On Calibrating Measurements of Packet Transit Times

Vern Paxson
Network Research Group
Lawrence Berkeley National Laboratory*
University of California, Berkeley
vern@ee.lbl.gov

Abstract

We discuss the problem of detecting errors in meusurements of the total delay experi-
enced by packets transmitted through a wide-area network. We assume that we have
measurements of the transmission times of a group of packets sent from an originating
host, A, and a corresponding set of measurements of their arrival times at their destina-
tion host, B, recorded by two separate clocks. We also assume that we have a similar
series of measurements of packets sent from B to A (as might occur when recording
2 TCP connection), but we do not assume that the clock at A is synchronized with the
clock at B, nor that they run at the same frequency. We develop robust algorithms
for detecting abrupt adjustments to either clock, and for estimating the relative skew
between the clocks. By analyzing a large set of measurements of Internet TCP connee-
tions, we find that both clock adjustments and relative skew are sufficiently common
that failing to detect them can lead to potentially large errors when analyzing packet
transit times. We further find that synchronizing clocks using a network time protocol
such as NTP does not free them from such errors.

1 Introduction

In this paper we tackle the problem of how to calibrate transit times
measured for packets traveling through a network. We assume that
we have a series of pairs of timings, recording cach packet's dc-
parture time from its sender and arrival time at its recetver, but that
the clocks used at the sender and receiver to generate these time-
stamps are not necessarily accurate: they may not keep true time,
they may be subject to abrupt adjustments, and they may run at
difterent rates.

Calibrating transit times might at first blush appear to be a fairly
minor measurement problem, but in fact it is potentially central
to the accuracy of a number of wide-area network measurement
techniques. The timing structure of packets transmitted through
a network is very rich: by carefully analyzing this structure one
can infer fundamental network properties such as delay, bottleneck
link speed, available bandwidth, queueing levels, and even hop-by-
hop link speed [Ke91, Bo93, Mu94, CC96, Pa97a, Ja97]. These
measurements are usually made using “echo” techniques, in which
packets sent to a given target result in the target returning replies

* A longer version of this paper is available [Pa98]. This work was supported by
the Director, Office of Energy Rescarch, Office of Computational and Technology
Research. Mathematical, Information, and Computational Sciences Division of the
United States Department of Energy under Contract No. DE-AC03-76SF00098.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
SIGMETRICS ‘98 Madison, Wi USA

© 1998 ACM 0-89791-982-3/98/0006...$5.00

11

back to the sender. The analysis is then made on the timing struc-
ture of the replies.

Echo-based techniques, however, suffer from a fundamental
problem: they unavoidably conflate properties of the network path
in the forward direction with the properties of the reverse direc-
tion. Consequently, these measurements are subject to consider-
able inaccuracy. Furthermore, a large-scale study of Internet rout-
ing found that paths through the Internet are often asymmetric,
meaning that the series of routers visited in the two directions of-
ten differ [Pa96]. Subsequent work discusses other asymmetries
(such as link speeds and queueing levels), and argues strongly for
“receiver-based” measurement, in which packet receivers cooper-
ate with packet senders in order to accurately measure network traf-
fic [Pa97a].

Accurate receiver-based measurement, however, depends on ac-
curate comparisons of timestamps produced by a clock at the packet
sender with those produced at the receiver. It is easy to assume
that to ensure accuracy we merely require synchronization between
these clocks; but, while a considerable body of work has addressed
the problem of synchronizing clocks to true time (see especially
the work of Mills [Mi92a, Mi92b, Mi95]), these algorithms main-
tain good time over time scales of hours to days. They do not as-
sure synchronization on the small time scales of individual network
conncections (a point we develop in § 7). Consequently, the problem
of calibrating the timestamps produced by pairs of network clocks
remains interesting and important.

If undetected, clock adjustments and rate mismatches can intro-
duce significant measurement errors. For example, if the sender's
clock runs slower than the receiver's clock, then the series of one-
way transit times (OTTs) that we compute from their timestamps
will show a systematic increase across the measurement interval. It
is easy to mistake this increase for a genuine increase in network-
ing delays due to a gradual buildup of queues. Similarly, a clock
adjustment, if undetected, can lead to completely erroneous con-
clusions that the network suffered from sustained periods of high
delay.

To develop our algorithms we used the data we gathered for
the Internet packet dynamics study mentioned above [Pa97a]. We
recorded two datasets, each consisting of traces of TCP transfers
conducted at random between a number sites around the Internet.
For cach transfer, packet arrivals and departures were recorded at
both the sender and the receiver using the tcpdump utility [JLM89].
The clocks used at the different sites were not necessarily synchro-
nized.

We term the sender and receiver traces collectively as a “‘trace
pair.” Transfers entailed the sender transmitting 100 KB of data to
the receiver. Because of the use of TCP, this results in a stream of
large data packets flowing from the sender to the receiver, and a
smaller stream of acknowledgement (“‘ack”) packets flowing in the

other direction, all of which were recorded.

The first dataset, A7, recorded at the end of 1994, consists of
2,335 trace pairs between 25 sites. The second, Ny, recorded at the
end of 1995, consists of 15,492 trace pairs between 31 sites. (For
brevity, we do not list the sites here, but will use the same names
and font as in [Pa97a]l—c.g., “austx”.)

We wrote a program, tcpanaly, for automating much of the
analysis of the trace pairs, and [Pa97b] discusses a number of packet
filter measurement errors detected by it. Part of the development of
tepanaly included devising and implementing the clock calibra-
tion algorithms we discuss in this paper.

Limitations of the study. There are a number of important lim-
itations of our study that must be kept in mind. The first is that the
data we had available for analysis had been previously recorded,
and did not include any clock information (such as whether the
clocks were synchronized using NTP, nor any logs of clock adjust-
ments by the operating systems). Because we were confined to
post-facto analysis, we were unable to evalute the accuracy of our
algorithms in any absolute sense. Until the algorithms can be eval-
uated in a controlled fashion, they can at best only be regarded as
promising but unproven.

The post-facto analysis also means that we could not design
our measurement traffic to best support the problem of calibrating
the packet timings. Instead, we had to deal with TCP bulk transtcr
traffic, which often introduces its own timing distortions along the
data transfer path by contributing to queueing. Consequently, we
must deal with noise issues that we could otherwise avoid.

Another limitation is that we found we needed to introduce a
number of heuristics into the algorithms. We believe for the most
part that doing so is unavoidable, because the goal of the heuristics
is to deal with noise induced on the packet transit timings by net-
work conditions, and there is no known method for removing such
noise.

Finally, one might argue that inexpensive, high precision tim-
ing synchronization devices, such as GPS units, obviate the need
for calibration techniques such as those we develop. However,
even though these units are now relatively cheap, it is not clear
that we can yet presume their ubiquity, because: their cost remains
non-negligible; they cannot always be deployed due constraints on
antenna placement; and many sites might instead use NTP to syn-
chronize most of their machines to a few GPS-endowed machincs.
We also argue in our summary that, even given a directly-attached
GPS unit, checking the clock readings ultimately derived from it
remains prudent.

We begin our discussion by defining in § 2 basic terminology
for describing difterent clock attributes. In § 3 we introduce “rela-
live” counterparts of these terms, for discussing potential disagree-
ments between two network clocks. We next conduct an assessment
of relative clock accuracy (§ 4), before turning to the development
of methods for detecting clock adjustments (§ 5) and relative clock
skew (§ 6).

We finish in § 7 with a look at how well a clock's synchroniza-
tion correlates with stable clock behavior (lack of adjustments and
of skew). We find that, unfortunately, a high degree of synchroniza-
tion between two clocks does not necessarily mean that the clocks
are free of relative errors.

