fore, the process exhibits long-range dependence. If we compare Equation (15)
with (8), we can obtain the relation between d and H:

d = H− 1
2
.

Although it is not generally feasible to obtain the autocorrelation function for
a F-ARIMA(p, d, q) process, for F-ARIMA(0, d, 0) is of the form [Granger and
Joyeux 1980]

ρ(k) = 0(1− d)
0(d)

· 0(k+ d)
0(k+ 1− d)

=
∏k

i=1(d+ i − 1)∏k
i=1(i − d)

, (16)

whose asymptotic behavior (as k→∞) is

ρ(k) ∼ 0(1− d)
0(d)

· k2d−1. (17)

So, for 0 < d < 1
2 , the autocorrelation function exhibits a hyperbolic decay as

expressed in (1) and, in view of (9), F-ARIMA(0, d, 0) processes are asymptot-
ically second-order self-similar. Cox [1984] extended this result showing that
any F-ARIMA(p, d, q) process, with 0 < d < 1

2 , is asymptotically second-order

4Gamma function has poles for negative integers so that the binomial coefficient is zero if k > d
and d is an integer.
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self-similar. If εt is Gaussian, the process is also Gaussian and asymptotically
self-similar.

Finally note that, for large lags, the correlation structure of the sim-
plest LRD F-ARIMA process, F-ARIMA(0, d, 0), is very similar to that of any
F-ARIMA(p, d, q) process, without regard to the value of p and q. That is,
F-ARIMA processes allow us to model SRD and LRD independently.

3.3 M/G/∞ Processes

Another interesting self-similar process is the occupancy process of an M/G/∞
queueing model, referred to as an M/G/∞ process. In this queueing model,
customers arrive according to a Poisson process with rate λ, to an infinite server
group, and service times are independent and identically distributed according
to a continuous-time general distribution S, with finite mean.

Cox and Isham [1980] showed that the process Xt (number of customers, or
busy servers, in the system at t) is a Poisson process with mean λE (S) whose
autocovariance function depends on the distribution function FS (x), and is ob-
tained from

γ (k) = λ · E((S− k)+) = λ
∫ ∞

k
[1− FS (x)]dx k= 0, 1, . . . , (18)

where (x)+ = x if x ≥ 0, and 0 otherwise.
Generally, the process Xt is not stationary although, under certain conditions,

the system admits a stationary and ergodic solution [Parulekar 1997], X∗t ,

{Xt+k, t = 0, 1, . . .} d−→ {X∗t , t = 0, 1, . . .} as k→∞,

for any initial distribution of the random variable “initial number of customers
in the system,” X0− , and for any distribution of the random variables that de-
scribe the residual life, {Ŝj , j = 1, . . . , X0−}.

Furthermore, if the initial probability distribution of the corresponding
Markov chain is the stationary distribution and the residual life distribution is
that given by Kleinrock [1975],

fŜ (x) = 1− FS (x)
E (S)

, (19)

then the chain will be strict-sense stationary. So, X0− must be a Poisson random
variable with rate λ ·E (S) [Parulekar and Makowski 1996; Parulekar 1997]. On
the other hand, if E (S) is finite, it can be demonstrated that

Xt exhibits LRD⇐⇒ Var(S) = ∞
as happens in heavy-tailed service distributions.

Considering that Xt is a discrete-time process, the model simulation suggests
making use of a discrete-time clock. Consequently, it would seem more appro-
priate to utilize discrete-time service distributions too. However, it is impossible
to calculate the mean for heavy-tailed discrete-time distributions, although it
exists and is finite. This obstacle can be overcome by using continuous-time

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 2, April 2000
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distributions, although discretization should be done very carefully. For exam-
ple, in Paxson and Floyd [1995] a Pareto distribution with infinite variance
(1 < α < 2) is proposed, yielding a process with an autocorrelation function
that shows a hyperbolic decay,

ρ(k) ∼ k1−α,

and so, the M/G/∞ process is second-order asymptotically self-similar with
Hurst parameter H = (3− α)/2.

4. WHAT SELF-SIMILAR PROCESS MUST I CHOOSE?

When we face the simulation of a communications network making use of self-
similar traffic models, we have to make initially two very important decisions.

—With regard to arrivals modeling, we must choose the most suitable type of
process for the traffic model: interarrival time or counting processes.

—Then, we should carefully select the most suitable self-similar process ac-
cording to the objectives, namely, a process that has enough flexibility for
modeling the most important traffic characteristics with few parameters.

With respect to the first issue, and given that self-similarity was found in
counting processes of real traffic, it is obvious why this approach is commonly
selected. However, it has two great drawbacks.

—We must take into account the subjectivity in choosing the time scale, since
it could have an important impact on some performance measurements
[Paxson and Floyd 1995; Leland et al. 1993]. Consequently, simulation stud-
ies could depend on the particular time-scale chosen, and so extrapolations
and comparisons become very difficult.

