
On Calibrating Measurements of Packet Transit Times

Vern Paxson
Network Research Group

Lawrence Berkeley National Laboratory*
University of California, Berkeley

vern@ee.Ibl.gov

Abstract

We discuss the problem of detecting errors in measurements of the total delay expcri-

enced by packets transmitted through :I wide-ara network. We :ISUII~ that we lbwc

measurements of the transmission times of :I group of packets sent from an or&mating

host, A, and a correspondlog set of measurements of their aniwl times at their drstiw-

tion host, B, recorded by two separate clock.\. We aLo awmc that we have :L \imil:u

sries of mensurements of packets sent from B to A (as might occur when recording

:L TCP connection), hut we do not i~ssume that the clock at A is synchronized with tbc.

clock at R, nor that they run at the same frequency. We develop robust algoritbm~

for detrcling abrupt adjustments to either clock, and for estimating the relative shcw

between rhc clocka. By analyzing I large set of measurements of Internet TCP connc‘c-

tionh, we tind that both clock adjustments and rclatlve \kew are sufliciently common

that failing to detect them can lead to potenttally large errors wlwl analyzing pnckct

transit times. We further tind that synchronizing clocks using a network time protocol

such as NTP does not free them from such errors.

1 introduction

In this paper we tackle the problem of how to calibrate transit times
measured for packets traveling through a network. We assume that
WC have a series of pairs of timings. recording each packet’s dc-
parture time from its sender and arrival time at its receiver, but that
the clocks used at the sender and receiver to generate these time-
stamps are not necessarily accurate: they may not keep true time,
they may be subject to abrupt adjustments, and they tnay run at
different rates.

Calibrating transit times might at first blush appear to be a fairly
minor measurement problem, but in fact it is potentially central
to the accuracy of a number of wide-area network measurement
techniques. The timing structure of packets transmitted through
a network is very rich: by carefully analyzing this structure one
can infer fundamental network properties such as delay, bottleneck
link speed, available bandwidth, queueing levels, and even hop-by-
hop link speed [Ke9l, Bo93, Mu94, CC96, Pa97a. Ja97]. These
measurements are usually made using “echo” techniques, in which
packets sent to a given target result in the target returning replies

*A longer version of this paper is awlable IPaYXI ‘I% work wa\ ~upportcd by
the Director, Oftice of Energy Reacarcb, Oflice of Computation;d and Tecbnolo~y
Research. M;lthemotical. Information, and Computational Science\ Division ot tbc
United Statea Department of Energy under Contract No DE-ACO3-76Si3XJIYX

Permission to make digital or hard copier of all or pan of this work for
personal 01 classroom we is pranted without fee provided that
copies we not made or dirtributad for profit or commercisl sdvan-
We and that copies bear this notice and the full citation on the first page
To copy otherwise, to republish. to post on sawers or to
radiatribute to lists. requires prior rpecific permission and/or a fee.
SIGMETRICS ‘96 Madison. WI USA
Q 1996 ACM 0-69791~962~3/96/0006...55.00

back to the sender. The analysis is then made on the timing struc-
ture of the replies.

Echo-based techniques, however, suffer from a fundamental
problem: they unavoidably conflate properties of the network path
in the lhrward direction with the propertics of the reverse direc-
tion. Consequently, these measurements are subject to consider-
able inaccuracy. Furthermore, a large-scale study of lnternet rout-
ing found that paths through the Internet are often asymmetric,
meaning that the series of routers visited in the two directions of-
ten differ [Pa96]. Subsequent work discusses other asymmetries
(such as link speeds and queueing levels), and argues strongly for
“receiver-based” measurement, in which packet receivers cooper-
ate with packet senders in order to accurately measure network traf-
tic 1 Pa97a].

Accurate receiver-based measurement, however, depends on ac-
curate comparisons of timestamps produced by a clock at the packet
sender with those produced at the receiver. 11 is easy to assume
that to ensure accuracy we merely require synchronization between
these clocks; but, while a considerable body of work has addressed
the problem of synchronizing clocks to true time (see especially
the work of Mills [Mi92a, Mi92b, Mi95]), these algorithms main-
tain good time over time scales of hours to days. They do not as-
sure synchronization on the small time scales of individual network
connections (a point we develop in ii 7). Consequently, the problem
of calibrating the timestamps produced by pairs of network clocks
remains interesting and important.

If undetected, clock adjustments and rate mismatches can intro-
duce significant measurement errors. For example, if the sender’s
clock runs slower than the receiver’s clock, then the series of one-
way transit times (OTTs) that WC compute from their timestamps
will show a systematic increase across the measurement interval. It
is easy to mistake this increase for a genuine increase in network-
ing delays due to a gradual buildup of queues. Similarly, a clock
adjustment, if undetected. can lead to completely erroneous con-
clusions that the network suffered from sustained periods of high
delay.

To develop our algorithms we used the data WC gathered for
the Internet packet dynamics study mentioned above [Pa97a]. We
recorded two datasets, each consisting of traces of TCP transfers
conducted at random bctwecn a number sites around the Internet.
For each transfer, packet arrivals and departures were recorded at
both the sender and the receiver using the tcpdump utility [JLM89].
The clocks used at the different sites were not necessarily synchro-
nizcd.

We term the sender and receiver traces collectively as a “trace
pair.” Transfers entailed the sender transmitting IO0 KB of data to
the receiver. Because of the USC of TCP, this results in a stream of
large data packets flowing from the sender to the receiver, and a
smaller stream of acknowledgement (“a&‘) packets Rowing in the

11

other direction, all of which were recorded.
The first dataset, n/l, recorded at the end of 1994, consists of

2,335 tract pairs between 2.5 sites. The second, J%~J, recorded at the
end of 1995, consists of 15,492 trace pairs between 3 1 sites. (For
brevity, we do not list the sites here, but will use the same names
and font as in [Pa97a]-e.g., “austr”.)

We wrote a program, tcpanaly, for automating much of the
analysis of the trace pairs, and [Pa97b] discusses a number of packet
filter measurement errors detected by it. Part of the development of
tcpanaly included devising and implementing the clock calihra-
tion algorithms we discuss in this paper.

Limitations of the study. There are a number of important lim-
itations of our study that must be kept in mind. The first is that lk

data we had available for analysis had been previously recorded.
and did not include any clock information (such as whcthcr the
clocks were synchronized using N’TP, nor any logs of clock ad.just-

ments by the operating systems). Because we were confined to
post-facto analysis, we were unable to evalute the accuracy of our
algorithms in any absolute sense. Until the algorithms can bc eval-
uated in a controlled fashion, they can at best only be regarded as
promising but unproven.

The post-facto analysis also means that we could not design
our measurement traffic to best support the problem of calibrating
the packet timings. Instead, we had to deal with TCP bulk transfcl
traffic, which often introduces its own timing distortions along the
data transfer path by contributing to queueing. Consequently, we
must deal with noise issues that we could otherwise avoid.

Another limitation is that we found we needed to introduce a
number of heuristics into the algorithms. We believe for the most
part that doing so is unavoidable, because the goal of the heuristics
is to deal with noise induced on the packet transit timings by net-
work conditions, and there is no known method for removing such
noise.

Finally, one might argue that inexpensive, high precision tim-
ing synchronization devices, such as GPS units, obviate the need
for calibration techniques such as those we develop. However.
even though these units are now relatively cheap, it is not cleat
that we can yet presume their ubiquity, because: their cost remains
non-negligible; they cannot always be deployed due constraints on
antenna placement; and many sites might instead use NTP to syn-
chronize most of their machines to a few GPS-endowed machines.
We also argue in our summary that, even given a directly-attached
GPS unit, checking the clock readings ultimately derived from it
remains prudent.

