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Abstract 

We discuss the problem of detecting errors in measurements of the total delay expcri- 

enced by packets transmitted through :I wide-ara network. We :ISUII~ that we lbwc 

measurements of the transmission times of :I group of packets sent from an or&mating 

host, A, and a correspondlog set of measurements of their aniwl times at their drstiw- 

tion host, B, recorded by two separate clock.\. We aLo awmc that we have :L \imil:u 

sries of mensurements of packets sent from B to A (as might occur when recording 

:L TCP connection), hut we do not i~ssume that the clock at A is synchronized with tbc. 

clock at R, nor that they run at the same frequency. We develop robust algoritbm~ 

for detrcling abrupt adjustments to either clock, and for estimating the relative shcw 

between rhc clocka. By analyzing I large set of measurements of Internet TCP connc‘c- 

tionh, we tind that both clock adjustments and rclatlve \kew are sufliciently common 

that failing to detect them can lead to potenttally large errors wlwl analyzing pnckct 

transit times. We further tind that synchronizing clocks using a network time protocol 

such as NTP does not free them from such errors. 

1 introduction 

In this paper we tackle the problem of how to calibrate transit times 
measured for packets traveling through a network. We assume that 
WC have a series of pairs of timings. recording each packet’s dc- 
parture time from its sender and arrival time at its receiver, but that 
the clocks used at the sender and receiver to generate these time- 
stamps are not necessarily accurate: they may not keep true time, 
they may be subject to abrupt adjustments, and they tnay run at 
different rates. 

Calibrating transit times might at first blush appear to be a fairly 
minor measurement problem, but in fact it is potentially central 
to the accuracy of a number of wide-area network measurement 
techniques. The timing structure of packets transmitted through 
a network is very rich: by carefully analyzing this structure one 
can infer fundamental network properties such as delay, bottleneck 
link speed, available bandwidth, queueing levels, and even hop-by- 
hop link speed [Ke9l, Bo93, Mu94, CC96, Pa97a. Ja97]. These 
measurements are usually made using “echo” techniques, in which 
packets sent to a given target result in the target returning replies 
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back to the sender. The analysis is then made on the timing struc- 
ture of the replies. 

Echo-based techniques, however, suffer from a fundamental 
problem: they unavoidably conflate properties of the network path 
in the lhrward direction with the propertics of the reverse direc- 
tion. Consequently, these measurements are subject to consider- 
able inaccuracy. Furthermore, a large-scale study of lnternet rout- 
ing found that paths through the Internet are often asymmetric, 
meaning that the series of routers visited in the two directions of- 
ten differ [Pa96]. Subsequent work discusses other asymmetries 
(such as link speeds and queueing levels), and argues strongly for 
“receiver-based” measurement, in which packet receivers cooper- 
ate with packet senders in order to accurately measure network traf- 
tic 1 Pa97a]. 

Accurate receiver-based measurement, however, depends on ac- 
curate comparisons of timestamps produced by a clock at the packet 
sender with those produced at the receiver. 11 is easy to assume 
that to ensure accuracy we merely require synchronization between 
these clocks; but, while a considerable body of work has addressed 
the problem of synchronizing clocks to true time (see especially 
the work of Mills [Mi92a, Mi92b, Mi95]), these algorithms main- 
tain good time over time scales of hours to days. They do not as- 
sure synchronization on the small time scales of individual network 
connections (a point we develop in ii 7). Consequently, the problem 
of calibrating the timestamps produced by pairs of network clocks 
remains interesting and important. 

If undetected, clock adjustments and rate mismatches can intro- 
duce significant measurement errors. For example, if the sender’s 
clock runs slower than the receiver’s clock, then the series of one- 
way transit times (OTTs) that WC compute from their timestamps 
will show a systematic increase across the measurement interval. It 
is easy to mistake this increase for a genuine increase in network- 
ing delays due to a gradual buildup of queues. Similarly, a clock 
adjustment, if undetected. can lead to completely erroneous con- 
clusions that the network suffered from sustained periods of high 
delay. 

To develop our algorithms we used the data WC gathered for 
the Internet packet dynamics study mentioned above [Pa97a]. We 
recorded two datasets, each consisting of traces of TCP transfers 
conducted at random bctwecn a number sites around the Internet. 
For each transfer, packet arrivals and departures were recorded at 
both the sender and the receiver using the tcpdump utility [JLM89]. 
The clocks used at the different sites were not necessarily synchro- 
nizcd. 