2 Basic clock terminology

In this section we define basic terminology for discussing the char-
acteristics of the clocks used in our study. The Network Time Pro-
tocol (NTP; [Mi92a}) defincs a nomenclature for discussing clock
characteristics, which we will use as appropriate. It is important
to note, however, that the main goal of NTP is to provide accurate
timekeeping over fairly long time scales, such as minutes to days,
while for our purposes we are concerned with much shorter-term

12

accuracy, namely between the beginning of a network transfer and
its end. This difference in goals sometimes leads to different defi-
nitions of terminology, as discussed below.

Resolution. A clock's resolution is the smallest unit by which
the clock's time is updated (a “tick™). It gives a lower bound on
the clock’s uncertainty. Note that we define resolution relative to
the clock’s reported time and not to true time, so, for example, a
resolution of 10 msec only means that the clock updates its notion
of time in 0.01 second increments, not that this is the true amount
of time between updates.

Due (o limited space, we defer discussion of how we estimate a
clock's resolution to [Pa98].

Offset. We define a clock's offset at a particular moment as the
difference between the time reported by the clock and the “‘true”
time as defined by national standards. If the clock reports a time T
and the true time is T}, then the clock's offset is T, — T3.

Accuracy. We will refer to a clock as accurate at a particular
moment if the clock's offset is zero, and more generally a clock's
accuracy is how close the absolute value of the offset is to zero. For
NTP, accuracy also includes a notion of the frequency of the clock;
for our purposes, we split out this notion into that of skew, because
we define accuracy in terms of a single moment in time rather than
over an interval of time.

Skew. A clock's skew at a particular moment is the frequency
difference (first derivative of its offset with respect to true time)
between the clock and national standards.

3 Terminology for comparing clocks

In this section we develop terminology for discussing differences
between two clocks producing timestamps. The definitions are, for
the most part, analogous to those in § 2, except that, instead of
comparing a single clock against true time, we are comparing one
clock against another.

We first introduce the meta-notation of a subscript “‘s” denoting
time measurcd at the packet sender, and “r” denoting time at the
packet receiver. Let Cs and C, refer to the clocks at the sender and
receiver, with R and R, their respective resolutions.

We detine C,'s offsect relative to C at a particular true time 7" as
T, — T, that is, the instantaneous difference between the readings
of € and C; at time T'. For convenience we will sometimes refer
1o this as C,'s relative offset at time T', with C, implicitly being the
clock 1o which €, is compared. We discuss assessing the relative
offset of one clock to another in § 4.

Similarly, C,'s relative skew is the first derivative of C.'s rel-
ative offset with respect to true time. Since we do not assume an
independent means of measuring true time, we can only estimate
C,'s relative skew in terms of time as measured by either Cs or
(. See § 6 for further discussion.

It C, is accurate relative to C (their relative offset is zero),
then we will refer to the pair of clocks as “synchronized.”

For resolution, what we care about is not “‘relative resolution”
but joint resolution, which we define as R, = Rs + R,. This
definition retlects the fact that, when comparing timestamps from
Cs with those from C,, the corresponding uncertainties must be
added to properly propagate the resulting total uncertainty.

4 Analysis of relative clock offset

In {PaY8] we discuss a simple method for estimating the relative
olfset between two network clocks. The method is only accurate to
within one round-trip time (RTT). However, an important point is
that for analyzing network dynamics, estimating relative offset ac-
curatcly generally is nor crucial, because the dynamics mostly con-
cern differences in transit times rather than absolute transit times.

!

Offset
50000 100000 150000 200000

o
0 (LWOLNTTMD ¥P D
T T

0 5 10 15
Days

0
o
B
§
z

Figure 1: Evolution of austx's relative clock offset over the course

of M}

For our purposes, we only need to do estimate relative offsets in or-
der to construct legible plots of the two-way flow of packets, and to
qualitatively investigate the relationship between large relative oft-
set and other clock problems such as relative skew. Accordingly,
we are satisfied with the method developed in [Pa98] even though
it is not especially accurate.

We evaluated the relative clock offsets in A; and A5 to sce
what sort of variation they exhibited. Our goal is to identify groups
of closely-synchronized clocks, as we want to determine the degree
to which these clocks are less plagued by inaccuracies than less
well-synchronized clocks (§ 7). A single computation of AC, .
does not tell anything about the absolute accuracy of either C,
or (s, but we would expect that many computations of ditferent
ACy,,s;'s will reveal clusterings among the truly accurate clocks,
and a large spread among the inaccurate clocks.

Note that in the presence of relative skew, the relative clock
offset is not well-defined. However, it we find a pair of clocks that
frequently enjoy a low relative offset, then it is plausible that they
do not generally suffer significant relative skew, as otherwise their
readings would tend to drift apart and they would not be able to
preserve their low relative oftset.

We proceed by clustering host clocks based on the median of
the magnitude of their relative clock offset, over all the transfers in
which they participated. We use the median offset in order to isolate
hosts that consistently had large relative offsets, instead of those
that only occasionally had large offsets, since the latter could be
skewed by unfortunately-frequent pairing of a host with an accurate
clock together with a host with a poor clock. We use the median of
the absolute value of the offset rather than the median of the offsct
itselt as a way of detecting clocks that often “‘swing” from being
t0o slow to too fast.

We first inspect the median magnitudes of each host's relative
clock offset. For both datasets, the same clock emerges as a clear
outlier, being typically 5-15 minutes different from the other clock.
We next remove the connections involving this outlier and recom-
pute the medians, repeating this process until we converge on a
set of clocks that have small median offsets relative 1o one another.
For AV this process removes 8 clocks as outliers. After eliminating
these clocks, the remainder all have median offsets < 1.25 sec. We
consider this group of 17 clocks as closely synchronized. We can
continue the process to find a corc group of 5 highly synchronized
clocks, all with median offsets < 10 msec belween one another.

For N2, removing 7 outliers leaves a group of 24 closely syn-
chronized clocks, all with median offsets below 250 msec. Elimi-
nating six more of these leaves a group of 18 clocks with median
offsets below 50 msec. We can further winnow the group down to
a final set of 10 highly synchronized hosts, all of which have me-
dian offsets between each other of less than 10 msec. This group
includes hosts on both coasts of North America as well as two in
Europe, indicating synchronization well below that of the propa-

13

o 4 -
o
o q‘!t\
o
g ¥ e
3 Do @
5 =
$ 4] oo o 'mn a
-]
[=3 L
(=] :\
= I
A g e T .
0 10 20 30
Days

Figure 2: Evolution of 1b1i's relative clock offset over the course

of N

e

-]
il
0 &
< B i a []
o g o 5 jan 2588 "o, C
T o [1 E' ggi & -
2 3 S o 8 iis. afcg BF [L
Q a
o E =}
[v2) -4 B
< B
= ¢ B
0 10 20 30
Days

Figure 3: Evolution of umont's relative clock offset over the course

of Ny

gation time between the hosts~very good, and around the accuracy
limit for NTP reported in [Mi92b].

We will make use of these different groups of closely-synchro-
nized and highly-synchronized hosts in § 7 when we test whether
close synchronization tends to correlate with low relative clock
skew.

We finish with a look at how a host's relative offset evolves over
the course of an experimental run. The evolution is interesting be-
cause it provides a large-scale look at how clock accuracy changes.
Our interest here is phenomenological—to develop an appreciation
for clock inaccuracies and an awareness of how they occur.

To assess otfset evolution, for cach host we constructed a plot
with the relative offsets (in seconds) computed for those connec-
tions for which it served as the data source on the y-axis, versus the
time of the connection (days since the beginning of the experiment)
on the x-axis. Positive values indicate the host's clock was running
behind the receiver's clock, negative that is was running ahead.