We begin our discussion by defining in 5 2 basic terminology
for describing different clock attributes. In 6 3 we introduce “rcla-
live” counterparts of these terms, for discussing potential disagree-
ments between two network clocks. We next conduct an assessment
of relative clock accuracy (5 4), before turning to the development
of methods for detecting clock adjustments (9 5) and relative clock
skew (5 6).

We finish in 5 7 with a look at how well a clock’s synchronizn-
lion correlates with stable clock behavior (lack of adjustments and

of skew). We find that, unfortunately, a high degree of synchroniLa-
tion between two clocks does not necessarily mean that the clocks
are free of relative errors.

2 Basic clock terminology

In this section WC detine basic terminology for discussing the char-
acteristics of the clocks used in our study. The Network Time Pro-
tocol (NTP; [Mi92aJ) defines a nomenclature for discussing clock
characteristics, which we will use as appropriate. It is important
to note, however, that the main goal of NTP is to provide accurate
timekeeping over fairly long time scales, such as minutes to days.
while for our purposes we are concerned with much shorter-lcrm

accuracy, namely between the beginning of a network transfer and
its end. This difference in goals sometimes leads to different defi-
nitions of terminology, as discussed below.

Resolution. A clock’s vesolutiorz is the smallest unit by which
the clock’s time is updated (a “tick”). It gives a lower bound on
the clock’s uncertainty. Note that we define resolution relative to
the clock’s reported time and not to true time, so. for example. a
resolution of IO msec only means that the clock updates its notion
of time in 0.01 second increments. not that this is the true amount
of time hetwecn updates.

Due to limited space, we defer discussion of how we estimate a
clock’s resolution to [Pa98].

Offset. We define a clock’s o&t at a particular moment as the
dill&encc between the time reported by the clock and the “true”
time as defined by national standards. If the clock reports a time T,
and the true time is Tt, then the clock’s offset is T, - Tt.

Accuracy. We will refer to a clock as nccurata at a particular
moment if the clock’s offset is zero, and more generally a clock’s
accuracy is how close the absolute value of the offset is to zero. For
NTP, accuracy also includes a notion of the frequency of the clock;
for our purposes, we split out this notion into that of skew, because
we dcline accuracy in terms of a single moment in time rather than
over an inlcrval of time.

Skew. A clock’s s&w at a particular moment is the frequency
difference (first derivative of its offset with respect to true time)
between the clock and national standards

3 Terminology for comparing clocks

In this section we develop terminology for discussing differences
hetwcen two clocks producing timestamps. The definitions are, for
the most part, analogous to those in 5 2, except that, instead of
comparing a single clock against true time, we are comparing one
clock against another.

We tirst introduce the meta-notation of a subscript “s” denoting
time measured at the packet sender, and “T” denoting time al the
packet rewi\vr. Let C,5 and Cr refer to the clocks at the sender and
rcccivcr. with IZ, and R,, their respective resolutions.

We detine C,.‘s offset relative to C, at a particular true time T as
Yr - T,3, that is, the instantaneous difference between the readings
of CT and C, at time T. For convenience we will sometimes refer
to this as Cp’s relative offset at time T, with C, implicitly being the
clock to which C,. is compared. WC discuss assessing the relative
offset of one clock to another in 5 4.

Similarly, C?‘s relative skew is the first derivative of G’s rel-
ative offset with respect to true time. Since we do not assume an
independent means of measuring true time, we can only estimate
C,,‘s relative skew in terms of time as measured by either C, or

C,. See {i 6 for further discussion.
lf C,. is accurate relative to C,q (their relative offset is zero),

then we will rcl’er to the pair of clocks as “synchronized.”
For rc~solutiorz, what we cart about is not “relative resolution”

hutjoi/zl resolution, which we detinc as R,,, E R, + R,. This
definition rctlects the fact that, when comparing timestamps from
C, with those from C,., the corresponding uncertainties must be
LILA&/ to properly propagate the resulting total uncertainty.

4 Analysis of relative clock ofFset

In [PaOX] we discuss a simple method for estimating the relative
ollbct hetwecn two network clocks. The method is only accurate to
within one round-trip time (RTT). However, an important point is
that I’or analyzing network dynamics, estimating relative offset ac-
curatcly generally is /nor crucial. bccausc the dynamics mostly con-
cern tl(//i,rmccs in transit times rather than absolute transit times.

0 5 10 15

DEIYS

Figure 1: Evolution ofaus tr’s relative clock offset over the course

ofN,

For our purposes, we only need to do estimate relative offsets in or-
der to construct legible plots of the two-way flow of packets, and to
qualitatively investigate the relationship between large relative off-
set and other clock problems such as relative skew. Accordingly,
we are satisfied with the method developed in]Pa9X] even though
it is not especially accurate.

We evaluated the relative clock offsets in Nl and JV~ to see
what sort of variation they exhibited. Our goal is to identify groups
of closely-synchronized clocks, as we want to determine the dcgrce
to which these clocks are less plagued by inaccuracies than less
well-synchronized clocks (3 7). A single computation of AC,.,,,
does not tell anything about the absolute accuracy of either C,.
or C,, but we would expect that many computations of different
ACT,+ ‘s will reveal clusterings among the truly accurate clocks.
and a large spread among the inaccurate clocks.

Note that in the presence of relative skew, the relative clock
offset is not well-defined. However, if we tind a pair of clocks that
frequently enjoy a low relative offset, then it is plausible that they
do not generally suffer significant relative skew, as otherwise their
readings would tend to drift apart and they would not be able to
preserve their low relative offset.

We proceed by clustering host clocks based on the median 01
the magnitude of their relative clock offset, over all the transfers in
which they participated. We use the median offset in order to isolate
hosts that consistently had large relative offsets, instead of those
that only occasionally had large offsets, since the latter could bc
skewed by unfortunately-frequent pairing of a host with an accurate
clock together with a host with a poor clock. We use the median 01
the absolute value of the offset rather than the median of the offset
itself as a way of detecting clocks that often “swing” from being
too slow to too fast.

We tirst inspect the median magnitudes of each host’s rclativc
clock offset. For both datasets, the same clock emerges as a clear

outlier, being typically S-15 minutes different from the other clock.
We next remove the connections involving this outlicr and rccom-
pute the medians. repeating this process until WC converge on a
set of clocks that have small median offsets relative to one nnothcr.
For Nl, this process removes 8 clocks as outliers. After eliminating
these clocks, the remainder all have median offsets < 1.25 SK. We
consider this group of I7 clocks as close/~ .sy&r~~rzi,-~(1. We can

continue the process to find a core group of 5 hig/rL~ .s~nchrorri:rt/
clocks,. all with median offsets < 10 msec between one another.

For tiz, removing 7 outliers leaves a group of 24 closely syn-
chronized clocks, all with median offsets below 250 msec. Elim-
nating six more of these leaves a group of I8 clocks with median
offsets below 50 msec. We can further winnow the group down to
a tinal set of IO highly synchronized hosts. all of which have mc-
dian offsets between each other of less than IO msec. This gro~~p

includes hosts on both coasts of North America as well as two in
Europe, indicating synchronization well helow that of the propa-

Figure 2: Evolution of lbli’s relative clock offset over the course

Figure 3: Evolution of umont’s relative clock offset over the course
OfJvz

gation time between the hosts-very good, and around the accuracy
limit for NTP reported in [Mi92b].

We will make use of these different groups of closely-synchro-
nized and highly-synchronized hosts in 5 7 when we test whether
close synchronization tends to correlate with low relative clock
skew.