We term the sender and receiver traces collectively as a “trace 
pair.” Transfers entailed the sender transmitting IO0 KB of data to 
the receiver. Because of the USC of TCP, this results in a stream of 
large data packets flowing from the sender to the receiver, and a 
smaller stream of acknowledgement (“a&‘) packets Rowing in the 
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other direction, all of which were recorded. 
The first dataset, n/l, recorded at the end of 1994, consists of 

2,335 tract pairs between 2.5 sites. The second, J%~J, recorded at the 
end of 1995, consists of 15,492 trace pairs between 3 1 sites. (For 
brevity, we do not list the sites here, but will use the same names 
and font as in [Pa97a]-e.g., “austr”.) 

We wrote a program, tcpanaly, for automating much of the 
analysis of the trace pairs, and [Pa97b] discusses a number of packet 
filter measurement errors detected by it. Part of the development of 
tcpanaly included devising and implementing the clock calihra- 
tion algorithms we discuss in this paper. 

Limitations of the study. There are a number of important lim- 
itations of our study that must be kept in mind. The first is that lk 

data we had available for analysis had been previously recorded. 
and did not include any clock information (such as whcthcr the 
clocks were synchronized using N’TP, nor any logs of clock ad.just- 

ments by the operating systems). Because we were confined to 
post-facto analysis, we were unable to evalute the accuracy of our 
algorithms in any absolute sense. Until the algorithms can bc eval- 
uated in a controlled fashion, they can at best only be regarded as 
promising but unproven. 

The post-facto analysis also means that we could not design 
our measurement traffic to best support the problem of calibrating 
the packet timings. Instead, we had to deal with TCP bulk transfcl 
traffic, which often introduces its own timing distortions along the 
data transfer path by contributing to queueing. Consequently, we 
must deal with noise issues that we could otherwise avoid. 

Another limitation is that we found we needed to introduce a 
number of heuristics into the algorithms. We believe for the most 
part that doing so is unavoidable, because the goal of the heuristics 
is to deal with noise induced on the packet transit timings by net- 
work conditions, and there is no known method for removing such 
noise. 

Finally, one might argue that inexpensive, high precision tim- 
ing synchronization devices, such as GPS units, obviate the need 
for calibration techniques such as those we develop. However. 
even though these units are now relatively cheap, it is not cleat 
that we can yet presume their ubiquity, because: their cost remains 
non-negligible; they cannot always be deployed due constraints on 
antenna placement; and many sites might instead use NTP to syn- 
chronize most of their machines to a few GPS-endowed machines. 
We also argue in our summary that, even given a directly-attached 
GPS unit, checking the clock readings ultimately derived from it 
remains prudent. 

We begin our discussion by defining in 5 2 basic terminology 
for describing different clock attributes. In 6 3 we introduce “rcla- 
live” counterparts of these terms, for discussing potential disagree- 
ments between two network clocks. We next conduct an assessment 
of relative clock accuracy (5 4), before turning to the development 
of methods for detecting clock adjustments (9 5) and relative clock 
skew (5 6). 

We finish in 5 7 with a look at how well a clock’s synchronizn- 
lion correlates with stable clock behavior (lack of adjustments and 

of skew). We find that, unfortunately, a high degree of synchroniLa- 
tion between two clocks does not necessarily mean that the clocks 
are free of relative errors. 

2 Basic clock terminology 

In this section WC detine basic terminology for discussing the char- 
acteristics of the clocks used in our study. The Network Time Pro- 
tocol (NTP; [Mi92aJ) defines a nomenclature for discussing clock 
characteristics, which we will use as appropriate. It is important 
to note, however, that the main goal of NTP is to provide accurate 
timekeeping over fairly long time scales, such as minutes to days. 
while for our purposes we are concerned with much shorter-lcrm 

accuracy, namely between the beginning of a network transfer and 
its end. This difference in goals sometimes leads to different defi- 
nitions of terminology, as discussed below. 