Figure 1 shows such a plot for the austr tracing host's clock
over the course of the N1 experimental run. Up until the 14th day,
it kept good time, but after that point its clock came unglued and
ran very slowly, such that the clocks of the other hosts to which it
transferred data ran further and further ahead of it (hence, higher
and higher offsets). Surprisingly, this is one of the clocks identi-
fied above as highly synchronized! That assessment, however, was
based on median relative offset, which filters out the aberrant be-
havior. We look at this phenomenon further in § 6.6.

Figure 2 shows the evolution of 1b11i's clock during AV2. While
overall the clock has a clear persistent skew, the skew is reversed
around day 8, perhaps in an effort to correct the clock's inaccu-
racy (or perhaps just due to a temperature fluctuation). But the ef-
lort ends a few days later and the original skew returns. However,
around day 27 the clock's relative offset jumps by over a minute,
reflecting a different sort of correction. (This host synchronizes its
clock upon reboot.)

< . o
’J o 18] s} o
é @] o U 0
o
= s . 9% oo ° p
& o 'a o '—b P
a8« 5{,
- ~ :ﬂ'?
g .;‘,ur_n.-' - e gmﬁﬁ MNM: -ﬂﬁéﬁj
@ 2 80 a® o Y . 2 e
o] % " - PE e T
H%mﬂmuﬁm{ﬂ*b R SRS ol B L
o 4
.
S S T T T o T
0.0 0.5 1.0 1.5 2.0
Time (sec)

Figure 4: OTT-pair plot illustrating a clock adjustment (sender
packets are filled, receiver packets are hollow)

Figure 3 presents our last example of intcresting clock oftset
evolution, for another A/, clock. What is striking here are the pres-
ence of offset “towers” that, over the course of hours, slowly ele-
vate the relative offset from nearly zero to several hundred millisec-
onds. Apparently what is happening is that the clock has a fairly
hefty intrinsic skew, but NTP synchronization is detecting this and
periodically resetting the clock as it strays too far.

5 Detecting clock adjustments

As shown quite strikingly in Figure 2, computer clocks arc some-

times subject to abrupt adjustments in which the clock’'s notion of

the current time is changed, either gradually or instantaneously.
Gradual change is produced by artificially altering the clock's skew,
so that it slowly shifts its offset towards the target. Instantaneous
change is produced by simply loading a new value into the clock
register.

Backward clock adjustments, in which a clock is set to a value
it already registered in the past, can sometimes be easily detected
if the adjustment is large, by observing non-monotone timestamps.
In this section we tackle the harder problem of clock adjustments
(both forward and backward) that are not apparent by trivial inspec-
tion of the timestamp sequences.

5.1 Detecting adjustments graphically

Suppose we have a trace pair between s and r. One simple way
to detect whether a clock adjustment occurred during the trace is
to plot both the OTTs for the packets from s to r and those in the
reverse direction. (Packets that are dropped by the network have no
OTT associated with them and are omitted from the plot.)

Figure 4 shows such a plot made for a connection from sdsc
to usc in N7. The solid black squares indicate the OTT for data
packets sent from the sender to the receiver, and the hollow squares
reflect the OTTs of the acknowledgement packets sent from the
receiver to the sender.

The figure shows a striking level-shift occurring for the sender's
OTTs around time T = 0.7 seconds, a fall of about 10 mscc. Fur-
thermore, the OTTs in the opposite direction show an cqual and
opposite change. This equal and opposite change is a crucial as-
pect of the plot, as it is the signature of a clock adjustment. If the
shift were due to a change in network path properties (for exam-
ple, a route change), then in general we would expect that either
(1) it would occur in only one direction, or (2) if it occurred in both
directions due to a coupled effect, it would have the same sign.

For a networking change to result in an equal-but-opposite level
shift, some resource needs to have been shifted between the two
directions of the network path, and furthermore the resource needs

to affect the transit times of the small acks equally with those of

the large data packets. It is difficuit to see what sort of networking

14

<

~r
g
2 8
=
&
a8 &
P
g = = = w oo 0 oo oo g oa
0 (=)
[—
| e
o]

o an 0 0 mam " = - [J -
<@ 1,
0.0 0.5 1.0 1.5 2.0
Time (sec)
Figure 5: Same measurements after de-noising pair-plot

change could do this. The change, however, makes perfect sense
if, at around time T = 0.7 seconds, sdsc's clock was set ahead
10 msec, or usc's clock was set back 10 msec. In either of these
cases, the difference in the timestamps for packets sent from sdsc
to usc will decrease by 10 msec, and similarly those in the opposite
direction will increase by 10 msec. This is exactly the behavior
shown in the plot.

5.2 Removing noise from OTT measurements

Two other points concerning Figure 4 merit attention. The first is
the presence of a few unusually small sender packet OTTs, one
of about 7 msec around T" = 0, and the other of around —3 msec
around T' = 2.3. Both of these reflect sender packets that did not
carry any data (the SYN and FIN connection management packets).
These travel through the network more quickly than full-sized data
packets. Hence our techniques need to be careful to not weigh their
OTT values the same as those for full-sized packets.

The second important point shown in the plot is the large varia-
tion in OTTs, both for the full-sized sender packets and the smaller
receiver packets. For example, note that the OTTs of both some
ol the acks before the adjustment, and some the data packets af-
ter the adjustment, are larger than many of the OTTs on the other
side of the adjustment. This variation is the first suggestion that
we will require robust algorithms in order to not be fooled by noise
when analyzing OTT data. The eye quite readily picks out the twin
level shifts in this plot, but doing so algorithmically requires care
to screen out noise such as these large OTT values.

OTTs often exhibit considerable network-induced noise in terms
of deviation of a given OTT from the value expected if the network
were unloaded. The noise, however, has one crucial property that
often makes it tractable: barring a significant change in the net-
work path (such as a route change), the noise always takes the form
of an additive, positive increase. This means that, given a set of
OTT measurements, we can often hope to find those with very lit-
tle network-induced noise by looking at the smallest values.

We will use this property of OTT noise below when develop-
ing methods to detect clock adjustments and skew. For these latter,
what is interesting are frends in how the OTT values (with noise re-
moved) change over the course of the connection. Thus, we cannot
simply de-noise the OTT values by selecting the global minimum,
or we will obliterate the trend. Instead we divide the series of OTT
values up into intervals and de-noise each interval by selecting the
minimum value observed during the interval. In [Pa98] we discuss
details of how we choose which intervals to use.

We will refer to a measured series of OTT values as z, and
denote the de-noised series derived trom z; as &;. For each &, the
index ¢ corresponds to the same index as where in the interval we
found the (first) minimai value of «.

Figure 5 shows the results of applying this de-noising method
to the measurements plotted in Figure 4.

5.3 An algorithm for detecting adjustments

We now turn to attempting to detect adjustments algorithmically
(though we will be forced to also introduce heuristics, for reasons
discussed below). The central notion we will use is that of the sig-
nature of the OTTs in the two directions showing equal but oppositc
level shifts.

Identifying pivots. The foundation of our approach lies in
identifying pivots: points in time before which the OTTs all lie
predominantly above or below all the OTTs after the given point
in time. In Figure 4, the pivot we aim to identify occurs around
T = 0.7 sec. We now develop a heuristic for identitying pivots in
the series of OTTs for packets sent in a single direction (from s to
r or vice versa). We then will analyze the pivots identified in both
directions to test for a clock adjustment.

Let #, be a series of de-noised OTT values occurring at times ¢,
ordered by the time index t. Let &, be the same series numbered
fromi = 1...n, where t; is the :th measurement time. We define
a pivot partition of &, as a partition of Z, into two disjoint sets,)
and &, for which the maximum of one set is less than the minimum
of the other. Without loss of generality, let Z} be the “larger” of the
two sels, i.¢., its minimum is larger than the maximum of Z}.

We further require that the time intervals spanned by #; and
& are disjoint, namely either the largest ¢ in &;, is less than the

smallest j in £, or vice versa.