WC finish with a look at how a host’s relative offset evolves over
the course of an experimental run. The evolution is interesting be-
cause it provides a largc-scale look at how clock accuracy changes.
Our interest here is phenomenological-to develop an appreciation
for clock inaccuracies and an awareness of how they occur.

To assess offset evolution, for each host we constructed a plot
with the relative offsets (in seconds) computed for those connec-
tions for which it served as the data source on the y-axis, versus the
time of the connection (days since the beginning of the experiment)
on the z-axis. Positive values indicate the host’s clock was running
hchind the receiver’s clock, negative that is was running ahead.

Figure I shows such a plot for the austr tracing host’s clock
over the course of the Nl experimental run. Up until the 14th day,
it kept good time, hut after that point its clock came unglued and
ran very slowly, such that the clocks of the other hosts to which it
transferred data ran further and further ahead of it (hence, higher
and higher offsets). Surprisingly, this is one of the clocks identi-
fied above as Irighl~ s~&rronized! That assessment, however, was
based on /r&inn relative offset, which filters out the aberrant be-
havior. We look at this phenomenon further in fj 6.6.

Figure 2 shows the evolution of lbli's clock during n/2. While
overall the clock has a clear persistent skew, the skew is reversed
around day 8, perhaps in an effort to correct the clock’s inaccu-
racy (or perhaps just due to a temperature fluctuation). But the ef-
fort ends a few days later and the original skew returns. However,
around day 27 the clock’s relative offset jumps by over a minute,
rellecting a different sort of correction. (This host synchronizes its
clock upon rchoot.)

13

0.0 0.5 1.0 1.5 2.0

Time (SW)

Figure 4: OTT-pair plot illustrating a clock adjustment (sender
packets are tilled, receiver packets are hollow)

Figure 3 presents our last example of intcrcsting clock offset
evolution, for another $2 clock. What is striking here are the pres-
ence of offset “towers” that, over the course of hours, slowly ele-
vate the relative offset from nearly zero to several hundred millisec-
onds. Apparently what is happening is that the clock has a fairly
hefty intrinsic skew, but NTP synchronization is detecting this and
periodically resetting the clock as it strays too far.

5 Detecting clock adjustments

As shown quite strikingly in Figure 2, computer clocks arc somc-
times subject to abrupt adjustments in which the clock’s notion 01
the current time is changed, either gradually or instantaneously.
Gradual change is produced by artihcially altering the clock’s skew,
so that it slowly shifts its offset towards the target. Instantaneous
change is produced by simply loading a new value into the clock
register.

Backward clock adjustments, in which a clock is set to a value
it already registered in the past, can sometimes be easily detected
if the adjustment is large, by observing non-monotone timestamps.
In this section we tackle the harder problem of clock adjustments
(both forward and backward) that are not apparent by trivial inspec-
tion of the timestamp sequences.

5.1 Detecting adjustments graphically

Suppose we have a tract pair between s and r. One simple way
to detect whether a clock adjustment occurred during the tract is
to plot both the OTTs for the packets from Y to T and those in the
reverse direction. (Packets that are dropped by the network have no
OTT associated with them and are omitted from the plot.)

Figure 4 shows such a plot made for a connection from sdsc
to USC in n/l. The solid black squares indicate the OTT for data
packets sent from the sender to the receiver, and the hollow squares
reflect the OTTs of the acknowledgement packets sent from the
receiver to the sender.

The figure shows a striking level-shift occurring for the scndcr’s
OTTs around time T = 0.7 seconds, a fall of about 10 mscc. Fur-
thermore, the OTTs in the opposite direction show an equal and
opposife change. This equal and opposite change is a crucial as-
pect of the plot, as it is the signature of a clock adjustment. If the
shift were due to a change in network path properties (for exam-
ple, a route change), then in general we would expect that either
(1) it would occur in only one direction, or (2) if it occurred in both
directions due to a coupled effect, it would have the same sign.

For a networking change to result in an equal-but-opposite level
shift, some resource needs to have been shifted between the two
directions of the network path, and furthermore the rcsourcc needs
to affect the transit times of the small acks equally with those of
the large data packets. It is difticult to see what sort of networking

lomriu... I. I. .

0.0 0.5 1.0 1.5 2.0

Time (sex)

Figure 5: Same measurements after de-noising pair-plot

change could do this. The change, however, makes perfect sense
if, at around time T = 0.7 seconds, sdsc’s clock was set ahead
IO msec, or USC’S clock was set back IO msec. In either of these
cases, the difference in the timestamps for packets sent from sdsc
to USC will decrease by 10 msec, and similarly those in the opposite
direction will increase by 10 msec. This is exactly the behavior
shown in the plot.

5.2 Removing noise from OTT measurements

Two other points concerning Figure 4 merit attention. The first is
the presence of a few unusually small sender packet O’lTs, one
of about 7 msec around T = 0, and the other of around -3 msec
around T = 2.3. Both of these reflect sender packets that did not
carry any data (the SYN and FIN connection management packets).
These travel through the network more quickly than full-sized data
packets, Hence our techniques need to be careful to not weigh their
OTT values the same as those for full-sized packets.

The second important point shown in the plot is the large varia-
tion in OTTs, both for the full-sized sender packets and the smaller
receiver packets, For example, note that the O’lTs of both some
of the acks before the adjustment, and some the data packets af-
ter the adjustment, are larger than many of the O’lTs on the other
side of the adjustment. This variation is the first suggestion that
we will require robust algorithms in order to not be fooled by noise
when analyzing OTT data. The eye quite readily picks out the twin
level shifts in this plot, but doing so algorithmically requires care
to screen out noise such as these large OTT values.

OTTs often exhibit considerable network-induced noise in terms
of deviation of a given OTT from the value expected if the network
were unloaded. The noise, however, has one crucial property that
often makes it tractable: barring a significant change in the net-
work path (such as a route change), the noise always takes the form
of an additive, positive increase. This means that, given a set of
OTT measurements, we can often hope to find those with very lit-
tle network-induced noise by looking at the smallest values.

WC will use this property of OTT noise below when develop-
ing methods to detect clock adjustments and skew. For these latter,
what is interesting are trerzcls in how the OTT values (with noise re-
moved) change over the course of the connection. Thus, we cannot
simply de-noise the OTT values by selecting the global minimum,
or we will obliterate the trend. Instead we divide the series of OTT
values up into intervals and de-noise each interval by selecting the
minimum value observed during the interval. In [Pa981 we discuss
details of how WC choose which intervals to use.

We will refer to a measured series of OTT values as xt, and
denote the dc-noised series derived from xt as Zt. For each ?t, the
index t corresponds to the same index as where in the interval we
found the (first) minimal value of zf.

Figure 5 shows the results of applying this de-noising method
to the measurements plotted in Figure 4.

14

5.3 An algorithm for detecting adjustments

We now turn to attempting to detect adjustments algorithmically
(though we will be forced to also introduce heuristics, for reasons
discussed below). The central notion we will use is that of the .vig-
~znturt’ of the OTTs in the two directions showing equal but opposite
level shifts.

Identifying pivots. The foundation of our approach lies in
identifying pivots: points in time before which the OTTs all lie
predominantly above or below all the O’ITs after the given point
in time. In Figure 4, the pivot we aim to identify occurs around
T = 0.7 sec. We now develop a heuristic for identifying pivots in
the series of O’lTs for packets sent in a single direction (from s Lo
T or vice versa). We then will analyze the pivots identified in both
directions to test for a clock adjustment.

Let Pt be a series ofde-noised OTT values occurring at times t,
ordered by the time index t. Let fti be the same series numbered
from i = 1 1~. where t, is the ith measurement time. We define
a pivot partitio/z of it as a partition of Lt into two disjoint sets, II;{
and Zy, for which the maximum of one set is less than the minimum
of the other. Without loss of generality, let 5; be the “larger” of the
two sets, i.e., its minimum is larger than the maximum of :i:‘.