Resolution. A clock’s vesolutiorz is the smallest unit by which 
the clock’s time is updated (a “tick”). It gives a lower bound on 
the clock’s uncertainty. Note that we define resolution relative to 
the clock’s reported time and not to true time, so. for example. a 
resolution of IO msec only means that the clock updates its notion 
of time in 0.01 second increments. not that this is the true amount 
of time hetwecn updates. 

Due to limited space, we defer discussion of how we estimate a 
clock’s resolution to [Pa98]. 

Offset. We define a clock’s o&t at a particular moment as the 
dill&encc between the time reported by the clock and the “true” 
time as defined by national standards. If the clock reports a time T, 
and the true time is Tt, then the clock’s offset is T, - Tt. 

Accuracy. We will refer to a clock as nccurata at a particular 
moment if the clock’s offset is zero, and more generally a clock’s 
accuracy is how close the absolute value of the offset is to zero. For 
NTP, accuracy also includes a notion of the frequency of the clock; 
for our purposes, we split out this notion into that of skew, because 
we dcline accuracy in terms of a single moment in time rather than 
over an inlcrval of time. 

Skew. A clock’s s&w at a particular moment is the frequency 
difference (first derivative of its offset with respect to true time) 
between the clock and national standards 

3 Terminology for comparing clocks 

In this section we develop terminology for discussing differences 
hetwcen two clocks producing timestamps. The definitions are, for 
the most part, analogous to those in 5 2, except that, instead of 
comparing a single clock against true time, we are comparing one 
clock against another. 

We tirst introduce the meta-notation of a subscript “s” denoting 
time measured at the packet sender, and “T” denoting time al the 
packet rewi\vr. Let C,5 and Cr refer to the clocks at the sender and 
rcccivcr. with IZ, and R,, their respective resolutions. 

We detine C,.‘s offset relative to C, at a particular true time T as 
Yr - T,3, that is, the instantaneous difference between the readings 
of CT and C, at time T. For convenience we will sometimes refer 
to this as Cp’s relative offset at time T, with C, implicitly being the 
clock to which C,. is compared. WC discuss assessing the relative 
offset of one clock to another in 5 4. 

Similarly, C?‘s relative skew is the first derivative of G’s rel- 
ative offset with respect to true time. Since we do not assume an 
independent means of measuring true time, we can only estimate 
C,,‘s relative skew in terms of time as measured by either C, or 

C,. See {i 6 for further discussion. 
lf C,. is accurate relative to C,q (their relative offset is zero), 

then we will rcl’er to the pair of clocks as “synchronized.” 
For rc~solutiorz, what we cart about is not “relative resolution” 

hutjoi/zl resolution, which we detinc as R,,, E R, + R,. This 
definition rctlects the fact that, when comparing timestamps from 
C, with those from C,., the corresponding uncertainties must be 
LILA&/ to properly propagate the resulting total uncertainty. 

4 Analysis of relative clock ofFset 

In [PaOX] we discuss a simple method for estimating the relative 
ollbct hetwecn two network clocks. The method is only accurate to 
within one round-trip time (RTT). However, an important point is 
that I’or analyzing network dynamics, estimating relative offset ac- 
curatcly generally is /nor crucial. bccausc the dynamics mostly con- 
cern tl(//i,rmccs in transit times rather than absolute transit times. 
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Figure 1: Evolution ofaus tr’s relative clock offset over the course 

ofN, 

For our purposes, we only need to do estimate relative offsets in or- 
der to construct legible plots of the two-way flow of packets, and to 
qualitatively investigate the relationship between large relative off- 
set and other clock problems such as relative skew. Accordingly, 
we are satisfied with the method developed in ]Pa9X] even though 
it is not especially accurate. 

We evaluated the relative clock offsets in Nl and JV~ to see 
what sort of variation they exhibited. Our goal is to identify groups 
of closely-synchronized clocks, as we want to determine the dcgrce 
to which these clocks are less plagued by inaccuracies than less 
well-synchronized clocks (3 7). A single computation of AC,.,,, 
does not tell anything about the absolute accuracy of either C,. 
or C,, but we would expect that many computations of different 
ACT,+ ‘s will reveal clusterings among the truly accurate clocks. 
and a large spread among the inaccurate clocks. 