—On the other hand, given that the network simulator will generally use in-
terarrival times, we must deal with the added difficulty of distributing the
arrivals into each interval; that is, convert arrival counts into interarrival
times. For example, Lau et al. [1995] highlight this problem and propose us-
ing fractal interpolation in order not to destroy the correlation structure for
time scales shorter than the modeled one in the counting process, as would
happen if arrivals were equally spaced, or distributed uniformly (as a local
Poisson process). Nevertheless, this approach makes sense only if the num-
ber of arrivals per interval is large. If at any point this number is small
enough, the interpolation becomes problematic, and perhaps incorrect, inas-
much as the real arrival processes at the finest time scales may no longer be
self-similar [Paxson and Floyd 1995; Leland et al. 1993], or even exhibit a
multifractal behavior [Feldmann et al. 1999].

In order to avoid all these problems, it would be desirable to use interar-
rival time models in such a way that the corresponding counting processes still
exhibit LRD. In this regard, an empirical study in López-Ardao [1999] shows
that the interarrival time processes and the corresponding counting processes
exhibit a duality in their LRD structure; namely, the estimated value of H is
practically the same. This behavior is also observed when we construct inter-
arrival time processes starting from counting processes, even using different
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methods of distributing arrivals. In this study we have used different marginal
distributions and short-range correlation structures. Consequently, we propose
modeling arrivals by interarrival time processes and so, henceforth, we always
refer to these processes.

Next we must choose a self-similar process that is able to model the most
important traffic characteristics parsimoniously. In our view, such a process
should at least have a well-known marginal distribution and allow us to set
its mean and variance. For this reason, some LRD processes with unknown
marginal distribution, such as chaotic maps [Erramilli et al. 1995] or the shift-
ing level process [Mandelbrot 1967; Grasse et al. 1997], are seldom utilized.
Instead, FGN and Gaussian F-ARIMA processes, both with Gaussian marginal
distribution, and M/G/∞ processes, with Poisson marginal distribution, are
commonly used.

Since the queueing performance of a network depends not only on the cor-
relation structure, but also on the marginal distribution of the input processes
[Grossglauser and Bolot 1996; Ryu and Elwalid 1996], mainly due to its tail be-
havior [López-Ardao et al. 1998; López-Ardao 1999], it would be very important
to be able to modify the marginal distribution of the process without altering
its correlation structure.

In this regard, FGN and Gaussian F-ARIMA processes enjoy the attractive
advantage that their marginal distribution can be changed by a sufficiently
regular transformation5 (parameters included) without modifying their long-
range correlation structure [Huang et al. 1995b]. Nevertheless, the magnitude
of the short-range correlations generally decreases slightly.

Instead, the non-Gaussian marginal distribution of M/G/∞ processes can
become a drawback from the point of view of its modeling flexibility. In addition,
given that it is inherently a counting process, and so an integer-valued process,
its use as an interarrival time process could make sense only in slotted-time
simulations.

However, M/G/∞ processes have the advantage that the synthetic generator
can be embedded in the code of the simulator, and the samples can be generated
in a sequential way as long as the simulator needs them (a method usually
referred to as online generation).

However, the available methods for synthesizing FGN or F-ARIMA are
offline; namely, for each source of the self-similar traffic a large enough trace
must be generated before a simulation run. In this case, the finite length of
traces limits the set of usable mean estimation techniques: the independent
replication technique is the only one flexible enough. Moreover, if we are inter-
ested in the simulation of models with several traffic sources (as, e.g., in com-
munication networks of several nodes) it may happen that all needed traces for
a simulation run do not fit into core memory, so they have to be stored in disk.
In this case there are two bottlenecks on computational efficiency in addition
to CPU power: core memory size and disk access. To reduce this computational
cost, in Suárez et al [1999] the authors propose a concurrent methodology based
on sharing resources between running processes for efficiently organizing and
dealing with this simulation study.

5The distribution change will be done by a transformation h(x) = F−1
Y (FX (x)), where FX (x) is the

original marginal distribution and FY (x) is the target marginal distribution.
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Despite the drawbacks of the M/G/∞ process, the possibility of online gener-
ation makes it attractive for use as an interarrival time model in slotted-time
simulators, or as a message (frame or packet) size process. And, of course, they
could be utilized as counting processes if considered suitable. On the other
hand, the M/G/∞ model can be an acceptable explanation for the presence of
self-similarity in WAN traffic [Paxson and Floyd 1995], where, by means of a
multilevel approach, we can assume Poisson processes at the session time scale,
and heavy-tailed distributions at the packet (frame) time scale.

For all these reasons, at present we are working on the design of an efficient
online generator for M/G/∞ that allows modeling of SRD and LRD simultane-
ously.

However, from now on, we consider the M/G/∞ process not within the scope
of this article, and focus on Gaussian self-similar processes.

It is obvious that Gaussian processes can also be utilized as counting pro-
cesses6 but, in light of the above discussion, we focus on their use as interarrival
time processes.

4.1 Gaussian Self-Similar Processes

In this section we compare both Gaussian self-similar processes, FGN and
Gaussian F-ARIMA, with regard to the ability to model different correlation
structures. We also discuss their advantages and disadvantages for simulation
purposes.