We further require that the time intervals spanned by li:; and
2;’ are disjoint, namely either the largest i in 5:; is less than the
smallest j in *:I, or vice versa.

We term the pivot partition positive if the measurements Z’, oc-
curred u&r those in ?:‘, and negative otherwise.

Geometrically, this definition corresponds to being able to draw
horizontal and vertical lines on a plot like that in Figure 5 such that
either all of the points lie in the first and third quadrants formed by
the lines (if positive), or in the second and fourth quadrants (nega-
tive).

It is important to note that a given series 2t may have more than
one pivot partition, For example, if Zt is strictly decreasing, then
every value oft gives rise to a pivot partition.

WC proceed as follows. First, we determine whcthcr to search
for a positive or negative pivot by inspecting whether ?tl is less
than or greater than 2,,, From here on, we assume without loss 01
generality that we wish to detect a positive pivot, such as the one
exhibited by the receiver packets (hollow squares) in Figure 4.

We search through the measurements to find the point Ic where
rnin(&,+, , Pt,+,) - max(it,-, , St,) is largest. Conceptually.
we are looking for the intervals that have the greatest difference
between them in the same direction as the pivot; we spread the
differencing over the additional intervals on either side to combat
the problem of the intervals right at the pivot misleading us due to
noise.

Ic is now the candidate pivot (actually, the potential pivot occurs
at a point in time between measurement k: and measurement k: +
1). We then inspect the points < k to tind xk, the largest point
before the candidate pivot, and likewise those > k to find xk+t.
the smallest after the candidate. If XI, is less than ~k+t. then WC
conclude that [k, k + l] does indeed straddle a pivot; otherwise, we
conclude they do not.

If we tind a pivot partition, then we define its magnitude A/r
as the absolute value of the difference between the median of the
points after the pivot with the median of those before. We also
associate a pivot width, W = tk+l - tk.

Identifying adjustment signatures. We now turn to identify-
ing the signature of a clock adjustment for the clocks of two hosts,
s and r. The method we developed is not entirely satisfying. as it
uses some heuristics in order to accommodate residual noise in the
OTT measurements, while attempting to not mistake genuine net-
working effects for a clock adjustment. However. the method ap-
pears to work well in practice (see 0 5.4). WC note, though, that the
method assumes that clock adjustments are relatively rare cvcnts:

rare enough that our traces are likely to exhibit at most one adjust-
ment, and that the likelihood of both of the clocks we are compar-
ing exhibiting an adjustment during the trace is negligible. This
also appears to generally hold (again, see 5 5.4).

Suppose we have two sets of de-noised OTT measurements, St
and ft. If either of ,ql or ?, does nor exhibit a pivot, or if the pivots
are both positive or negative. then we conclude there was not any
clock adjustment, We next must check whether the pivots over&.
Due to limited space, we defer discussion of doing so to [Pa98].

If the pivots do not overlap, then we conclude there was no
adjustment. If they do, we then next look at the magnitudes of
the pivots, If either magnitude is less than the larger of twice the
joint clock resolution R,,,. (5 3), or 2 msec (an arbitrary value to
weed out fairly insignificant adjustments), then we declare the pivot
“insigniticant” and ignore it.

Finally, we check whether I%& and n/r,., the magnitudes of the
two pivots. are within a factor of two of each other. If not, then
WC term the pivot a “disparity pivot,” meaning that it may be due
to unusual networking dynamics (5 5.6). If the two agree within a
factor of two (which cxpcricnce has shown is a good cut-off point),
then we conclude that the trace pair exhibits a clock adjustment
with a magnitude of about w.

5.4 Checking the algorithm’s accuracy

We now turn to the important question of How do we know the
nlgorithm uctuully works. 7 Since WC arc restricted to post-facto
analysis, we need to develop other means for detecting likely clock
adjustments, and use them to gauge the algorithm’s accuracy.

We can divide our accuracy concerns into two types: false pos-
itives, in which the algorithm claims a clock adjustment occurred
when in fact one did not, and false negatives, in which it fails to
detect that an adjustment actually did occur.

Since the algorithm only flags adjustments in a relatively small
number of traces (5 5.5) WC can deal with the possiblity of false
positives by manually inspecting each of these using a plot like in
Figure 4 to determine whether we find compelling evidence that an
adjustment really did occur. The process of doing so led to some
of the liner points of the algorithm, such as rejecting “disparity
pivots.” After these additions, we lind virtually no apparent false
positives (though who knows how many we are missing because
their presence is not visually compelling).

The possiblity of false negatives is more difficult to address.
Since we have too many traces to inspect by hand (though we did
apply random sampling to hand-inspect a large number of traces),
we developed two other heuristics for identifying clock adjustments.
The first is to compute the minimum round-trip time (RTT) that
could be derived from differences between the timestamps for any
pair of packets between the two hosts, If this was significantly
Iowcr than the minimum observed round-trip time (using a single
clock), and especially if it was ever non-positive, then tcpanaly
nags the trace as requiring manual inspection. The second is to
compute the cross-correlation between the denoised OTT times in
the two directions, and then to flag traces with strong negative cor-
relations. The use of these heuristics also Icd to refinements in the
dctcction algorilhm, such as spreading out the pivot differencing
over multiple intervals when searching for candidate pivots, and al-
lowing “slop” (see [Pa981 for details). After these additions, we
find very few false negatives (see 5 5.6 for examples).

5.5 Results of checking for adjustments

tcpanaly uses the method given in 5 5.3 to check each trace pair
it analyzes for clock adjustments. Doing so, we found 36 trace
pairs in Nt out of 2,335 (I .50/o) that exhibited apparent clock ad-
justments, and I28 out of 15,492 in hi1 (0.8%). While these pro-

.
:
. .

. . . - I . . .
.= .

. .
. -ri: 1-1 *& d

n -b
&&ma

xi

b 10 20 30 40 50 60

Time (xc)

Figure 6: Clock adjustment via temporary skew

portions are fairly low, they are high enough to argue that a largc-
scale measurement study for which accurate timestamps are impor-
tant needs to take into account the possibility of clock adjustments.
Furthermore, the adjustments are only detectable due to the USC o/’
a pair of clocks. If a study uses timestamps from only one measure-
ment endpoint, then checking the timestamps for clock adjustments
becomes much more difficult.

The median adjustments were on the order of IO-20 msec, the
mean around 100 msec, and the maxima close to 1 see. These
magnitudes are unfortunately small enough to sometimes not be
glaringly obvious, but large enough to be comparable to wide-area
packet transit times, so they can introduce quite large analysis cr-
rors if undetected.

While clock adjustments are usually abrupt, this is not always
the case. The adjustment-detection method found some clock ad-
justments that occurred due to a short period of altered clock fre-
quency (i.e., temporary skew). Figure 6 shows a striking example.
Here, around time 2’ = 40 set the sender’s clock began running
more quickly than the receiver’s, leading to lower sender OTTs and
higher receiver OTTs. Less than 20 seconds later, the frequencies
were again equal, but the relative offsets between the clocks shifted
by nearly 1 set in the process.

5.6 Problems with detection method

The method given in $ 5.3 appears to work well in practice, at least
in terms of the checkmg discussed above. However, it dots somc-
times fail to detect clock adjustments. In this section we look at
some cases where we identilied this happening.