Note that in the presence of relative skew, the relative clock 
offset is not well-defined. However, if we tind a pair of clocks that 
frequently enjoy a low relative offset, then it is plausible that they 
do not generally suffer significant relative skew, as otherwise their 
readings would tend to drift apart and they would not be able to 
preserve their low relative offset. 

We proceed by clustering host clocks based on the median 01 
the magnitude of their relative clock offset, over all the transfers in 
which they participated. We use the median offset in order to isolate 
hosts that consistently had large relative offsets, instead of those 
that only occasionally had large offsets, since the latter could bc 
skewed by unfortunately-frequent pairing of a host with an accurate 
clock together with a host with a poor clock. We use the median 01 
the absolute value of the offset rather than the median of the offset 
itself as a way of detecting clocks that often “swing” from being 
too slow to too fast. 

We tirst inspect the median magnitudes of each host’s rclativc 
clock offset. For both datasets, the same clock emerges as a clear 

outlier, being typically S-15 minutes different from the other clock. 
We next remove the connections involving this outlicr and rccom- 
pute the medians. repeating this process until WC converge on a 
set of clocks that have small median offsets relative to one nnothcr. 
For Nl, this process removes 8 clocks as outliers. After eliminating 
these clocks, the remainder all have median offsets < 1.25 SK. We 
consider this group of I7 clocks as close/~ .sy&r~~rzi,-~(1. We can 

continue the process to find a core group of 5 hig/rL~ .s~nchrorri:rt/ 
clocks,. all with median offsets < 10 msec between one another. 

For tiz, removing 7 outliers leaves a group of 24 closely syn- 
chronized clocks, all with median offsets below 250 msec. Elim- 
nating six more of these leaves a group of I8 clocks with median 
offsets below 50 msec. We can further winnow the group down to 
a tinal set of IO highly synchronized hosts. all of which have mc- 
dian offsets between each other of less than IO msec. This gro~~p 

includes hosts on both coasts of North America as well as two in 
Europe, indicating synchronization well helow that of the propa- 

Figure 2: Evolution of lbli’s relative clock offset over the course 

Figure 3: Evolution of umont’s relative clock offset over the course 
OfJvz 

gation time between the hosts-very good, and around the accuracy 
limit for NTP reported in [Mi92b]. 

We will make use of these different groups of closely-synchro- 
nized and highly-synchronized hosts in 5 7 when we test whether 
close synchronization tends to correlate with low relative clock 
skew. 

WC finish with a look at how a host’s relative offset evolves over 
the course of an experimental run. The evolution is interesting be- 
cause it provides a largc-scale look at how clock accuracy changes. 
Our interest here is phenomenological-to develop an appreciation 
for clock inaccuracies and an awareness of how they occur. 

To assess offset evolution, for each host we constructed a plot 
with the relative offsets (in seconds) computed for those connec- 
tions for which it served as the data source on the y-axis, versus the 
time of the connection (days since the beginning of the experiment) 
on the z-axis. Positive values indicate the host’s clock was running 
hchind the receiver’s clock, negative that is was running ahead. 

Figure I shows such a plot for the austr tracing host’s clock 
over the course of the Nl experimental run. Up until the 14th day, 
it kept good time, hut after that point its clock came unglued and 
ran very slowly, such that the clocks of the other hosts to which it 
transferred data ran further and further ahead of it (hence, higher 
and higher offsets). Surprisingly, this is one of the clocks identi- 
fied above as Irighl~ s~&rronized! That assessment, however, was 
based on /r&inn relative offset, which filters out the aberrant be- 
havior. We look at this phenomenon further in fj 6.6. 

Figure 2 shows the evolution of lbli's clock during n/2. While 
overall the clock has a clear persistent skew, the skew is reversed 
around day 8, perhaps in an effort to correct the clock’s inaccu- 
racy (or perhaps just due to a temperature fluctuation). But the ef- 
fort ends a few days later and the original skew returns. However, 
around day 27 the clock’s relative offset jumps by over a minute, 
rellecting a different sort of correction. (This host synchronizes its 
clock upon rchoot.) 
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Figure 4: OTT-pair plot illustrating a clock adjustment (sender 
packets are tilled, receiver packets are hollow) 

Figure 3 presents our last example of intcrcsting clock offset 
evolution, for another $2 clock. What is striking here are the pres- 
ence of offset “towers” that, over the course of hours, slowly ele- 
vate the relative offset from nearly zero to several hundred millisec- 
onds. Apparently what is happening is that the clock has a fairly 
hefty intrinsic skew, but NTP synchronization is detecting this and 
periodically resetting the clock as it strays too far. 