FGN processes have only three parameters (µ, σ , and H), and their correla-
tion structure is determined by a single parameter H, that only permits us to
model their LRD structure in such a way that their SRD structure remains
fixed and can not be modified independently. So, FGN processes have a correla-
tion structure that is too rigid to capture the wide range of low-lag correlation
structures encountered in practice (VBR video, e.g.) [Leland et al. 1993]. This
fact is a strong limitation of FGN since although the presence of LRD can have
a dramatic effect on performance, SRD can also have a significant impact, in-
volving the need to incorporate SRD into traffic models [Erramilli et al. 1996;
López-Ardao 1999].

Instead, F-ARIMA(p, d, q) processes are much more attractive for traffic mod-
eling purposes, since they are capable of modeling LRD (by means of the pa-
rameter d) and SRD (by means of the AR(p) and MA(q) components) inde-
pendently. In fact, the simple addition of one AR(1) or MA(1) component to a
F-ARIMA(0, d, 0) process creates processes that are much more flexible than
FGN [Hosking 1981; Leland et al. 1993]).

On the other hand, the fact that F-ARIMA processes are only asymptotically
self-similar is not important given that simulation experiments in the context
of LRD will usually require very long sample paths to reach certain statistical
requirements.

For example, a simulation study of an FDDI network in López-Ardao [1999]
shows that mean waiting time for FGN is practically identical to that for
F-ARIMA(1, d, 0) if its SRD structure is adequately fitted to FGN by means
of the AR(1) component. In Figures 1 and 2 we can see that the autocorrelation

6In the case of FGN, this involves the cumulating arrival process being FBM. Not in vain, FBM-
based models exploit this fact [Norros 1994].
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Fig. 1. Short-term correlations of synthesized traces of F-ARIMA(1, d, 0) with α1 = 0.09 and FGN.
H = 0.9.

Fig. 2. Long-term correlations of synthesized traces of F-ARIMA(1, d, 0) with α1 = 0.09 and FGN.
H = 0.9.
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function of a synthesized trace of F-ARIMA(1, d, 0) with α1 = 0.09 fits almost
perfectly, both short- and long-term, the autocorrelation function of a trace of
FGN.

Due to the large number of long runs that must be used in an exhaustive sim-
ulation study in the context of LRD, the time spent in synthesizing a very large
trace is critical. For this reason, despite their flexibility, F-ARIMA processes
have been little used in simulation studies, since the commonly used genera-
tion methods for FGN are significantly more efficient than those for F-ARIMA.

In order to overcome this drawback, in this article we propose a new gener-
ation method for Gaussian F-ARIMA(p, d, q) that produces high-quality traces
much more efficiently than the usual methods, even if compared with the best
method for FGN.

5. SYNTHETIC GENERATION OF F-ARIMA

In this section we describe the most important methods for synthesizing
Gaussian F-ARIMA traces that have been proposed.

5.1 Exact Methods

Several exact methods exist for generating Gaussian processes with a
given autocorrelation (or autocovariance) function and, therefore, suitable for
F-ARIMA(0, d, 0) processes (also for FGN), whose autocorrelation function is
given by expression (16).

The most direct method consists of multiplying a vector of N (sample size)
i.i.d. standard normal random variables by a real lower triangular matrix, ob-
tained from a Cholesky decomposition of the covariance matrix. Since the traces
needed in the context of LRD are usually very long, the covariance matrix can
be extremely huge, involving a large amount of computer memory, seldom avail-
able, and a prohibitive computational cost (on the order of N2).

Hosking [1984] proposed another general exact method that can be utilized
for generating a sample path corresponding to a Gaussian process, {Xk | k =
0, . . . , N−1}, with zero mean, variance v0, and a given autocorrelation function,
ρ(k).

The algorithm is as follows.
Starting from N0 = 0, D0 = 1, and from an initial value X0, drawn from

a standard normal distribution N(0, v0), perform the following operations for
k= 1, . . . , N− 1.

1. Nk = ρ(k)−∑k−1
j=1 φk−1, j · ρ(k− j).

2. Dk = Dk−1 − N2
k−1/Dk−1.

3. φkk = Nk/Dk.
4. For j = 1, . . . , k− 1 calculate φkj = φk−1, j − φkk · φk−1,k− j .

5. mk =
∑k

j=1 φkj · Xk− j and vk = (1− φ2
kk) · vk−1.

6. Obtain the sample Xk from a standard normal distribution N(mk, vk).

This method has often been used in the literature for synthesizing Gaussian
F-ARIMA(0, d, 0) traces, but, as far as we know, it has not been applied for FGN.
For instance, in Garrett and Willinger [1994] this method is utilized for gener-
ating a F-ARIMA(0, d, 0) trace that exclusively captures the LRD structure of a
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VBR video sequence. However, given that the method is suitable for synthesiz-
ing any Gaussian causal process with given autocorrelations [Hosking 1984],
in Huang et al. [1995b] it is used with the empirical autocorrelations of a real
video trace.

Nevertheless, as the calculation of each sample depends on the previous sam-
ples, the great disadvantage of this method is its extremely high computational
cost (on the order of N2), that makes it absolutely prohibitive for very long
traces. For example, in Leland et al. [1994] the authors report that synthesiz-
ing 100,000 samples of F-ARIMA(0, d, 0) requires 10 hours of CPU time on a
Sun SPARCstation-2.

In the case of F-ARIMA(0, d, 0), given that φkk = d/(k− d) [Hosking 1981] in
Step 3 of the algorithm, there is no need to calculate either ρ(k) or to perform
Steps 1 and 2, so that computation time decreases about 40% in relation to the
general case.