Failure to detect adjustment via skew. In Figure 6 we illus-
trated how sometimes a clock adjustment can occur due to tempo-
rary skew. However, in such cases there arc multiple pivots in each
direction (any location along the skew line is a pivot), and somc-
times, due to noise, the two pivots located by the method do not
overlap, and the possibility of an adjustment is rejected. In general.
this sort of failure will only occur with adjustments using tempo-
rary skew; abrupt adjustments have sharply defined pivots. (This
example was detected due to a non-positive minimum RTT, as dis-
cussed in 5 5.4.)

Excessive network-induced delay. Figure 7 shows a case where
the reverse path exhibits a clear level shift around T = 70 xc, with
a magnitude of about 250 msec, but the corresponding shift on the
forward path is less clear because it is accompanied by an increase
in networking delays, too. In that direction, tcpanaly assesses the
magnitude of the shift as about 730 msec. Since this is more than
twice the magnitude in the other direction, tcpanaly rcjccts the
possibility of a clock adjustment.

tcpanaly flags a trace pair like this as having a “disparity
pivot,” namely common pivots that have too great a difference in
their magnitudes to be considered a clock adjustment. Disparity

. . e3 &a L&3 al -r-- 0 50 100 150 200 250

Time (xc)

Figure 7: Likely clock adjustment masked by network delays

0 20 40 60 80 100 120

it

%
i q

. 0

I CtBldb --

Time (SW)

Figure 8: Double clock adjustment via temporary skew

pivots are quite rare (only 61 in A$). We inspected each one and
found that only the one shown above was a plausible clock adjust-
ment, The rest appear simply due to unfortuitous patterns of noise.

Multiple adjustments. The development of the clock adjust-
ment detection algorithm presumes that there is a single clock ad-
justment to be detected. Sometimes a trace pair suffers from more
than one adjustment, and the algorithm either only detects one of
them. or fails to detect any of them. The latter is particularly likely
if there are two adjustments in opposite directions. Figure 8 shows
a striking example of a trace pair with two adjustments, both ef-
fected using temporary skew. (This example was likewise detected
due to a non-positive minimum RTT, the strong negative correla-
tion test also detects it.)

Clock “hiccups.” Related to the multiple adjustments dis-
cussed above are clock “hiccups, ” in which one of the clocks in a
WICC pair momentarily either ceases to advance or advances very
quickly. Figure 9 shows an example, occurring at time T = 6 sec.
It is possible that this example is actually due to surprising network

7

.
0 2 4 6 8

Time (SC)

Figure 9: Clock adjustment “hiccup”

16

L1----.- ., _- ~_~~ ~, --.-I... , 1

0 20 40 60 60 100 120

Time (sex)

Figure 10: An O’M’ pair plot showing relative clock skew

dynamics. as the 4 acks with lowered OTTs come right after the
only packet reordering event in the trace. (While a clock glitch can
change the value of OTTs, it ~~777~07 reorder packets on the wire!
But XC [Pa97h] for mcasurcment errors that can indeed rcorclct
packets.) It is difficult to see what networking mechanism could
lead to the data packets in the opposite direction simultaneously
experiencing increased delay.

6 Assessing relative clock skew

Errors in relative clock skew, which often introduce inaccuracies
on the order of perhaps a few seconds a day, might seem trivial
and perhaps not worth the effort of characterizing. For purposes of
keeping fairly good absolute time, this is true, but for purposes ol
assessing network dynamics, it is not.

To illustrate why skew is a crucial concern, consider evaluating
OTTs between two hosts s and T, for which ,r.‘s clock runs O.Oi%
faster than s’s, If we are computing OTTs between s and 7’. then
over the course of only 10 minutes T’s clock will gain 60 msec over
s’s clock. If WC ussu~nc that variations in OTT rcfiect yuewiug
delays in the network, then this minor clock driJt could lead to CL
lurge fhlse interpretation of growing congrstion. For example, if
s sends 512 byte packets to T and the bandwidth of the path bc-
tween them is Ti (1.544 Mbps), then a true 60 msec increase in
delay reflects the equivalent of an additional 23 packets’ worth of
queueing. Thus, quite “minor” skew differences between the two
endpoint clocks can lead to quite large, erroneous assessments 01
queueing delay.

The first issue for detecting skew is to identify a skew “sig-
nature” similar to that for clock adjustments shown in Figure 4.
Figure IO shows an OTT pair plot that exhibits a clear skew sip-
nature: the OTTs in one direction show a btcady overall incrcasc,
while those in the opposite direction show a steady decrease. Both
changes have a magnitude of about I20 msec over the 2 minute
course of the connection, consistent with the receiver’s clock ad-
vancing about 0.1% faster than the sender’s clock. It is difficult
to see what sort of network dynamics could introduce such a true
combined inflation and deflation of 07Ts over a two-minute pc-
riod. so we conclude that the OTT pair plot shows strong cvidcncc
of relative clock skew.

We now turn to developing robust algorithms for dctccting and
removing relative clock skew.

6.1 Defining canonical sender/receiver skew

We begin by defining exactly what quantity it is that we wish to
estimate. First, we assume that the skew trends we identify will be
linear. While we might possibly encounter non-linear skew, we did
not find any clear examples of such in JVI or n/,. For linear skew.
we can summarize the skew using a single value that reflects the
excess rate at which one clock advances compared to the other.

To avoid ambiguity (in terms of which clock we are comparing
to which). we will always quantify how C,., the receiver’s clock,
advances with respect to C,. Suppose Cr runs a factor r] faster
than C,?. by which we mean that, if C,T reports that an interval AT
has clapsed, then C,. will have reported the same interval as having
length rlAT.

The algorithms we develop arc based on how OTT measure-

ments expand or shrink with respect to time. It is important to rec-
ogniLe that the phrase “with respect to time” does IZO~ mean “with
respect to true time.” since we have no way of measuring true time.
Instead, it means “with respect to the clock at the packet origina-
tor.”

When discussing ;I linear trend in the measured OTTs of the
packets sent by host Y. we will quantify the trend in terms of G,$,
the growth in the 01-I’s of the packets sent by s. Suppose packet
1,1 is sent at time T,:. according to C,. and arrives at time T,!,
according to C,.. Likewise, suppose packet 1~ is sent at T,: and
arrives at T,?. Suppose further that the transit times of the packets
arc identical (no network-induced noise), so the only variations in
their O’ITs arc due to clock skew.

The measured 07Ts for the two packets are:

4, =T,i -‘T:,, (jz = T,? - Tj.

As G,Y quantilics the linear growth in measured OTTs over time:

In the absence of relative skew, G, = G,. = 0.0, where G, quan-
tilies the growth in OTTs of packets sent by T. If C,. runs faster
than C,,, then the packets sent by s will exhibit increasing Chits
and those sent by 7’ will exhibit dwxxsbzg OTTs, so we will have
G,5 > 0 and G,. < 0. Naturally. the reverse holds if C, runs slower
than C,-,

It can he shown that:

G,q = ,r-1

G,. = 1-1
“I

1
- - 1.

= G,,+I

(1)

(2)

(3)

For 71 = 1 + F, whcrc ICI < 1, WC have:

G, =F, G,.=-F=--E
l+f

Because clock skews are often only a few parts per thousand or
ten thousand, we are usually in this regime (but see 5 6.6 below).
Consequently, an easy inaccuracy to introduce is to assume that:

G,s = -G,,

(i.e.. the slopes are equal but opposite), since this often appears to
he the case when inspecting OTT pair plots. To ensure full xcu-

racy. we instead take cart to always use Eqns 1 and 2 to express
relative clock skew in terms of 11, or Eqn 3 to translate G,. to G,.
We will refer to values of G,Y and G, that are consistent with re-
spcct to Eqn 3 as “equivalent but opposite trends.”