5 Detecting clock adjustments 

As shown quite strikingly in Figure 2, computer clocks arc somc- 
times subject to abrupt adjustments in which the clock’s notion 01 
the current time is changed, either gradually or instantaneously. 
Gradual change is produced by artihcially altering the clock’s skew, 
so that it slowly shifts its offset towards the target. Instantaneous 
change is produced by simply loading a new value into the clock 
register. 

Backward clock adjustments, in which a clock is set to a value 
it already registered in the past, can sometimes be easily detected 
if the adjustment is large, by observing non-monotone timestamps. 
In this section we tackle the harder problem of clock adjustments 
(both forward and backward) that are not apparent by trivial inspec- 
tion of the timestamp sequences. 

5.1 Detecting adjustments graphically 

Suppose we have a tract pair between s and r. One simple way 
to detect whether a clock adjustment occurred during the tract is 
to plot both the OTTs for the packets from Y to T and those in the 
reverse direction. (Packets that are dropped by the network have no 
OTT associated with them and are omitted from the plot.) 

Figure 4 shows such a plot made for a connection from sdsc 
to USC in n/l. The solid black squares indicate the OTT for data 
packets sent from the sender to the receiver, and the hollow squares 
reflect the OTTs of the acknowledgement packets sent from the 
receiver to the sender. 

The figure shows a striking level-shift occurring for the scndcr’s 
OTTs around time T = 0.7 seconds, a fall of about 10 mscc. Fur- 
thermore, the OTTs in the opposite direction show an equal and 
opposife change. This equal and opposite change is a crucial as- 
pect of the plot, as it is the signature of a clock adjustment. If the 
shift were due to a change in network path properties (for exam- 
ple, a route change), then in general we would expect that either 
(1) it would occur in only one direction, or (2) if it occurred in both 
directions due to a coupled effect, it would have the same sign. 

For a networking change to result in an equal-but-opposite level 
shift, some resource needs to have been shifted between the two 
directions of the network path, and furthermore the rcsourcc needs 
to affect the transit times of the small acks equally with those of 
the large data packets. It is difticult to see what sort of networking 
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Figure 5: Same measurements after de-noising pair-plot 

change could do this. The change, however, makes perfect sense 
if, at around time T = 0.7 seconds, sdsc’s clock was set ahead 
IO msec, or USC’S clock was set back IO msec. In either of these 
cases, the difference in the timestamps for packets sent from sdsc 
to USC will decrease by 10 msec, and similarly those in the opposite 
direction will increase by 10 msec. This is exactly the behavior 
shown in the plot. 

5.2 Removing noise from OTT measurements 

Two other points concerning Figure 4 merit attention. The first is 
the presence of a few unusually small sender packet O’lTs, one 
of about 7 msec around T = 0, and the other of around -3 msec 
around T = 2.3. Both of these reflect sender packets that did not 
carry any data (the SYN and FIN connection management packets). 
These travel through the network more quickly than full-sized data 
packets, Hence our techniques need to be careful to not weigh their 
OTT values the same as those for full-sized packets. 

The second important point shown in the plot is the large varia- 
tion in OTTs, both for the full-sized sender packets and the smaller 
receiver packets, For example, note that the O’lTs of both some 
of the acks before the adjustment, and some the data packets af- 
ter the adjustment, are larger than many of the O’lTs on the other 
side of the adjustment. This variation is the first suggestion that 
we will require robust algorithms in order to not be fooled by noise 
when analyzing OTT data. The eye quite readily picks out the twin 
level shifts in this plot, but doing so algorithmically requires care 
to screen out noise such as these large OTT values. 

OTTs often exhibit considerable network-induced noise in terms 
of deviation of a given OTT from the value expected if the network 
were unloaded. The noise, however, has one crucial property that 
often makes it tractable: barring a significant change in the net- 
work path (such as a route change), the noise always takes the form 
of an additive, positive increase. This means that, given a set of 
OTT measurements, we can often hope to find those with very lit- 
tle network-induced noise by looking at the smallest values. 