5.2 Approximate Methods

The computational cost can be reduced significantly if we make use of ap-
proximate methods that, however, require the consideration of an additional
criterion: the goodness of the approximation, evaluated by the quality of the
synthesized traces.

Next, we describe and discuss the three most important approximate meth-
ods for synthesizing Gaussian F-ARIMA(0, d, 0) traces: Davies–Harte, Haslett–
Raftery, and aggregation of AR(1) processes.

In order to synthesize a F-ARIMA(p, d, q) trace we must make use of an
ARMA(p, q) filter with F-ARIMA(0, d, 0) traces as innovations.

5.2.1 Davies–Harte Method. This general method for synthesizing
Gaussian processes [Davies and Harte 1987] is based on the existing re-
lation between the spectral density and the modulus of the Fourier transform
of the sequence to be generated. The spectral density is obtained by means of
a discrete Fourier transform (DFT) of the autocovariances.

The algorithm for generating a sequence {Xt, t = 0, 1, . . . , N − 1} is the
following.

1. Calculate the spectral density { fk} sampled at each frequency λk =
2πk/N, with k = 0, . . . , 2N − 1, by means of the DFT (of 2N points)
of the autocovariances sequence, γ (0), γ (1), . . . , γ (N − 1), γ (N), γ (N −
1), . . . , γ (1).

2. Define a set of complex random variables Zk =
√

fk · (ak + jbk), k =
0, . . . , 2N− 1, where
—Z0 = 0;
—for 1 ≤ k ≤ N − 1, {ak} and {bk} are two independent sequences of

normal i.i.d. random variables with zero mean and variance 1;
—aN is a normal random variable with zero mean and variance 2, and

bN = 0;
—for N+ 1 ≤ k≤ 2N− 1, Zk = Z∗2N−k.

3. Calculate Xt, for t = 0, . . . , N − 1, as the inverse-DFT (of 2N points) of
the sequence Zk and then divide by 2

√
N.
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In this way, if we set γ (0) = 1, we obtain a Gaussian sequence with zero
mean and variance 1, whose autocorrelation function will be given by ρ(k) =
γ (k).

The advantage of this method lies in the use of FFT algorithms for calculating
both DFTs, direct and inverse. So, the method is fast enough, with a computa-
tional cost that is only proportional to the sample size, and it is a good choice
for generating FGN or Gaussian F-ARIMA(0, d, 0), since their autocovariances
are known.

5.2.2 Haslett–Raftery Method. The method proposed in Haslett and Raftery
[1989] is a slight but very efficient modification of the Hosking method when
applied for F-ARIMA(0, d, 0). The modification consists of an approximation
of the sum in Step 5, whose calculation is the most computationally inten-
sive, that is based on another approximation proposed by Hosking [1981] for
F-ARIMA(0, d, 0):

φkj ∼ −π j as k→∞
and

π j ∼ k−d−1

(−d− 1)!
.

Haslett and Raftery propose taking this asymptotic relation as exact for j > M
and assume that π j is constant for M < j ≤ k−1 and equal to the approximated
mean value. In this way, for k ≤ M+ 1, the expression for mk in Step 5 is
calculated as usual in the Hosking algorithm, and for k≥ M+ 2:

mk =
k∑

j=1

φkj · Xk− j = φkk · X0 +
M∑

j=1

φkj · Xk− j −
k−1∑

j=M+1

π j · Xk− j

≈ φkk · X0 +
M∑

j=1

φkj · Xk− j −M · πM · 1− (M/j)d

k− 1−M
·

k−M−1∑
s=1

XM+s.

Haslett and Raftery recommend using M = 100, a value that shows good
performance over a wide range of values of d and N.

This approximation makes the computational cost proportional to the sample
size, and therefore, the algorithm is much faster than Hosking’s method (about
70 times), although this method is still nearly 6 times slower than the Davies–
Harte method, with similar quality of the synthesized traces.

This algorithm is included in the commonly used commercial statistical soft-
ware S-Plus [Statistical Sciences, Inc. 1991].

5.2.3 Aggregation of AR(1) Processes. This method exploits a convergence
result obtained by Granger [1980] who showed that the aggregation of n AR(1)
processes, where the AR(1) parameters are chosen from a Beta distribution on
[0, 1] with shape parameters r and s, converges to a F-ARIMA(0, d, 0) process,
with d = 1− s/2, as n goes to infinity. Moreover, if the innovations of all AR(1)
processes are Gaussian, then the aggregate process is also Gaussian.

The main difficulty of this method is that one must trade off computational
efficiency (low n) against the degree of agreement with a true self-similar pro-
cess (high n). Nevertheless, its advantage is that it is well suited for parallel
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computers. For instance, in Willinger et al. [1995] it is said that generating a
synthetic trace of length 100,000 on a MasPar MP-1216, a massively parallel
computer with 16,384 processors, takes about three to five minutes. In any case,
this computational cost is still significantly higher than that for the Davies–
Harte method, which requires only eight seconds on an ordinary Pentium-166
processor.