6.2 DifFiculties with noise

One particular problem with testing for clock skew is that, due to
qucucing Iluctuations, one direction of a path can have such highly
variable OTTs that these completely mask the smaller-scale trend
or O’IT increase or decrease due to skew, even after de-noising.
Figure I I shows an cxamplc, in which congestion on the forward

17

mm-
-- ..-I--

0 10 20 30

Time (SW)

Figure I I : Clock skew obscured by network delays

0 10 20 30

Time (xc)

Figure 12: Enlargement of reverse path

path completely obscures the relative clock skew, which is apparent
from the enlargement of the return path shown in Figure 12. Such
noise most often obscures the forward path (presumably due to ex-
tra queueing induced by the data packets), but it can also obscure
the reverse path. Thus, we cannot always rely on the signature ol
clual equivalent-but-opposite OTT trends; sometimes we must sct-
tie instead for simply a compelling trend in one direction.

Furthermore. network-induced noise also scuttles what might
seem the most straightforward approach to detecting skew, namely
fitting a line to the de-noised OTT measurements, 9t and *?t (ii 5.2).
Even using de-noised measurements, least-squares fitting fails to
provide solid skew detection, because residual noise in 6f and ft
makes it too difficult to reliably distinguish between a skewing
trend and coincidental opposite queueing trends. All it takes is one
period of elevated queueing at either end of a connection to throw
off the tit.

Unfortunately, the same also occurs using robust titting tech-
niques, such as estimating the line’s slope as the median of all of
the pairwise slopes between the individual de-noised measurcmcnts
[HMT83]. The difficulty lies in both false positives and false neg-
atives generated due to queueing Huctuations. Clearly, we need an
even more robust technique.

6.3 A test based on cumulative minima

Eventually we recognized that the most salient feature of relative
clock skew is not simply the overall trend (slope) of the OTT mea-
surements, but the fact that the smallest such measurements contin-
ually increase or decrease. This observation suggests the following
statistical test, the strength of which is that it is nearly immune to
transient increases in OTT measurements due to queueing buildups.

Suppose we have IL observations Xt,, 1 < i 5 n, where t, is
the time of the observation and Xt, is the value of the observation.
We assume that the t,‘s are monotone increasing, and that the Xt,
arc distinct. Further, we assume without loss of generality that we
wish to test for a negative trend in XtL. We discuss applying the

8 4.-
0 5 10 15

k

Figure 13: Distribution of R(n, k) for n. = 15

same test for a positive trend in 3 6.4 below.
Consider the indicator:

I/, =
1, if Xt, < nun,<, Xt,, or if j = 1, and
0 otherwise.

That is, It, is I if Xtl represents a new “cumulative minimum” if
we inspect Xt, from I up to j (but not all the way up to n), and 0
if there is an earlier XL, that is less than Xi,.

If the XI* are independent, then we immediately have:

Consider now the function: MI = c,!=I It,, which is the
number of cumulative minima seen as we Inspect Xti from the
first value up to the jth value. The key observation we make is that,
in the absence of a negative trend. the distribution of Mj will tend
to be close to that for independent Xt, ; that is, we will find a few
cumulative minima but not a great number: while, in the presence
of a negative trend, we should tind many cumulative minima, since
the Xtt tend to get smaller and smaller.

Suppose we lind A& = k, that is, the Xt, exhibit k cumulative
minima. We wish to compute the probability that we would have
observed this many or more minima, given the independence as-
sumption If we find the probability sufficiently low, we will reject
the null hypothesis that the Xt, are independent. In its place we
will accept the tentative hypothesis (which we will further test in
3 6.5) that the X,, exhibit a negative trend.

Let n(n, k) = P[Mr, 2 k]. Given 0 < k < 71, we can
compute R(~L, k) recursively, as follows:

Iqn, I;) =

1

1, if k = 0,
1 /?L!, if k = 7~ and (4)
f1(11- l,k-l)+(n-l)K(71-l,k) ifk < n. 1L

The first case is the degenerate one that grounds the recursive defi-
nition: the probability that there are at least 0 cumulative minima is
always I. The second case corresponds to every single Xii being
a cumulative minimum. This only occurs if the Xt, ‘s are sorted in
descending order, which, if they are independent, has probability
l/n!.

The last case corresponds to conditioning on whether Xt, is a
cumulative minimum or not. For independent Xt;, it will be a CU-
mulative minimum with probability l/n, and not with probability
(71 - 1)/71.

Figure I3 shows the distribution of R(n, k) for R. = 15. The
key feature of the distribution that makes it a powerful test for a
negative trend is the rapid fall-off in probability above a certain
point, in this case around k = 8. Because if the Xt,‘s do indeed
have a negative trend we should tind k quite close to 71, this means
we can readily distinguish between the case of a negative trend and
that of no trend. without requiring that all of the Xi, be increas-
ingly negative. Thus, WC can accommodate considerable noise.

18

6.4 Applying the test to a positive trend

The test developed in 3 6.3 for detecting a negative trend can also
be applied to detecting a positive trend. with one subt~cly. At lirst
blush one might think that, to do so, one simply LISCS maxima in lieu
of minima. This works in principle, but fails when applied to OTT
sequences, because of the positive additive nature of OTT noise
(3 5.2). That is, the maxima will be often dominated by the noisiest
OTT values, rather than by OTT values that slowly rise due to skew.
so the noise will obscure any positive trend due to clock skew. This
remains a problem even after de-noising, since all it takes is a single
period of elevated OTT values, long enough to span an cntirc dc-
noising interval, to pollute the de-noised values with what will in
some cases be a global maximum. When searching for a negative
trend. such an interval will, on the other hand, simply not include
a cumulative minimum; but it will not prevent the test fr-om tinding
other minima due to clock skew.

There is a simple tix for this problem, though: we apply the
cumulative minima test to E;, = X’r,,-,+r, which is simply XI?
viewed in reverse. The reversal converts a positive trend in XI,
to a negative trend in Yr, , which the cumulalivc minima algorithm
then readily detects.

6.5 Identifying skew trends

With the cumulative minima test we finally have a robust algorithm
for detecting trends. These trends, however, might not bc due to
clock skew but to networking effects, so we need to develop furthet
hruristic checks to correctly detect linear skew.

Suppose we have two sequences of de-noised OTT measurc-
ments, BL and Ft. corresponding as usual to the full-sized data pack-
ets sent from the connection sender to the receiver. and the acks sent
back from the receiver to the data sender. For each sequence. we
first determine whether it is a skc>w carzdidutc~ as follows.

Let ut denote the given sequence. Let R,(~L, I;) bc the proba-
bility that the sequence ut matches the null hypothesis of no trend
(independence) given by Eqn 4. We consider ut a skew candidatc
if either:

1. &(7~, k) < lo-” and 2~t is either it, or ?I,, is Bt and its
trend is negative. This latter test is because queueing buildup
due to the data packets sent along the forward path can often
produce a strong positive trend; or

2. I&,(11, Ic) < lo-” and it is tightly clustmd around the
“trend line,” which is computed using a robust linear lit (pet
the algorithm discussed above) to just the (denoised) timings
corresponding to the cumulative minima or maxima.
The goal here is to allow for a skew candidate if the 1~ points
lit quite closely lo a (linear) trend, even though their cumula-
tive minima probability is not so small. This can happen, fog
example, if we do not have a large number of points in ‘it.

Note that the limit of IO-:’ precludes assuming a skew cnndi-
date if there are fewer than 7 points, since l/t?! % 1.4 lo-,
(but see below).

It remains to define “tightly clustered.” To do so, WC corn-
pute the inter-quartile range (75th percentile minus 25th per-
centile) of the distance between the 2~~ and the trend lint. Ifit
is less than or equal to the larger of the joint clock resolution,
R.,,,., or 1 mscc, then a large number of the de-noised OTTs
lie very closely to a pure linear trend.