We term the pivot partition positive if the measurements &; oc-
curred after those in &}, and negative otherwise.

Geometrically, this definition corresponds to being able to draw
horizontal and vertical lines on a plot like that in Figure 5 such that
either all of the points lie in the first and third quadrants formed by
the lines (if positive), or in the second and fourth quadrants (nega-
tive).

1t is important to note that a given series & may have morc than
one pivot partition. For example, if &, is strictly decreasing, thcn
every value of £ gives rise to a pivot partition.

We proceed as follows. First, we determine whether to search
for a positive or negative pivot by inspecting whether &, is less

than or greater than ., . From here on, we assume without loss of

generality that we wish to detect a positive pivot, such as the one
exhibited by the receiver packets (hollow squares) in Figure 4.

We search through the measurements to find the point k where
min(Ee, ,,, &ty,,) — max(de, _,, L,) is largest. Conceptually,
we are looking for the intervals that have the greatest difference
between them in the same direction as the pivot; we spread the
differencing over the additional intervals on either side to combat
the problem of the intervals right at the pivot misleading us duc to
noise.

k is now the candidate pivot (actually, the potential pivot occurs
at a point in time between measurement k& and measurement k +
1). We then inspect the points < k to find xi, the largest point
before the candidate pivot, and likewise those > k to find xx41.
the smallest after the candidate. If xx is less than xx41. then we
conclude that [k, k& + 1] does indeed straddle a pivot; otherwise, we
conclude they do not.

If we find a pivot partition, then we define its magnitude M
as the absolute value of the difference between the median of the
points after the pivot with the median of those before. We also
associate a pivot width, W = ;1 — 5.

Identifying adjustment signatures. We now turn to identify-
ing the signature of a clock adjustment for the clocks of two hosts,
s and r. The method we developed is not entirely satisfying, as it
uses some heuristics in order to accommodate residual noisc in the
OTT measurements, while attempting to not mistake genuine net-
working effects for a clock adjustment. However, the method ap-
pears to work well in practice (see § 5.4). We note, though, that the
method assumes that clock adjustments are relatively rare cvents:

15

rarc enough that our traces are likely to exhibit at most one adjust-
ment, and that the likelihood of both of the clocks we are compar-
ing exhibiting an adjustment during the trace is negligible. This
also appears to generally hold (again, see § 5.4).

Suppose we have two sets of de-noised OTT measurements, 3¢
and 7. If either of ; or ¥ does not exhibit a pivot, or if the pivots
are both positive or negative, then we conclude there was not any
clock adjustment. We next must check whether the pivots overlap.
Due to limited space, we defer discussion of doing so to [Pa98].

If the pivots do not overlap, then we conclude there was no
adjustment. 1f they do, we then next look at the magnitudes of
the pivots. If either magnitude is less than the larger of twice the
joint clock resolution R, (§ 3), or 2 msec (an arbitrary value to
weed out fairly insignificant adjustments), then we declare the pivot
“insignificant” and ignore it.

Finally, we check whether M, and M., the magnitudes of the
two pivots. are within a factor of two of each other. If not, then
we term the pivot a “disparity pivot,” meaning that it may be due
to unusual networking dynamics (§ 5.0). If the two agree within a
factor of two (which experience has shown is a good cut-off point),
then we conclude that the trace pair exhibits a clock adjustment
with a magnitude of about e

5.4 Checking the algorithm's accuracy

We now turn to the important question of How do we know the
algorithm actually works? Since we are restricted to post-facto
analysis, we need to develop other means for detecting likely clock
adjustments, and use them to gauge the algorithm's accuracy.

We can divide our accuracy concerns into two types: false pos-
itives, in which the algorithm claims a clock adjustment occurred
when in fact one did not, and false negatives, in which it fails to
detect that an adjustment actually did occur.

Since the algorithm only flags adjustments in a relatively small
number of traces (§ 5.5), we can deal with the possiblity of false
positives by manually inspecting each of these using a plot like in
Figure 4 to determine whether we find compelling evidence that an
adjustment really did occur. The process of doing so led to some
of the finer points of the algorithm, such as rejecting “disparity
pivots.” After these additions, we find virtually no apparent false
positives (though who knows how many we are missing because
their presence is not visually compelling).

The possiblity of false negatives is more difficult to address.
Since we have too many traces to inspect by hand (though we did
apply random sampling to hand-inspect a large number of traces),
we developed two other heuristics for identifying clock adjustments.
The first is to compute the minimum round-trip time (RTT) that
could be derived from differences between the timestamps for any
pair ol packets between the two hosts. If this was significantly
lower than the minimum observed round-trip time (using a single
clock), and especially if it was ever non-positive, then tcpanaly
flags the trace as requiring manual inspection. The second is to
compute the cross-correlation between the denoised OTT times in
the two directions, and then to flag traces with strong negative cor-
relations. The use of these heuristics also led to refinements in the
detection algorithm, such as spreading out the pivot differencing
over multiple intervals when searching for candidate pivots, and al-
lowing “slop” (sce [Pa98] for details). After these additions, we
find very few false negatives (see § 5.6 for examples).

5.5 Resuits of checking for adjustments

tepanaly uses the method given in § 5.3 to check each trace pair
it analyzes for clock adjustments. Doing so, we found 36 trace
pairs in A7 out of 2,335 (1.5%) that exhibited apparent clock ad-
justments, and 128 out of 15,492 in Ny (0.8%). While these pro-

- R
[H .

s 5 - “

E - . - -

Bgl| - - . ’

8 9 - - (=]

F o - e e Py weead MP’Q

; 3 -

" <,

o 2 on # “~
= o @ P oo W T g0 0P g aone -
B8 1 r T T : T ;
o 10 20 30 40 50 60
Time (sec)

Figure 6: Clock adjustment via temporary skew

portions are fairly low, they are high enough to argue that a large-
scale measurement study for which accurate timestamps are impor-
tant needs to take into account the possibility of clock adjustments.
Furthermore, the adjustments are only detectable due to the use of
a pair of clocks. If a study uses timestamps from only onc measure-
ment endpoint, then checking the timestamps for clock adjustments
becomes much more difficult.

The median adjustments were on the order of 10-20 msec, the
mean around 100 msec, and the maxima close to 1 sec. These
magnitudes are unfortunately small enough to sometimes not be
glaringly obvious, but large enough to be comparable to wide-area
packet transit times, so they can introduce quite large analysis cr-
rors if undetected.

While clock adjustments are usually abrupt, this is not always
the case. The adjustment-detection method found some clock ad-
justments that occurred due to a short period of altered clock fre-
quency (i.e., temporary skew). Figure 6 shows a striking example.
Here, around time T = 40 sec the sender's clock began running
more quickly than the receiver's, leading to lower sender OTTs and
higher receiver OTTs. Less than 20 seconds later, the frequencics
were again equal, but the relative offsets between the clocks shifted
by nearly 1 sec in the process.

5.6 Problems with detection method

The method given in § 5.3 appears to work well in practice, at least
in terms of the checking discussed above. However, it docs some-
times fail 10 detect clock adjustments. In this section we look at
some cases where we identified this happening.

Failure to detect adjustment via skew. In Figure 6 we illus-
trated how sometimes a clock adjustment can occur due to tempo-
rary skew. However, in such cases there arc multiple pivots in each
direction (any location along the skew line is a pivot), and some-
times, due to noise, the two pivots located by the method do not
overlap, and the possibility of an adjustment is rejected. In general.
this sort of failure will only occur with adjustments using tempo-
rary skew; abrupt adjustments have sharply defined pivots. (This
example was detected due to a non-positive minimum RTT, as dis-
cussed in § 5.4.)