5.3 Discussion

In summary, the Davies–Harte method is the most suitable one for generating
approximate Gaussian F-ARIMA(0, d, 0). Nevertheless, it is striking that this
method has hardly been cited or used in the literature (as far as we know, this
method is only proposed in Beran [1994], where the code in S-Plus is included).

In fact, the studies with F-ARIMA models often make use of Hosking’s method
[Garrett and Willinger 1994; Huang et al. 1995a, 1995b] and sometimes the
Haslett–Raftery method [Krunz and Makowski 1998; Adas and Mukherjee
1996].

In any case, if there is no need to model the SRD structure, the best choice is
undoubtedly an FGN-based model, due to the existence of an excellent approx-
imate method proposed by Paxson [1997], that is four times more efficient than
the Davies–Harte method for a given sample size.

In order to avoid that disadvantage, and to increase the efficiency in synthe-
sizing F-ARIMA traces, we propose a new generation method for Gaussian
F-ARIMA(p, d, q) that is significantly more efficient than the Davies–Harte
method, and even slightly more than Paxson’s method for FGN.

We must mention the method proposed in Kaplan and Kuo [1994] for syn-
thesizing “asymptotic FGN” by means of Haar wavelet transforms. The main
idea is to find a model whose correlation decays asymptotically like FGN but
where the short-term correlations can be modeled independently like an AR(1)
process. Thus the characteristics of this model are very similar to those of
F-ARIMA(1, d, 0). In general, wavelet methods hold great promise for model-
ing and synthesizing self-similar traffic, due to their computational efficiency
and the natural match between the notion of “scaling” in a wavelet transform
and the notion of “invariance across different scales” in a self-similar process
[Paxson 1997]. However, at the moment, this method and others are somewhat
limited due to difficulties in parameter estimation.

6. A NEW METHOD FOR SYNTHESIZING GAUSSIAN F-ARIMA(p, d, q)

The proposed method is an extension of Paxson’s [1997] method to
F-ARIMA(p, d, q) processes. The basic idea consists of using the same result
utilized by Paxson, belonging to Graf [1983], which states that the power spec-
trum estimated (or periodogram) for a given frequency is distributed asymp-
totically as an independent exponential random variable with mean equal to
the actual power. Therefore, the method obtains a hypothetical periodogram
of the designated process—F-ARIMA(p, d, q) in our case—by randomizing its
theoretical power spectrum, given by expression (14).

The steps of the algorithm for generating one trace Xt with length N (even)
are basically the same as those of Paxson’s method.
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(1) Construct a sequence of values { f1, . . . , fN/2}, where fk= f (2πk/N;
σ 2
ε , d, φp, θq), and f is the spectral density given by (14) for frequencies

from 2π/N to π . Without loss of generality, we assume σ 2
ε /2π = 1, be-

cause later we propose a normalization for obtaining variance 1.
(2) Randomize the sequence { f̂ k} by multiplying each fk by an independent

exponential random variable with mean 1.
(3) Construct a sequence of complex values {z1, . . . , zN/2}, such that |zk| =√

f̂ k and the phase of zk is uniformly distributed between 0 and 2π ,
except for the phase of zN/2 that must be zero. This randomization of
the phase preserves the spectral density (and thus autocorrelation)
corresponding to { f̂ k}, but ensures that different traces generated with
the method will be independent. It also makes the final marginal dis-
tribution normal [Paxson 1997].

(4) Construct the sequence {z′0, . . . , z′N−1} as

z′k =
0 if k= 0

zk if 0 < k≤ N/2
zN−k if N/2 < k< N

in such a way that now the sequence z′k is symmetric about z′N/2, corre-
sponding to the Fourier transform of a real-valued sequence.

(5) Calculate the inverse DFT of the sequence z′k to obtain Xt, the ap-
proximate synthetic trace corresponding to F-ARIMA(p, d, q). As in the
Davies–Harte method, the main advantage lies in the use of an FFT
algorithm for calculating the inverse DFT.

The resulting trace has zero mean, but its standard deviation is unknown,
although it can be estimated, and so we can obtain a standard normal marginal
distribution by dividing each sample of the trace by this estimation.

However, as the usual estimator of the variance, the sample variance, has a
strong bias for series exhibiting LRD, higher as H increases [Beran 1994], we
propose using the following approximation of the variance in order to obtain
higher quality.

Let {Xt, t = 0, . . . , N − 1} be the sequence to be generated, let χ (k) be its
DFT, and let Ix(k) be its periodogram for frequencies λk = (2π/N) · k. From

Ix(k) = 1
2πN

· |χ (k)|2

and since we take |χ (k)|2 = |zk|2 = f̂ (λk) in the algorithm (Step 3), then

Ix(k) = 1
2πN

· f̂ (λk).

Thus the spectral density corresponding to Xt is really ( f (λ))/(2πN), so that
the theoretic variance will be

σ 2
x =

∫ π

−π

f (λ)
2πN

dλ.
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We can obtain an approximation of the variance σ̃ 2
x by approximating the

integral at the frequencies λk = (2π/N) · k:

σ̃ 2
x =

2π
N

N−1∑
k=1

f (λk)
2πN

= 1
N2

N−1∑
k=1

f (λk).