WC will use this property of OTT noise below when develop- 
ing methods to detect clock adjustments and skew. For these latter, 
what is interesting are trerzcls in how the OTT values (with noise re- 
moved) change over the course of the connection. Thus, we cannot 
simply de-noise the OTT values by selecting the global minimum, 
or we will obliterate the trend. Instead we divide the series of OTT 
values up into intervals and de-noise each interval by selecting the 
minimum value observed during the interval. In [Pa981 we discuss 
details of how WC choose which intervals to use. 

We will refer to a measured series of OTT values as xt, and 
denote the dc-noised series derived from xt as Zt. For each ?t, the 
index t corresponds to the same index as where in the interval we 
found the (first) minimal value of zf. 

Figure 5 shows the results of applying this de-noising method 
to the measurements plotted in Figure 4. 

14 



5.3 An algorithm for detecting adjustments 

We now turn to attempting to detect adjustments algorithmically 
(though we will be forced to also introduce heuristics, for reasons 
discussed below). The central notion we will use is that of the .vig- 
~znturt’ of the OTTs in the two directions showing equal but opposite 
level shifts. 

Identifying pivots. The foundation of our approach lies in 
identifying pivots: points in time before which the OTTs all lie 
predominantly above or below all the O’ITs after the given point 
in time. In Figure 4, the pivot we aim to identify occurs around 
T = 0.7 sec. We now develop a heuristic for identifying pivots in 
the series of O’lTs for packets sent in a single direction (from s Lo 
T or vice versa). We then will analyze the pivots identified in both 
directions to test for a clock adjustment. 

Let Pt be a series ofde-noised OTT values occurring at times t, 
ordered by the time index t. Let fti be the same series numbered 
from i = 1 1~. where t, is the ith measurement time. We define 
a pivot partitio/z of it as a partition of Lt into two disjoint sets, II;{ 
and Zy, for which the maximum of one set is less than the minimum 
of the other. Without loss of generality, let 5; be the “larger” of the 
two sets, i.e., its minimum is larger than the maximum of :i:‘. 

We further require that the time intervals spanned by li:; and 
2;’ are disjoint, namely either the largest i in 5:; is less than the 
smallest j in *:I, or vice versa. 

We term the pivot partition positive if the measurements Z’, oc- 
curred u&r those in ?:‘, and negative otherwise. 

Geometrically, this definition corresponds to being able to draw 
horizontal and vertical lines on a plot like that in Figure 5 such that 
either all of the points lie in the first and third quadrants formed by 
the lines (if positive), or in the second and fourth quadrants (nega- 
tive). 

It is important to note that a given series 2t may have more than 
one pivot partition, For example, if Zt is strictly decreasing, then 
every value oft gives rise to a pivot partition. 

WC proceed as follows. First, we determine whcthcr to search 
for a positive or negative pivot by inspecting whether ?tl is less 
than or greater than 2,,, From here on, we assume without loss 01 
generality that we wish to detect a positive pivot, such as the one 
exhibited by the receiver packets (hollow squares) in Figure 4. 

We search through the measurements to find the point Ic where 
rnin(&,+, , Pt,+, ) - max(it,-, , St,) is largest. Conceptually. 
we are looking for the intervals that have the greatest difference 
between them in the same direction as the pivot; we spread the 
differencing over the additional intervals on either side to combat 
the problem of the intervals right at the pivot misleading us due to 
noise. 

Ic is now the candidate pivot (actually, the potential pivot occurs 
at a point in time between measurement k: and measurement k: + 
1). We then inspect the points < k to tind xk, the largest point 
before the candidate pivot, and likewise those > k to find xk+t. 
the smallest after the candidate. If XI, is less than ~k+t. then WC 
conclude that [k, k + l] does indeed straddle a pivot; otherwise, we 
conclude they do not. 

If we tind a pivot partition, then we define its magnitude A/r 
as the absolute value of the difference between the median of the 
points after the pivot with the median of those before. We also 
associate a pivot width, W = tk+l - tk. 