Excessive network-induced delay. Figure 7 shows a case where
the reverse path exhibits a clear level shift around T = 70 scc, with
a magnitude of about 250 msec, but the corresponding shift on the
forward path is less clear because it is accompanied by an increase
in networking delays, too. In that direction, tcpanaly assesses the
magnitude of the shift as about 730 msec. Since this is more than
twice the magnitude in the other direction, tcpanaly rejects the
possibility of a clock adjustment.

tcpanaly flags a trace pair like this as having a “disparity
pivot,” namely common pivots that have too great a difference in
their magnitudes to be considered a clock adjustment. Disparity

16

2000

+ ~ "
L 1= -
o~ = = T a]
§§ - s I' « " .-f- -
e it .. g
- ’ - + T iy "
T o L "f_t " s B] "
R BT L i
R }] ' :
$ l-
S e | L
© §’ émﬂ o 2 o
- g 3 =]
" . @ T de o & o o o @
T T T T T v
o] 50 100 150 200 250
Time (sec)

Figure 7: Likely clock adjustment masked by network delays

-
=3 so @ - - - millgn
w -

= -

2 8 | 5 % s

E = -

= . %!

S8 o =]

] &

Z | o l%

2 O

é’ L]

S 4 °
g i 1o,
= v - ~ iy canclieo
S A= : . T) T T
' o] 20 40 60 80 100 120

Time (sec)

Figure 8: Double clock adjustment via temporary skew

pivots are quite rare (only 61 in ;). We inspected each one and
found that only the one shown above was a plausible clock adjust-
ment. The rest appear simply due to unfortuitous patterns of noise.

Multiple adjustments. The development of the clock adjust-
ment detection algorithm presumes that there is a single clock ad-
justment to be detected. Sometimes a trace pair suffers from more
than one adjustment, and the algorithm either only detects one of
them, or fails to detect any of them. The latter is particularly likely
if there are two adjustments in opposite directions. Figure 8 shows
a striking example of a trace pair with two adjustments, both ef-
fected using temporary skew. (This example was likewise detected
due 1o a non-positive minimum RTT; the strong negative correla-
tion test also detects it.)

Clock “hiccups.” Related to the mulitiple adjustments dis-
cussed above are clock “hiccups,” in which one of the clocks in a
trace pair momentarily either ceases to advance or advances very
quickly. Figure 9 shows an example, occurring at time T = 6 sec.
It is possible that this example is actually due to surprising network

8
" © Bog °
— 2 : o O
g 3 o8 Q@EES Ho B, EEE . EEDID o Bo o
2 o o 9°0 @ o o ‘:'Hﬁ a n-go
= 27 & o o -
= o 0 g o
a8 8 _“ .’ [}
= v -] It = B
o) ull =
2 @ l J L) -
s S l}.'ﬂ-.wl-ﬁ !ID 'li -
5 -8 h\ | -
Q o - - l E. |
oo
- -
" T T T
o] 2 4 6 8

Time (sec)

Figure 9: Clock adjustment “hiccup”

1
— »
(4] |
= = . H
£ &1, 3 oni i
-
= U . o e L0
8 o " - . rg -, A"
> & “ f 8 . * B ¥ -g. T
g u - gL ‘_!
é ‘- - 5 r ':4 L) %3
S g A « g ° . @? Hu
'_‘ - o'H ﬁg
[
[0} 20 40 60 80 100 120

Time (sec)

Figure 10: An OTT pair plot showing relativc clock skew

dynamics, as the 4 acks with lowered OTTs come right after the
only packet reordering event in the trace. (While a clock glitch can
change the value of OTTs, it cannot reorder packets on the wire!
But sce {Pa97b] for measurement errors that can indeed rcorder
packets.) It is difficult to see what networking mechanism could
lead to the data packets in the opposite direction simultancously
experiencing increased delay.

6 Assessing relative clock skew

Errors in relative clock skew, which often introduce inaccuracies
on the order of perhaps a few seconds a day, might seem trivial
and perhaps not worth the etfort of characterizing. For purposes of
keeping fairly good absolute time, this is true, but for purposes of
assessing network dynamics, it is not.

To illustrate why skew is a crucial concern, consider evaluating
OTTSs between two hosts s and r, for which »'s clock runs 0.01%
faster than s's. If we are computing OTTS between s and 7, then
over the course of only 10 minutes r's clock will gain 60 msec over
s's clock. [If we assume that variations in OTT reflect queueing
delays in the network, then this minor clock drift could lead to a
large false interpretation of growing congestion. For example, if
s sends 512 byte packets to r and the bandwidth of the path be-
tween them is Tl (1.544 Mbps), then a true 60 msec increase in
delay reflects the equivalent of an additional 23 packets' worth of
queueing. Thus, quite “minor” skew differences between the two
endpoint clocks can lead to quite large, erroneous assessments ol
queueing delay.

The first issue for detecting skew is to identify a skew “‘sig-
nature” similar to that for clock adjustments shown in Figurc 4.
Figure 10 shows an OTT pair plot that exhibits a clear skew sig-
nature: the OTTs in onc direction show a stecady overall increasc,
while those in the opposite direction show a steady decrease. Both
changes have a magnitude of about 120 msec over the 2 minute
course of the connection, consistent with the receiver's clock ad-
vancing about 0.1% faster than the sender's clock. It is difficult
to see what sort of network dynamics could introduce such a true
combined inflation and deflation of OTTs over a two-minute pe-
riod, so we conclude that the OTT pair plot shows strong cvidence
of relative clock skew.

We now turn to developing robust algorithms for detecting and
removing relative clock skew.

6.1 Defining canonical sender/receiver skew

We begin by defining exactly what quantity it is that we wish o
estimate. First, we assume that the skew trends we identily will be
linear. While we might possibly encounter non-linear skew, we did
not find any clear examples of such in A/} or N. For linear skew,
we can summarize the skew using a single value that reflects the
excess rate at which one clock advances compared to the other.

17

To avoid ambiguity (in terms of which clock we are comparing
to which), we will always quantify how C,, the receiver's clock,
advances with respect to Cs. Suppose C, runs a factor 7 faster
than C;, by which we mean that, if Cs reports that an interval AT
has clapsed, then C'. will have reported the same interval as having
length nAT.

The algorithms we develop are based on how OTT measure-
ments expand or shrink with respect to time. It is important to rec-
ognize that the phrase “with respect to time” does not mean “with
respect to true time,” since we have no way of measuring true time.
Instead, it means “with respect to the clock at the packet origina-
tor.”

When discussing a linear trend in the measured OTTs of the
packets sent by host s, we will quantify the trend in terms of G,
the growth in the OTTs of the packets sent by s. Suppose packet
p1 is sent at time T), according to Cs, and arrives at time T,,.l,
according to C,.. Likewise, suppose packet p2 is sent at T2 and
arrives at T, Supposc further that the transit times of the packets
are identical (no network-induced noise), so the only variations in
their OTTs are due to clock skew.

The measured OTTs for the two packets are:

¢ =T} — T}, o =T T2

As G, quantifics the linear growth in measured OTTs over time:
2 51
(/)2:(1)1 +G9(T5 _75)

[n the absence of relative skew, G5 = G, = 0.0, where G, quan-
tifies the growth in OTTs of packets sent by r. If C, runs faster
than C,, then the packets sent by s will exhibit increasing OTTs
and those sent by r will exhibit decreasing OTTs, so we will have
G, > 0and G, < 0. Naturally. the reverse holds if C, runs slower
than C.

It can be shown that:

G: = n-1 (H
G, = l—1 (2)

1

1
S — 3
G, +1 =

Forn =14 €, where |¢| < 1, we have:
Gs = ¢, G, =— o~
1+e

Because clock skews are often only a few parts per thousand or
ten thousand, we are usually in this regime (but see § 6.6 below).
Consequently, an casy inaccuracy to introduce is to assume that:

Gs = _Gr7

(i.c., the slopes are equal but opposite), since this often appears to
be the case when inspecting OTT pair plots. To ensure full accu-
racy. we instead take care to always use Eqns 1 and 2 to express
relative clock skew in terms of), or Eqn 3 to translate G, to G,.
We will refer to values of (G5 and G, that are consistent with re-
spect to Egn 3 as “equivalent but opposite trends.”