It is easy to see that σ̃ 2
x → σ 2

x as N → ∞. Note that σ̃ 2
x is not an estimator

of the variance, but an approximation, obtained from the theoretical power
spectrum, that is not random. Nevertheless, when the sample size is large
enough (as usual in the context of LRD), the approximation is good enough and
more suitable than the sample variance.

On the other hand, FFT algorithms imply division by N in the case of inverse
DFT.7 So, in order to obtain variance equal to 1, each sample of the resulting se-

quence must be divided by N and by σ̃x, that is, must be divided by
√∑N−1

k=1 f (λk).
It is clear that this normalization also can be used in Paxson’s method for
FGN.

6.1 Issues Related to EfÆciency

If we compare our method with Davies–Harte, at first glance we can see why
the new method is significantly more efficient. The Davies–Harte method uses
two FFTs of 2N points, whereas the new method uses only one FFT of N points,
decreasing the computational cost about four times. For example, synthesizing
a F-ARIMA(0, d, 0) trace of a length of one million on a Pentium-166 processor
takes 76 seconds with the Davies–Harte method, but only 17.5 seconds with
the proposed method, that is, more than four times faster.

Paxson’s method is also less efficient, requiring 31 seconds. This differ-
ence with Paxson’s method is basically due to the computational difference
in the calculation of the sequence { f1, . . . , fN/2} (corresponding to the sam-
pled spectral density obtained in Step 1 of the algorithm) between FGN and
F-ARIMA(0, d, 0). In the case of FGN, such calculation involves an infinite
summation—expression (7)—for which no closed form is known, and so an
approximation must be obtained. Paxson proposes an approximation with six
terms and a correcting factor that is good enough. However, even making use
of this approximation, this calculation takes more time than evaluating (14)
for F-ARIMA(0, d, 0), that has a closed form, and this represents an additional
advantage of the proposed method.

An interesting improvement for both methods could be storing the sequence
{ f1, . . . , fN/2} in disk, so that this sequence can be used in subsequent gener-
ations instead of being calculated, thus saving more time. This improvement
allows us to save much time in cases where the sampled power spectrum re-
mains invariable (i.e., the target correlation structure (H, p and q) and the
sample size) and can be shared. For example, symmetrical configurations of
the network are often used in simulation studies, in which traffic patterns are
identical for each source and it is necessary to synthesize several independent

7The reason lies in the fact that both algorithms, direct and inverse, are the same except for the
sign of the exponentials. However, in the case of inverse DFT, it is necessary to divide by the sample
size, and this operation is often made subsequently.
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traces with the same correlation structure. Furthermore, this sampled spec-
trum can be used to run many simulations due to the use of the independent
replication technique. In addition, all simulation experiments where other pa-
rameters (marginal distribution, mean, variance, network parameters, etc.) are
modified can share the same sampled spectrum.

It is easy to infer that the efficiency gain in our method is higher as the
order p or q increases. But, even in the simplest cases, F-ARIMA(0, d, 0) and
F-ARIMA(1, d, 0), the gain is about 10 and 15%, respectively. In short, it is
advisable to store the sampled spectrum in disk if we must synthesize many
traces with the same correlation structure.

It is also obvious that the efficiency gain for Paxson’s method is significantly
higher than that for our method, even though we make use of an approximation
with few terms for the former. In fact, both methods have the same computa-
tional cost if the sampled spectrum is read from disk. On the other hand, storing
the spectrum in disk could allow us to make use of an approximation with more
terms that possibly involves a higher quality of the traces.

6.2 Issues Related to the Quality of the Traces

Next, we present a summary of a comprehensive study that evaluates the
quality of the traces generated by our method. The goal of this study is not
to prove that the method really synthesizes sample paths corresponding to
a F-ARIMA(p, d, q) process, because this is not true, as Graf ’s result is only
asymptotically true and the method uses a finite power spectrum [Paxson 1997].

Instead, this study intends to show that the method produces sample paths
that are indistinguishable for practical purposes from those corresponding to a
true F-ARIMA process. By this we mean that its marginal distribution is normal
with zero mean and variance 1, that its autocorrelation function adequately fits
the true function and the estimation of H is close to the true value, and that its
spectral density is consistent with F-ARIMA.

Moreover, our method is also compared with the best method proposed in the
literature, that is, Davies–Harte.

In all cases, the mean values shown in the tables were obtained by averaging
the estimations over 100 independent traces of a length of one million.

Normality. The traces synthesized by both methods correspond to a
Gaussian process for practical purposes. In order to analyze the marginal dis-
tribution we have used the χ2, Kolmogorov–Smirnov, and Anderson–Darling
goodness-of-fit tests with satisfactory results, except for high values of H, where
the tests usually reject many true hypotheses due to the presence of a strong
LRD [Beran 1994]. However, visual tests such as the QQ- and PP-plots show
that the traces “look” normal even in those extreme cases. In Figures 3 and 4
we can see that the plots for H = 0.95 fit a straight line with slope 1 that passes
through the origin almost perfectly.

Finally, in relation to the mean and variance, we can observe in Table I that
the traces generated by our method have, for practical purposes, zero mean
and variance 1. We can also see that skewness and kurtosis are practically
zero, indicating again the proximity to the normal distribution.