Identifying adjustment signatures. We now turn to identify- 
ing the signature of a clock adjustment for the clocks of two hosts, 
s and r. The method we developed is not entirely satisfying. as it 
uses some heuristics in order to accommodate residual noise in the 
OTT measurements, while attempting to not mistake genuine net- 
working effects for a clock adjustment. However. the method ap- 
pears to work well in practice (see 0 5.4). WC note, though, that the 
method assumes that clock adjustments are relatively rare cvcnts: 

rare enough that our traces are likely to exhibit at most one adjust- 
ment, and that the likelihood of both of the clocks we are compar- 
ing exhibiting an adjustment during the trace is negligible. This 
also appears to generally hold (again, see 5 5.4). 

Suppose we have two sets of de-noised OTT measurements, St 
and ft. If either of ,ql or ?, does nor exhibit a pivot, or if the pivots 
are both positive or negative. then we conclude there was not any 
clock adjustment, We next must check whether the pivots over&. 
Due to limited space, we defer discussion of doing so to [Pa98]. 

If the pivots do not overlap, then we conclude there was no 
adjustment. If they do, we then next look at the magnitudes of 
the pivots, If either magnitude is less than the larger of twice the 
joint clock resolution R,,,. (5 3), or 2 msec (an arbitrary value to 
weed out fairly insignificant adjustments), then we declare the pivot 
“insigniticant” and ignore it. 

Finally, we check whether I%& and n/r,., the magnitudes of the 
two pivots. are within a factor of two of each other. If not, then 
WC term the pivot a “disparity pivot,” meaning that it may be due 
to unusual networking dynamics (5 5.6). If the two agree within a 
factor of two (which cxpcricnce has shown is a good cut-off point), 
then we conclude that the trace pair exhibits a clock adjustment 
with a magnitude of about w. 

5.4 Checking the algorithm’s accuracy 

We now turn to the important question of How do we know the 
nlgorithm uctuully works. 7 Since WC arc restricted to post-facto 
analysis, we need to develop other means for detecting likely clock 
adjustments, and use them to gauge the algorithm’s accuracy. 

We can divide our accuracy concerns into two types: false pos- 
itives, in which the algorithm claims a clock adjustment occurred 
when in fact one did not, and false negatives, in which it fails to 
detect that an adjustment actually did occur. 

Since the algorithm only flags adjustments in a relatively small 
number of traces (5 5.5) WC can deal with the possiblity of false 
positives by manually inspecting each of these using a plot like in 
Figure 4 to determine whether we find compelling evidence that an 
adjustment really did occur. The process of doing so led to some 
of the liner points of the algorithm, such as rejecting “disparity 
pivots.” After these additions, we lind virtually no apparent false 
positives (though who knows how many we are missing because 
their presence is not visually compelling). 

The possiblity of false negatives is more difficult to address. 
Since we have too many traces to inspect by hand (though we did 
apply random sampling to hand-inspect a large number of traces), 
we developed two other heuristics for identifying clock adjustments. 
The first is to compute the minimum round-trip time (RTT) that 
could be derived from differences between the timestamps for any 
pair of packets between the two hosts, If this was significantly 
Iowcr than the minimum observed round-trip time (using a single 
clock), and especially if it was ever non-positive, then tcpanaly 
nags the trace as requiring manual inspection. The second is to 
compute the cross-correlation between the denoised OTT times in 
the two directions, and then to flag traces with strong negative cor- 
relations. The use of these heuristics also Icd to refinements in the 
dctcction algorilhm, such as spreading out the pivot differencing 
over multiple intervals when searching for candidate pivots, and al- 
lowing “slop” (see [Pa981 for details). After these additions, we 
find very few false negatives (see 5 5.6 for examples). 

5.5 Results of checking for adjustments 

tcpanaly uses the method given in 5 5.3 to check each trace pair 
it analyzes for clock adjustments. Doing so, we found 36 trace 
pairs in Nt out of 2,335 (I .50/o) that exhibited apparent clock ad- 
justments, and I28 out of 15,492 in hi1 (0.8%). While these pro- 
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Figure 6: Clock adjustment via temporary skew 

portions are fairly low, they are high enough to argue that a largc- 
scale measurement study for which accurate timestamps are impor- 
tant needs to take into account the possibility of clock adjustments. 
Furthermore, the adjustments are only detectable due to the USC o/’ 
a pair of clocks. If a study uses timestamps from only one measure- 
ment endpoint, then checking the timestamps for clock adjustments 
becomes much more difficult. 