6.2 Difficulties with noise

One particular problem with testing for clock skew is that, due to
queucing fluctuations, one direction of a path can have such highly
variable OTTs that these completely mask the smaller-scale trend
ol OTT increase or decrease due to skew, even after de-noising.
Figure 11 shows an example, in which congestion on the forward

One-way Delay (msec)
1000 1500 2000
asgy
£
X
",
[]
ra
[]
.J"f'
. 114
Wy,
l. »
a
ARRER
1 s8gy
£
]

bl 1]

500

T T T T

10 20 30

[=]

Time (sec)

Figure 11: Clock skew obscured by network delays

8
=} o
Fg .
@ B =] o
£ i, © ®
Eoy R o o - ° o
8 8 1 e %mw
g T ey
» v | - D@
=t ~ - o
o
o |
™~ T T T T
o} 10 20 30
Time (sec)

Figure 12: Enlargement of reverse path

path completely obscures the relative clock skew, which is apparent
from the enlargement of the return path shown in Figure 12. Such
noise most often obscures the forward path (presumably due to ex-
tra queueing induced by the data packets), but it can also obscurc
the reverse path. Thus, we cannot always rely on the signature of
dual equivalent-but-opposite OTT trends; sometimes we must sct-
tle instead for simply a compelling trend in one direction.

Furthermore, network-induced noise also scuttles what might
seem the most straightforward approach to detecting skew, namely
fitting a line to the de-noised OTT measurements, §; and 7, (§ 5.2).
Even using de-noised measurements, least-squares fitting fails to
provide solid skew detection, because residual noise in §; and 7
makes it too difficult to reliably distinguish between a skewing
trend and coincidental opposite queueing trends. All it takes is one
period of elevated queueing at either end of a connection to throw
oft the fit.

Unfortunately, the same also occurs using robust fitting tech-
niques, such as estimating the line's slope as the median of all of
the pairwise slopes between the individual de-noised measurements
[HMT83]. The difficulty lies in both false positives and falsc neg-
atives generated due to queueing fluctuations. Clearly, we need an
even more robust technique.

6.3 A test based on cumulative minima

Eventually we recognized that the most salient feature of relative
clock skew is not simply the overall trend (slope) of the OTT mea-
surements, but the fact that the smallest such measurements contin-
ually increase or decrease. This observation suggests the following
statistical test, the strength of which is that it is nearly immunc to
transient increases in OTT measurements due to queucing buildups.

Suppose we have n observations X;,, 1 < i < n, where ¢; is
the time of the observation and X, is the value of the observation.
We assume that the £;'s are monotone increasing, and that the X7,
are distinct. Further, we assume without loss of generality that we
wish to test for a negative trend in X;,. We discuss applying the

18

1.0

K
06 08

PIM(n) >=

00 02 04

Figure 13: Distribution of R{n, k) forn = 15

same test for a positive trend in § 6.4 below.
Consider the indicator:

I"j = {(1)’

That is, Iy is 1 if an represents a new “cumulative minimum” if
we inspect Xy, from 1 up to j (but not all the way up to n), and 0
if therc is an earlier X, that is less than X, .

It the X, are independent, then we immediately have:

PlI;, = 1] = 1/j.

if Xt]. < min;<j Xy, orif j =1, and
otherwise.

Consider now the function: M; = Y7 _ I, which is the
number of cumulative minima seen as we inspect X;, from the
first value up to the jth value. The key observation we make is that,
in the absence of a negative trend, the distribution of M will tend
1o be close to that for independent X, ; that is, we will find a few
cumulative minima but not a great number; while, in the presence
of a ncgative trend, we should find many cumulative minima, since
the X, tend to get smaller and smaller.

Suppose we find M, = k, that is, the X, exhibit k cumulative
minima. We wish to compute the probability that we would have
observed this many or more minima, given the independence as-
sumption. If we find the probability sufficiently low, we will reject
the null hypothesis that the X, are independent. In its place we
will accept the tentative hypothesis (which we will further test in
§ 6.5) that the X, exhibit a negative trend.

Let R(n, k) = P[M, > k]. Given 0 < k < n, we can
compute R(n, k) recursively, as follows:

1, itk =0,
1nl, ifk = n, and
Rk Dt(n—1DRM=1,K) itk <« p

n

R(n, k) = @

The first case is the degenerate one that grounds the recursive defi-
nition: the probability that there are at least O cumulative minima is
always 1. The second case corresponds to every single X¢; being
a cumulative minimum. This only occurs if the X, 's are sorted in
descending order, which, if they are independent, has probability
1/nl.

The last case corresponds to conditioning on whether X, is a
cumulative minimum or not. For independent Xy, it will be a cu-
mulative minimum with probability 1/n, and not with probability
(n—1)/n.

Figure 13 shows the distribution of R(n, k) for n = 15. The
key feature of the distribution that makes it a powerful test for a
negative trend is the rapid fall-off in probability above a certain
point, in this case around k = 8. Because if the X,'s do indeed
have a negative trend we should find k quite close to n, this means
we can readily distinguish between the case of a negative trend and
that of no trend, without requiring that ail of the X, be increas-
ingly negative. Thus, we can accommodate considerable noise.

6.4 Applying the test to a positive trend

The test developed in § 6.3 for detecting a negative trend can also
be applicd to detecting a positive trend, with onc subtlety. At first
blush one might think that, to do so, one simply uscs maxima in lieu
of minima. This works in principle, but fails when applied to OTT
sequences, because of the positive additive nature of OTT noise
(§ 5.2). That is, the maxima will be often dominated by the noisicst
OTT values, rather than by OTT values that slowly rise due to skew,
so the noise will obscure any positive trend due to clock skew. This
remains a problem even after de-noising, since all it takes is a singlc
period of elevated OTT values, long enough to span an entire de-
noising interval, to pollute the de-noised values with what will in
some cases be a global maximum. When searching for a negative
trend, such an interval will, on the other hand, simply not include
a cumulative minimum; but it will not prevent the test from finding
other minima due to clock skew.

There is a simple fix for this problem, though: we apply the
cumulative minima test to ¥y, = Xy, _,,,, which is simply X,
viewed in reverse. The reversal converts a positive trend in X,
to a negative trend in Y}, , which the cumulative minima algorithm
then readily detects.

6.5

With the cumulative minima test we finally have a robust algorithm
for detecting trends. These trends, however, might not be duc to
clock skew but to networking effects, so we need to develop further
heuristic checks to correctly detect linear skew.

Suppose we have two sequences of de-noised OTT measure-
ments, §, and 7, corresponding as usual to the full-sized data pack-
ets sent from the connection sender to the receiver, and the acks sent
back from the receiver to the data sender. For each sequence, we
first determine whether it is a skew candidate as follows.

Let u; denote the given sequence. Let Ry (n, k) be the proba-
bility that the sequence u; matches the null hypothesis of no trend
(independence) given by Eqn 4. We consider u; a skew candidatc
if either:

ldentifying skew trends

I. Ru(n,k) < 107% and wu. is either 7, or uy is 3¢ and its
trend is negative. This latter test is because queueing buildup
due to the data packets sent along the forward path can often
produce a strong positive trend; or

2. Ru(n,k) < 107% and w; is tightly clustered around the
“trend line,” which is computed using a robust linear fit (pcer
the algorithm discussed above) to just the (denoised) timings
corresponding to the cumulative minima or maxima.