Instead, the Davies–Harte method exhibits certain problems for zero mean
and variance 1, mainly as H increases (see Table II), although it passes all
tests of normality. This may produce undesirable effects on changing marginal
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Fig. 3. Proposed method with H = 0.95: QQ-plot for normal distribution.

Fig. 4. Proposed method with H = 0.95: PP-plot for normal distribution.
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Table I. Mean Values of Basic Statistics for Our Method

H Sample Mean Sample Deviation Skewness Kurtosis

0.500 −2.45072e-11 0.999833 −0.000395 0.001147
0.600 1.83910e-11 0.999952 0.000192 0.000829
0.700 1.11712e-11 0.999992 −0.000242 0.001021
0.800 −1.70470e-11 1.000080 −0.000275 −0.002498
0.900 −1.91762e-11 1.000680 −0.000316 −0.003279
0.950 1.07779e-11 1.004170 0.005729 −0.005913
0.975 8.05334e-12 1.000390 0.008572 −0.009112
0.990 9.42135e-12 0.985671 −0.009460 −0.030973

Table II. Mean Values of Basic Statistics for the Davies–Harte Method

H Sample Mean Sample Deviation Skewness Kurtosis

0.500 0.000209 0.999981 −0.000086 −0.001760
0.600 0.000516 0.999860 −0.000297 0.000147
0.700 0.002783 1.000010 −0.000717 −0.002089
0.800 0.000214 0.997575 −0.000816 0.000185
0.900 −0.019418 0.971073 0.005464 0.000464
0.950 −0.010069 0.885158 0.006671 −0.010367
0.975 0.002867 0.714338 −0.002490 −0.013063
0.990 0.043249 0.500878 −0.018778 0.001360

Table III. Estimations of H for Our Method by Whittle’s Estimator

Htrue Bias ≡ Ĥ− Htrue ĤMIN
i – ĤMAX

i Ĥi < Htrue (%) Out of CI (%)

0.5100 +0.0010 0.5068 – 0.5146 42 0
0.5250 +0.0007 0.5205 – 0.5322 54 5
0.5500 −0.0000 0.5459 – 0.5557 59 1
0.6000 +0.0000 0.5947 – 0.6064 46 4
0.6500 +0.0003 0.6455 – 0.6553 53 1
0.7000 −0.0003 0.6943 – 0.7080 46 3
0.7500 +0.0003 0.7471 – 0.7568 43 3
0.8000 −0.0001 0.7939 – 0.8076 61 4
0.8500 −0.0003 0.8447 – 0.8545 50 1
0.9000 +0.0001 0.8936 – 0.9053 42 4
0.9500 +0.0004 0.9443 – 0.9541 39 5
0.9750 +0.0003 0.9717 – 0.9814 44 0
0.9900 +0.0002 0.9854 – 0.9932 47 1

distribution, since it is necessary to know this distribution (parameters in-
cluded) as accurately as possible.

Correlation Structure. Our method synthesizes high-quality traces, even
higher than those generated by the Davies–Harte method. In Tables III and IV
we can see the mean estimations of H, by averaging the estimations obtained
after applying Whittle’s estimator to 100 traces. Our method gives rise to devi-
ations from the true value that are slightly smaller than those for the Davies–
Harte method. Besides, the new method does not apparently exhibit any trend
(estimations are randomly spread on both sides of the true value) whereas the
Davies–Harte method exhibits a slight trend. Finally, the number of estima-
tions out of the 95% confidence interval was less with our method.

The reason why our method synthesizes traces with higher quality might
be that this method obtains the periodogram from the exact expression of the
power spectrum, whereas the Davies–Harte method obtains it by means of a
DFT of the autocovariances.
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Table IV. Estimations of H for the Davies–Harte Method by
Whittle’s Estimator

Htrue Bias ≡ Ĥ− Htrue ĤMIN
i – ĤMAX

i Ĥi < Htrue (%) Out of CI (%)

0.5100 +0.0004 0.5029 – 0.5146 31 5
0.5250 +0.0005 0.5225 – 0.5303 66 2
0.5500 −0.0004 0.5459 – 0.5537 32 1
0.6000 −0.0003 0.5947 – 0.6064 49 5
0.6500 +0.0007 0.6474 – 0.6553 51 1
0.7000 +0.0003 0.6963 – 0.7061 45 3
0.7500 −0.0004 0.7451 – 0.7549 61 3
0.8000 −0.0004 0.7939 – 0.8037 70 5
0.8500 +0.0009 0.8486 – 0.8525 21 2
0.9000 −0.0010 0.8955 – 0.9053 75 2
0.9500 +0.0009 0.9463 – 0.9561 30 8
0.9750 +0.0008 0.9697 – 0.9814 21 5
0.9900 −0.0002 0.9853 – 0.9932 48 3

Fig. 5. Simulated and true autocorrelation functions for F-ARIMA(0, d, 0) with H = 0.75.

To see how the autocorrelation function of the traces fits the true correla-
tions, we show an example of both functions for F-ARIMA(0, d, 0) in Figure 5.
On the other hand, our new method allows us to synthesize any SRD process
belonging to the ARMA(p, q) family. For instance, in Figure 6 we can also see
both autocorrelation functions, simulated and true, for an AR(2) process.