We next determine whether either .?r or ?‘t is compelling enough
by itself to accept as evidence of a skew trend: or if the pair form a
j&t skew candidate, to be investigated further; or if there is insul-
ficient evidence for a skew trend. To do so, WC first consider which
of them is individually a skew candidate. as follows:

If neither is a candidate, then we check to see whether
mas(R,(~r, k:), &(u, k)) 5 lo-‘. If so, then the joint
probability that both have no trend (or, more precisely, are
fully indcpcndent) is < 10V4. which we consider sufficiently
low to consider them as joint skew candidates and proceed as
discussed below. If either probability exceeds lo-“, then we
reject the tract pair as a candidate for exhibiting a skew trend.

If’?b is a skew candidate but L?t is not, then we accept ?t as
reflecting clock skew quantified using the corresponding G,.
We do so because sometimes WC have no hope of detecting
a skew trend in .$ due to queueing buildup, as illustrated in
Figure I I and Fipurc 12.

If ,<, is a skew candidate but pt is not, then we check the
direction of .S:r ‘s trend. If it is negative, then this goes against
the networking tendency for a positive trend induced by the
qucueing of the data packets along the forward path, and we
accept Bc as reflecting clock skew quantified using G,.

If the trend is positive, we must proceed carefully to screen
out a false skew trend due to queueing. See [Pa981 for details.

If both 6t and ft are skew candidates, then we consider them
together a joint skew candidate.

If the above proccdurc yields a joint skew candidate, we then
evaluate the candidate as follows:

I. If both candidates have the same trend direction, then we
reject the possibility of a skew trend.

2. If not, then WC translate the lirst candidate’s skew quantifica-
tion into terms of the second candidate using Eqn 3. Let GI
and Ga bc the corresponding skew quantifications. If

that is. the difference between the two exceeds their average,
then WC reject the pair as having too much variation in their
slopes for them to be trustworthy indicators of skew. Other-
wise, we accept the pair as indicative of a skew quantified as
c = Gl+G’: , 2

6.6 Results of checking for skew

tcpanaly uses the method given in 5 6.5 to cheek each trace pair it
analyzes for clock skew. As WC did for detecting clock adjustments,
we gauged its accuracy by visually inspecting many of the skews
it found (to detect false positives), and also (for false negatives)
hy hand-inspecting randomly chosen traces, as well as those with
strong, negative cross-correlations in their OTTs or excessively low
minimum RTTs (per 5 5.4). These last, as for clock adjustments,
often occur in the prcscnce of signiticant clock skew. Making these
cheeks led to a number of the heuristics outlined above, and WC now
lind the algorithm appears reliable, at least in terms of plausible
skew trends we can dctcct visually.

The method indicates that 295 trace pairs in Nr out of 2,335
(I 3%) exhibited clock skews, and 487 out of 15,492 did so in Afz
(3%). These proportions are high enough to argue for considerable
caution when comparing timestamps from two different clocks.

In both J$ and tin, about threc-yuarters of the skews were de-
&ted on the basis of it alone not particularly surprising since
often a skew trend in .i;~ will he lost in the OTT variations due to
qucueing induced by the data pack&s. (We could avoid this prob-
lem if WC could choose the particulars of our measurement traffic,
rather than analyzing TCP bulk transfer traftic.) The largest skew
in .IV~ was a whopping 71 = 5.5, meaning that one clock ran snore

19

-I

4 -2 0 2 4 6

Time (set)

Figure 14: Example of extreme clock skew

than five times faster than the other! Figure 14 shows how skew
like this appears in an OIT pair plot. In the forward direction, the
connection’s elapsed time was only 2 set, but in the reverse direc-
tion it took 10 set!

This example is more than just an amusing curiosity. It oc-
curred not once but 43 times in n/l (see Figure I). We note, how-
ever, that this clock (which corresponds to the austr site) was one
of the ones identified in fj 4 as being highly synchronized with a
number of the other sites, indicating care was being taken Lo keep
accurate time with it (presumably using NTP). Thus. this clock’s
behavior is a compelling argument that just becmsc~ ~1 clock is bc-
limcti to be well-synchronized does not rmrkr it immune ,from CI
trmc) error!

Aside from austr’s clock, the next largest skew we observed
in n/l was 7 = 0.991, a frequency difference of about 0.9% This
led to an OTT change of about 70 msec during an 8 set connec-
tion. All in all, after removing connections involving austr, in NI
the median skew had a magnitude of about 0.0230/o, and the mean
0.035%~. These are small, but not negligible.

In nip. the prevalence of trace pairs exhibiting skew was sig-
nificantly lower (3% versus 13%). perhaps due to the USC among
the participating sites of newer hardware with more reliable clocks.
After removing one site that either had a very broken clock or very
unusual network dynamics (we were unable to determine which:
perhaps it was both), the largest skews we observed were on the
order of 6%. Figure I5 shows an example. The pattern is quite
striking, and clearly could lead to grossly inaccurate conclusions
about network dynamics if undetected. Note that both sites in
volved in this connection were among those identiticd as closely
synchronized in Afz (5 4), again emphasizing that clocks that are i/z
gencd well-synchronized can still exhibit very large errors.

After removing these connections, the median skew magnitude
of the remainder in tin is about 0.01 I%, and the mean around
0.016%. These are a factor of two smaller than those in .&‘I, but
still not completely negligible for assessing queueing in longcr-
lived connections.

6.7 Removing relative skew

As discussed in the previous section, a non-negligible proportion
of the trace pairs in our study suffer from relative clock skew. WC
would like to remove this skew so WC can then reliably include
those traces in subsequent analysis of network dynamics. Fortu-
nately, the skew almost always appears well-described as linear,
which means it is straight-forward to remove it.

To remove skew of magnitude ‘11, we simply modify all the time-
stamps t:’ generated by C,. using:

t:” = t; + G,.(t; - t;;), (5)

where G,. is given by Eqn 2 and t;; is the first timcstamp generated
by C,.

0 2 4 6 8 10

Time (SW)

Figure 15: Strong relative clock skew of 6%

Applying Eqn 5 does not necessarily rectify C,‘s skew with
respect to true time. However, we can still make the two sets of
timcstamps consistent, and eliminate artificial trends in the network
delays we compute, even if some absolute skew remains.

After tcpanaly removes relative skew, it re-analyzes the clock.
If it still detects relative skew, then either its initial assessment that
the trace pair had relative skew was wrong, or the skew was not lin-
ear. It flags this case separately, and also then refrains from any fur-
ther timing analysis. Thus, re-analysis provides a self-consistency
test for the soundness of our skew detection, This test failed less
than 2% of the time.

7 Clock synchronization vs. stability

We finish our study with an investigation into the question of whether
highly-synchronized clocks tend to be free of problems such as ad-
justments and skew (which we will term “stable”).

WC might hope that highly-synchronized clocks would also be
stable because freedom from such problems would tend to greatly
aid a clock in maintaining synchronization. On the other hand,
if good synchronization is maintained by frequently adjusting an
errant clock to match an external notion of accurate time, then such
clocks might be I?ZOY~ likely to exhibit adjustments or skew, and
hcncc be less stable than other clocks.

The issue is an important one because it is quite cheap to de-
termine whether a remote clock’s offset is close to that of a local
clock (by piggybacking timestamps when exchanging packets). It
relative accuracy is a good indicator that the remote clock is stable,
then we can quickly determine that we can rely on the soundness
of the timestamps generated by the remote clock, without having
to go through all the effort of the methods developed in this paper
for detecting adjustments and skew. Such a quick determination
could prove invaluable for a transport protocol that needs to decide
whether it can trust the timing feedback information being returned
t’rom ;I remote peer.