‘The goal here is to allow for a skew candidate if the u; points
fit quite closely to a (linear) trend, even though their cumula-
tive minima probability is not so small. This can happen. for
cxample, if we do not have a large number of points in w;.
Note that the limit of 10~ precludes assuming a skew candi-
date if there are fewer than 7 points, since 1/6! ~ 1.4 - 107"
(but see below).

It remains to define “tightly clustered.” To do so, we com-
pute the inter-quartile range (75th percentile minus 25th per-
centile) of the distance between the u, and the trend linc. If it
is less than or equal to the larger of the joint clock resolution,
R,,», or 1 msec, then a large number ol the de-noised OTTs
lie very closely to a pure linear trend.

We next determine whether either 5, or #; is compelling cnough
by itself to accept as evidence of a skew trend; or if the pair form a
Joint skew candidate, to be investigated further; or if there is insul-
ficient evidence for a skew trend. To do so, we first consider which
of them is individually a skew candidate. as follows:

19

1. If neither is a candidate, then we check to see whether
max(Rs(n, k), Rv(n, k)) < 1077 If so, then the joint
probability that both have no trend (or, more precisely, are
fully independent) is < 10™*, which we consider sufficiently
low to consider them as joint skew candidates and proceed as
discussed below. If either probability exceeds 1072, then we
reject the trace pair as a candidate for exhibiting a skew trend.

2. If 7¢ is a skew candidate but §; is not, then we accept 7 as
reflecting clock skew quantified using the corresponding G-
We do so because sometimes we have no hope of detecting
a skew trend in $; due to queueing buildup, as illustrated in
Figure 11 and Figure 12.

3. If & is a skew candidate but #; is not, then we check the
direction of §,'s trend. If it is negative, then this goes against
the networking tendency for a positive trend induced by the
qucueing of the data packets along the forward path, and we
accept §; as reflecting clock skew quantified using Gs.

If the trend is positive, we must proceed carefully to screen
out a false skew trend due to queueing. See [Pa98] for details.

4. If both §; and 7, are skew candidates, then we consider them
together a joint skew candidate.

If the above procedure yields a joint skew candidate, we then
evaluate the candidate as follows:

1. If both candidates have the same trend direction, then we
reject the possibility of a skew trend.

2. If not, then we translate the first candidate's skew quantifica-
tion into terms of the second candidate using Egn 3. Let G
and G, be the corresponding skew quantifications. If

|G’1 — Gzl > G;—t_G_Z’

2
that is, the difference between the two exceeds their average,
then we reject the pair as having too much variation in their
slopes for them to be trustworthy indicators of skew. Other-
wise, we accept the pair as indicative of a skew quantified as
G = gl

6.6

tepanaly uses the method given in § 6.5 Lo check each trace pair it
analyzes for clock skew. As we did for detecting clock adjustments,
we gauged its accuracy by visually inspecting many of the skews
it found (lo detect false positives), and also (for false negatives)
by hand-inspecting randomly chosen traces, as well as those with
strong, negative cross-correlations in their OTTs or excessively low
minimum RTTs (per § 5.4). These last, as for clock adjustments,
often occur in the presence of signiticant clock skew. Making these
checks led to a number of the heuristics outlined above, and we now
find the algorithm appcars reliable, at least in terms of plausible
skew trends we can detect visually.

The method indicates that 295 trace pairs in A7 out of 2,335
(13%) exhibited clock skews, and 487 out of 15,492 did so in N2
(3%). These proportions are high enough to argue for considerable
caution when comparing timestamps {rom two different clocks.

In both Vi and N3, about threc-quarters of the skews were de-
tected on the basis of 7 alone, not particularly surprising since
often a skew trend in §; will be lost in the OTT variations due to
queueing induced by the data packets. (We could avoid this prob-
lem if we could choosc the particulars of our measurement traffic,
rather than analyzing TCP bulk transfer traftic.) The largest skew
in M} was a whopping n = 5.5, meaning that one clock ran more

Results of checking for skew

8 =
< Y
n}
9 o “ @
@
e 8 - @ il
E « a
a
& “a
@ 4
o ° Q’Q]
& il
z o Ebr@
v @
g 2 ’ \m‘m[
& - o)
o v - By
=) 2 D
8 ’ @
¥ b v o T —r /
-4 -2 (&) 2 4 6

Time (sec)

Figure 14: Example of extreme clock skew

than five times faster than the other! Figure 14 shows how skew
like this appears in an OTT pair plot. In the forward direction, the
connection's elapsed time was only 2 sec, but in the reverse direc-
tion it took 10 sec!

This example is more than just an amusing curiosity. {t oc-
curred not once but 43 times in N (see Figure 1). We note, how-
ever, that this clock (which corresponds to the austr site) was one
of the ones identified in § 4 as being highly synchronized with a
number of the other sites, indicating care was being taken to keep
accurate time with it (presumably using NTP). Thus, this clock's
behavior is a compelling argument that just because a clock is be-
lieved to be well-synchronized does not render it immune from ex-
treme error!

Aside from austr's clock, the next largest skew we observed
in N1 was p = 0.991, a frequency difference of about 0.9%. This
led to an OTT change of about 70 msec during an 8 sec connec-
tion. Allin all, after removing connections involving austr, in
the median skew had a magnitude of about 0.023%, and the mean
0.035%. These are small, but not negligible.

[n AV, the prevalence of trace pairs exhibiting skew was sig-
nificantly fower (3% versus 13%), perhaps due to the use among
the participating sites of newer hardware with morc reliable clocks.
After removing one site that either had a very broken clock or very
unusual network dynamics (we were unable to determine which;
perhaps it was both), the largest skews we observed were on the
order of 6%. Figure 15 shows an example. The pattern is quite
striking, and clearly could lead to grossly inaccurate conclusions
about network dynamics if undetected. Note that both sites in-
volved in this connection were among those identified as closely
synchronized in NV (§ 4), again emphasizing that clocks that are in
general well-synchronized can still exhibit very large errors.

After removing these connections, the median skew magnitude
of the remainder in N, is about 0.011%, and the mean around
0.016%. These are a factor of two smaller than those in N7, but
still not completely negligible for assessing queueing in longer-
lived connections.

6.7 Removing relative skew

As discussed in the previous section, a non-negligible proportion
of the trace pairs in our study suffer from relative clock skew. We
would like to remove this skew so we can then reliably include
those traces in subsequent analysis of network dynamics. Fortu-
nately, the skew almost always appears well-described as linear,
which means it is straight-forward to remove it.

To remove skew of magnitude 7, we simply modity all the time-
stamps t; generated by C, using:

t =t + Gt} - t), (5)

where G, is given by Egn 2 and ¢4, is the first timestamp generated
by C;.

20

a
[Um% - lll "
—_— O B
3 = W mm% -
73 -
£ e .
o -
E‘ IS n &
8 "8
@
e '" a
g I o
z e [T Ly a
o - .- DD
(@] » a
L | Ya
8 'y o
(}l -
T T T T T T Sa—
o] 2 4 2] 8 10
Time (sec)

Figure 15: Strong relative clock skew of 6%

Applying Eqn 5 does not necessarily rectify C,'s skew with
respect to true time. However, we can still make the two sets of
timestamps consistent, and eliminate artificial trends in the network
delays we compute, even if some absolute skew remains.

After tcpanaly removes relative skew, it re-analyzes the clock.
If it still detects relative skew, then either its initial assessment that
the trace pair had relative skew was wrong, or the skew was not lin-
ear. It flags this case separately, and also then refrains from any fur-
ther timing analysis. Thus, re-analysis provides a self-consistency
test for the soundness of our skew detection. This test failed less
than 2% of the time.

7 Clock synchronization vs. stability

We finish our study with an investigation into the question of whether
highly-synchronized clocks tend to be free of problems such as ad-
justments and skew (which we will term “stable”).