Spectral Density. Both methods easily pass the strict Beran goodness-of-
fit test for the spectral density [Beran 1992]. As can be seen in Table V, the
percentage of rejections is practically always lower than or equal to the level of
significance.

Visual Test. Finally, it would also be interesting to observe if the synthe-
sized traces pass the visual test, namely, if the aggregation preserves the dis-
tribution, comparing this behavior with traces corresponding to non-LRD pro-
cesses. Thus, in Figure 7 we represent three traces on different time scales
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Table V. Results of Beran’s Test for Both Methods (α = 0.05)

Proposed Method Davies–Harte Method

H t P-Value Rejections (%) t P-Value Rejections (%)

0.500 0.318424 0.399942 3 0.318245 0.557305 2
0.525 0.318362 0.453918 4 0.317952 0.786700 2
0.550 0.318286 0.521159 1 0.318512 0.326722 8
0.600 0.318100 0.679482 4 0.318277 0.529119 4
0.650 0.317994 0.758574 0 0.318369 0.447762 8
0.700 0.318458 0.371068 8 0.318330 0.482181 6
0.750 0.318534 0.460968 5 0.318590 0.266887 6
0.800 0.318514 0.325121 6 0.318252 0.551159 2
0.850 0.318171 0.621160 5 0.318004 0.751592 2
0.900 0.318171 0.621160 3 0.318430 0.394802 6
0.950 0.318380 0.438114 6 0.318299 0.509647 4
0.975 0.318122 0.661799 3 0.318236 0.565187 2

Fig. 6. Simulated and true autocorrelation functions for AR(2) with α1 = 0.5 and α2 = 0.25.

(aggregation levels): one generated with the proposed method, corresponding
to a F-ARIMA(0, d, 0) process with H = 0.9 (on the left); another one generated
with the same method corresponding to a SRD process, ARMA(2, 2) (in the
middle), and a sequence of a pure random process (on the right). All sequences
are composed of 10 million samples, with exponential marginal distribution, so
that all values are positive.

We can see as in the case of F-ARIMA(0, d, 0), in effect, the increase of the
aggregation level gives rise to plots that are intuitively very “similar” (in a
distributional sense). Instead, this effect is not observed in the other two cases,
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Fig. 7. Representation in different time scales (1, 10, 100, 1,000, and 10,000) of a synthesized trace
of a F-ARIMA(0, d, 0) process (left), an ARMA(2, 2) process (middle), and a pure random process
(right).
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where the points are concentrated closer and closer to the mean as the aggre-
gation level increases.

To sum up, the main conclusion is that the new method to synthesize
F-ARIMA, proposed in this article, is the best choice due to its excellent com-
putational efficiency for generating high-quality traces that correspond to a
F-ARIMA process for practical purposes. Moreover, the method permits us to
synthesize a generic process F-ARIMA(p, d, q) without applying any additional
ARMA(p, q) filter to F-ARIMA(0, d, 0) traces.

7. CONCLUSIONS

This article deals with new problems arising in the application of self-similar
models to performance analysis. Undoubtedly, one of the most important prob-
lems is the efficient synthetic generation of high-quality traces corresponding
to self-similar processes. The existing real traces are not suitable, since they do
not allow us to modify their correlation structure or other statistical properties
of interest and, in most cases, the sample size is not enough to achieve certain
statistical requirements. In addition, simulation experiments in the context of
LRD will usually require very long independent sample paths, and therefore
synthetic generation is essential.

Moreover, although a great part of this article is devoted to synthetic gen-
eration of self-similar processes, other interesting issues related to network
simulation and self-similar processes are also dealt with:

—the drawbacks of using models based in counting processes;
—the existence of a duality in the LRD structure between counting and inter-

arrival time processes, that allows us to use the latter;
—the selection of Gaussian self-similar processes in order to be able to change

their marginal distribution without altering their long-range correlation
structure;

—the selection of Gaussian F-ARIMA(p, d, q) processes, instead of FGN, due to
their flexibility to model SRD and LRD simultaneously.

Finally, with regard to the synthetic generation of Gaussian F-ARIMA, the
main conclusions of this article are as follows.

—Due to the large number of long runs that must be used in an exhaustive
simulation study in the context of LRD, the time spent in synthesizing a very
large trace is critical. For this reason, exact methods must be discarded since
the computational cost is of the order of the sample size squared.

—The computational cost can be reduced significantly if we make use of approx-
imate methods that, however, require consideration of an additional criterion:
the goodness of the approximation, evaluated by the quality of the synthe-
sized traces. However, the approximate methods proposed in the literature
for synthesizing F-ARIMA are less efficient than those for FGN (Paxson’s
method, mainly). For this reason, despite their flexibility, F-ARIMA processes
have been little used in simulation studies and, especially, if the SRD struc-
ture is not modeled.

—The new approximate method proposed in this article can very efficiently gen-
erate high-quality traces corresponding, for practical purposes, to a Gaussian
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F-ARIMA(p, d, q) process. A comparison with existing methods shows that the
new method is significantly more efficient, even more than the best method
for FGN. So, we trust that the computational efficiency is not an obstacle for
using much more flexible models based in F-ARIMA(p, d, q).
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