Table 1 shows the relationship between relative clock accuracy
and the likelihood of observing a clock adjustment. We see that
closely synchronized clocks, i.e., those with a relative offset under
I sec. are only slightly less likely to exhibit a clock adjustment than
less closely synchronized clocks. Thus, relative clock accuracy is
not a good predictor of the absence of clock adjustments.

Table 2 shows the relationship between relative clock accuracy
and the likelihood of observing relative clock skew. For Mr. clock
synchronization only provides an advantage if the clocks are highly
synchronized, with a relative offset under 100 msec and preferably
under IO msec. For ,hf~, however, synchronization of under I set
provides a delinitc advantage in predicting a lower likelihood of
skew. though much better synchronization provides little additional
predictive power. For both Nr and tin, not even very close syn-
chronization reduces the likelihood of encountering clock skew to

20

Paset I
/ Relative offset 1 Likelihood of adjustment 1

Nl < 1 set I I .4 ‘%I

Table 1 : Relationship bctwcen rclativc clock accuracy and clock
adjustments

Dataset Relative offset Likelihood of’skcw

N
N:

< 0.01 xc 0.05%
< 0.1 see 5.6%

2 < 2 1 1 xc see 13 12 ‘i/’ ‘I/r)

N2 < 0.001 xc 1.3 %

$2
< 0.01 set 0.8X 7’

< 0.1 set I .3 ‘3’

Ml < 1 xc 1.x %
N2 > 1 set 5.3 %’

Table 2: Relationship between relative clock accuracy and clock
skew

a negligible level (i.e., appreciably lower than I %I).
We conclude that relative clock accuracy provides no benclil in

assuring that clock adjustments will be unlikely, and some benefit
in assuring that clock skew is leas likely, but not to such :I degree
that we can ignore the possibility of’ clock skew when analyzing
more than a handful of measurements.

In addition, we conjecture that the closely-synchronizer1 1~0x1s
in our study are most likely synchronized using NTP. If so, then
the use of’ NTP does nor reduce the likelihood of clock adjustments
introducing systematic errors when measuring packet transit times,
and reduces hut does not eliminate the likelihood of’ clock skew
introducing systematic errors. This finding does not mean that NTP
fails to keep good time. Rather. the timescales on which it dots so
significantly exceed those of’ our connections. NTP keeps good
time on large time scales precisely by altering clock behavior on
small time scales.

8 Summary

The problem of’ comparing timcstamps between unsynchronized
clocks might at first appear relatively minor. But. as WC devcl-
oped in the introduction, it actually has significant impact on the
accuracy of wide-area network measurement. If we can compare
such timestamps reliably, then we can USC “receiver-hased” mca-
surement in order to directly measure the propcrtics along one di-
rection of’s network path, rather than unavoidably conflating thcsc
properties with those along the rcversc path, as happens with “ccho-
based” measurement.

Unsynchronized clocks arc subject to at lcast two types of’ er-
rors: clock adjustments, in which one of’the clocks rapidly changes
its current setting. and relative clock skew. in which one clock runs
faster than the other. If undetected, hoth of these can intro&cc
measurement artifacts that can masquerade as changes in delay due
to genuine networking effects. In this paper we have undcrtakcn to
develop robust algorithms for detecting both adjustments and rel-
ative skew, even in the prcsencc of’ significant noise in the timilrg
measurements. While our algorithms require some heuristic tuning
to minimize inaccuracies in terms 01. lalsc positives and fnlse ncg+

tives, with this tuning in place we tind that they appear reliable, as
best as we can judge without a source of independent calibration.

In summa,-y. prudent large-scale mcasurcment and analysis of
packet timings should include algorithms such as these as self-
consistency cheeks to dctcct possible systematic errors. even in the
presence of synchronir.ation via algorithms such as NTP, which WC
find doca not render clocks immune from errors (!i 7). We further
argue that even pairs ol.clocks using a more direct external synchro-
ni/ation source such as GPS should bc subjected to such checks, as
;I means 01’ assuring that no timing errors have crept in between the
original. highly accurate time source, and the packet timestamps
ultimately produced hy the inevitably imperfect computer clocks.

9 Acknowledgements

This work greatly hcncfitcd from discussions with Domcnico Fer-
rari. Sally Floyd. Van Jacobson, Mike Luby. Greg Minshall, John
Rice, and the comments of’ the anonymous referees. My heartfelt
thanks.

References

] Ho%] J-C. I3olot. “End-(o-End Pnckc~ I>elny and Loss Behavior in the
Internet.” /‘,,o<.. SlCCOMM '93, pp. 289-298, Sep. 1993.

(CC’)G] I<. Caner and M. Crovelfa, “Messuring Hottleneck Link Speed in
Packet-Switched Networks,” ~‘~,/jorr~u~rc~e Evulllutio/~, Vol. 27-8,
pp. 297-3 18, (ICI. 1996.

ICt’H931 K. Clnffy, G. t’olyz:os and H-W. Hraun. “Measurement Consider-
ations for AsseGng Unidirectional Lalcncic,” /rrrerrrehvorkin,y:
Kcsrrrdl m/l/ f~,l/“v’io/c~e. 4 (3), pp. I2 I 132, Sep. 1991.

[HMT81] D Ho;~glin. F. Mostcllcr, and J. Tukey, Ed., “Understanding Ro-

[Ja97]

[KC’)l]

LMi%?n]

1 Mi92b]

1 Mu941

[Pa96 1

bust and Exploratory Data Analysis.” John Wiley KL Sons, 1983.

V. Jacobson. C Lercs, and S. McCannr, tcpdump. ovuiluble via
anonymou\ lip to ftp.ec.lhl.gov, Jun. 1989.

V. Jacobson. “p:\thchar ---- ;I tool to infer characteristics
ol IntclmY paths,” Ilp://ftp.ce.lhl.gov/pnthch~r/msri-t~lk.ps.g~,
Apr. 1997.

S. Keshnv, “A Control-Theoretic Approach to Flow Control,”
I'KK SlCCOMM '(II. pp. 3. IS. Sep. 1991.

D. Mills, “Network Time PI-orocol (Version 3): Specification,
Implementation and Analysis,” RFC 1305, Network Information
Center, SRI International, Menlo Park, CA, Mar. 1992.

D. Mills, “Motlelling and Analysis of Computer Network
Clocks,” Technical Report 92-S-2, Electrical Engineering Depnr-
ment. [Jnivcrsity of Delaware. May 1992.

L) Mill\. “lmpl-ovcd Algorithms for Synchronizing Computer
Network Clocks.” /E/X/AC‘M 7’,.01,1.~ccc./iorr.r on N~m~~rki/~fi. X(3).
pp. 245-254, Jun 1995.

A. Mukherjcc, “On the Dynamics and Significance of Low Free-
cpcncy Components of Intemct Load,” /a/ernefwor-king: Re-
scwdr trd Lqwricwe, Vol. 5, pp. 163-20.5, Dec. 1994.

V. P:~xson. “End-to-End Routing Behavior in the Internet,” Pro<,.
SIGCOMM '96. pp. 25-38, Aug. 1996.

V Pnxson, “En&to-End Internet Packet Dynamics,” Proc.. SIG-
(‘OMM '97 ';cp 3 . 1997.

V Paxson, “Automated Packet Tmce Analysis of TCP Implemen-
tations,” I’~x SIGCOMM '97. Sep. 1997.

v. PaxsoII, “011 Calibratmg Mcclsurrmcnts of Packet Tron-
sit Tomes.” LHNL-41.535. ftp://ftp.ee.Ibl.gov/papers/vp-clocks-
~igmctrics9X.ps.g~, Mar. 199X.

21