We might hope that highly-synchronized clocks would also be
stable, because freedom from such problems would tend to greatly
aid a clock in maintaining synchronization. On the other hand,
if good synchronization is maintained by frequently adjusting an
cerrant clock to match an external notion of accurate time, then such
clocks might be more likely to exhibit adjustments or skew, and
hence be less stable than other clocks.

The issue is an important onc because it is quite cheap to de-
termine whether a remote clock’s offset is close to that of a local
clock (by piggybacking timestamps when exchanging packets). If
relative accuracy is a good indicator that the remote clock is stable,
then we can quickly determine that we can rely on the soundness
of the timestamps generated by the remote clock, without having
to go through all the effort of the methods developed in this paper
for detecting adjustments and skew. Such a quick determination
could prove invaluable for a transport protocol that needs to decide
whether it can trust the timing feedback information being returned
{rom a remote peer.

Table 1 shows the relationship between relative clock accuracy
and the likelihood of observing a clock adjustment. We see that
closely synchronized clocks, i.e., those with a relative offset under
I sec, are only slightly less likely to exhibit a clock adjustment than
less closely synchronized clocks. Thus, relative clock accuracy is
not a good predictor of the absence of clock adjustments.

Table 2 shows the relationship between relative clock accuracy
and the likelihood of observing relative clock skew. For N7, clock
synchronization only provides an advantage if the clocks are highly
synchronized, with a relative offset under 100 msec and preferably
under 10 msec. For NV, however, synchronization of under 1 sec
provides a definite advantage in predicting a lower likelihood of
skew, though much better synchronization provides little additional
predictive power. For both A} and N2, not even very close syn-
chronization reduces the likclihood of encountering clock skew to

[Dataset | Relative offset | Likclihood of adjustment |

N, < 1 sec 1.4 %

N > 1 sec 1.6 %

N < 1 sec 0.75 %
Y > 1sec 0.95 % J

Table 1: Relationship between relative clock accuracy and clock

adjustments

[Dataset | Relative offset | Likelihood of skew

N < 0.01 sec 0.95%
M < 0.1 sec 5.6%
N < 1 sec 13 9%
M > 1sec 12 %
Ny < 0.001 sec 13 %
N < 0.01 sec 0.88 %
N3 < 0.1 sec 1.3 %
N, < 1sec 1.8 %
N, > 1 sec 53%

Table 2: Relationship between relative clock accuracy and clock
skew

a negligible level (i.e., appreciably lower than 1%).

We conclude that relative clock accuracy provides no bencfit in
assuring that clock adjustments will be unlikely, and some benefit
in assuring that clock skew is less likely, but not to such a degree
that we can ignore the possibility of clock skew when analyzing
more than a handful of measurements.

In addition, we conjecture that the closcly-synchronized hosts
in our study are most likely synchronized using NTP. If so, then
the use of NTP does not reduce the likelihood of clock adjustments
introducing systematic errors when measuring packet transit times,
and reduces but does not eliminate the likelihood of clock skew
introducing systematic errors. This finding does not mean that NTP
fails to keep good time. Rather, the timescales on which it docs so
significantly exceed those of our connections. NTP keeps good
time on large time scales precisely by altering clock behavior on
small time scales.

8 Summary

The problem of comparing timestamps between unsynchronized
clocks might at first appear relatively minor. But, as we devel-
oped in the introduction, it actually has significant impact on the
accuracy of wide-area network measurement. If we can compare
such timestamps reliably, then we can use “recciver-based” mca-
surement in order to directly measure the propertics along onc di-
rection of a network path, rather than unavoidably conflating these
properties with those along the reverse path, as happens with ““ccho-
based” measurement.

Unsynchronized clocks are subject to at least two types ol er-
rors: clock adjustments, in which one of the clocks rapidly changes
its current setting, and relative clock skew, in which one clock runs
faster than the other. If undetected, both of these can introduce
measurement artifacts that can masqucrade as changes in delay due
to genuine networking effects. In this paper we have undertaken to
develop robust algorithms for detecting both adjustments and rel-
ative skew, even in the presence of significant noise in the timing
measurements. While our algorithms require some heuristic tuning
to minimize inaccuracies in terms of false positives and lalse nega-

21

tives, with this tuning in place we find that they appear reliable, as
best as we can judge without a source of independent calibration.
In summary, prudent large-scale mecasurement and analysis of
packet timings should include algorithms such as these as self-
consistency checks to detect possible systematic crrors, even in the
presence ol synchronization via algorithms such as NTP, which we
find does not render clocks immune from crrors (§ 7). We further
arguc that cven pairs of clocks using a more direct external synchro-
nization source such as GPS should be subjected to such checks, as
a means of assuring that no timing errors have crept in between the
original, highly accurate time source, and the packet timestamps
ultimately produced by the inevitably imperfect computer clocks.

9 Acknowledgements

This work greatly benefited from discussions with Domenico Fer-

rari. Sally Floyd, Van Jacobson, Mike Luby, Greg Minshall, John
Rice, and the comments of the anonymous referees. My heartfelt
thanks.

References

IBo93] J-C. Bolot, “End-to-End Packel Delay and Loss Bebavior in the

Internet,” Proc. SIGCOMM '93, pp. 289-298, Sep. 1993.

[CCY6] R. Carter and M. Crovella, “Measuring Bottleneck Link Speed in
Packet-Switched Networks,” Performance Evaluation, Vol. 27-8,
Pp. 297-318, Oct. 1996,

[CPBY3] K. Claffy, G. Polyzos and H-W. Braun, *Measurement Consider-

attons for Assessing Unidirectional Latencies,” Internetworking:

Resewrch and Experience, 4 (3), pp. 121-132, Sep. 1993.
[HMT83] D. Hoaglin. F. Mosteller, and J. Tukey, Ed., "Understanding Ro-

bust and Exploratory Data Analysis.” John Wilcy & Sons, (983,

V. Jacobson. C. Leres, and S. McCanne, tcpdump, available via
anonymous ftp to ftp.ee.lbl.gov, Jun. 1989,

[JLM89}
[Jay7] V. Jacobson, “pathchar — a tool to infer characteristics
of Intemet paths,” ftp://ftp.ce.lbl.gov/pathchar/msri-talk.ps.gz,
Apr. 1997.

S. Keshav, “A Control-Theoretic Approach to Flow Control,”
Proc. SIGCOMM "91, pp. 3-15, Scp. 1991.

D. Mills, “Network Time Protocol (Version 3): Specification,
Implementation and Analysis.” RFC 1305, Network Information
Center, SR} International, Menlo Park, CA, Mar. 1992.

D. Mills, “Modelling and Analysis of Computer Network
Clocks,” Technical Report 92-5-2, Electrical Engineering Depart-
ment, University of Delaware, May 1992,

1Ke91]

[Mi92a)

IMi92b]

[Mi95] D. Mills, “Improved Algorithms for Synchronizing Computer
Network Clocks,” IEEE/ACM Transactions on Networking, 3(3),

Pp. 245-254, Jun. 1995.

[Mu94] A. Mukherjee, “On the Dynamics and Significance of Low Fre-
quency Components of Internet Load.” [nternetworking: Re-

search and Experience, Vol. 5, pp. 163-205, Dec. 1994,

V. Paxson, “End-to-End Routing Behavior in the Internet,” Proc.
SIGCOMM '96, pp. 25-38, Aug. 1996.

V. Paxson, “End-to-End Internet Packet Dynamics,” Proc. SIG-
COMM 97, Sep. 1997,

V. Paxson, “Automated Packet Trace Analysis of TCP Implemen-
tations,” Proc. SIGCOMM '97, Sep. 1997.

[Pa96)
[Pa97a)
{Pa97b}

[Pa98] V. Paxson, “On Calibrating Measurements of Packet Tran-

sit. Times.” LBNL-41535, ftp://ftp.ee.lbl.gov/papers/vp-clocks-
sigmetrics98.ps.gz, Mar. 1998,