The median adjustments were on the order of IO-20 msec, the 
mean around 100 msec, and the maxima close to 1 see. These 
magnitudes are unfortunately small enough to sometimes not be 
glaringly obvious, but large enough to be comparable to wide-area 
packet transit times, so they can introduce quite large analysis cr- 
rors if undetected. 

While clock adjustments are usually abrupt, this is not always 
the case. The adjustment-detection method found some clock ad- 
justments that occurred due to a short period of altered clock fre- 
quency (i.e., temporary skew). Figure 6 shows a striking example. 
Here, around time 2’ = 40 set the sender’s clock began running 
more quickly than the receiver’s, leading to lower sender OTTs and 
higher receiver OTTs. Less than 20 seconds later, the frequencies 
were again equal, but the relative offsets between the clocks shifted 
by nearly 1 set in the process. 

5.6 Problems with detection method 

The method given in $ 5.3 appears to work well in practice, at least 
in terms of the checkmg discussed above. However, it dots somc- 
times fail to detect clock adjustments. In this section we look at 
some cases where we identilied this happening. 

Failure to detect adjustment via skew. In Figure 6 we illus- 
trated how sometimes a clock adjustment can occur due to tempo- 
rary skew. However, in such cases there arc multiple pivots in each 
direction (any location along the skew line is a pivot), and somc- 
times, due to noise, the two pivots located by the method do not 
overlap, and the possibility of an adjustment is rejected. In general. 
this sort of failure will only occur with adjustments using tempo- 
rary skew; abrupt adjustments have sharply defined pivots. (This 
example was detected due to a non-positive minimum RTT, as dis- 
cussed in 5 5.4.) 

Excessive network-induced delay. Figure 7 shows a case where 
the reverse path exhibits a clear level shift around T = 70 xc, with 
a magnitude of about 250 msec, but the corresponding shift on the 
forward path is less clear because it is accompanied by an increase 
in networking delays, too. In that direction, tcpanaly assesses the 
magnitude of the shift as about 730 msec. Since this is more than 
twice the magnitude in the other direction, tcpanaly rcjccts the 
possibility of a clock adjustment. 

tcpanaly flags a trace pair like this as having a “disparity 
pivot,” namely common pivots that have too great a difference in 
their magnitudes to be considered a clock adjustment. Disparity 
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Figure 7: Likely clock adjustment masked by network delays 
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Figure 8: Double clock adjustment via temporary skew 

pivots are quite rare (only 61 in A$). We inspected each one and 
found that only the one shown above was a plausible clock adjust- 
ment, The rest appear simply due to unfortuitous patterns of noise. 

Multiple adjustments. The development of the clock adjust- 
ment detection algorithm presumes that there is a single clock ad- 
justment to be detected. Sometimes a trace pair suffers from more 
than one adjustment, and the algorithm either only detects one of 
them. or fails to detect any of them. The latter is particularly likely 
if there are two adjustments in opposite directions. Figure 8 shows 
a striking example of a trace pair with two adjustments, both ef- 
fected using temporary skew. (This example was likewise detected 
due to a non-positive minimum RTT, the strong negative correla- 
tion test also detects it.) 

Clock “hiccups.” Related to the multiple adjustments dis- 
cussed above are clock “hiccups, ” in which one of the clocks in a 
WICC pair momentarily either ceases to advance or advances very 
quickly. Figure 9 shows an example, occurring at time T = 6 sec. 
It is possible that this example is actually due to surprising network 
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Figure 9: Clock adjustment “hiccup” 
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Figure 10: An O’M’ pair plot showing relative clock skew 

dynamics. as the 4 acks with lowered OTTs come right after the 
only packet reordering event in the trace. (While a clock glitch can 
change the value of OTTs, it ~~777~07 reorder packets on the wire! 
But XC [Pa97h] for mcasurcment errors that can indeed rcorclct 
packets.) It is difficult to see what networking mechanism could 
lead to the data packets in the opposite direction simultaneously 
experiencing increased delay. 

6 Assessing relative clock skew 

Errors in relative clock skew, which often introduce inaccuracies 
on the order of perhaps a few seconds a day, might seem trivial 
and perhaps not worth the effort of characterizing. For purposes of 
keeping fairly good absolute time, this is true, but for purposes ol 
assessing network dynamics, it is not. 

To illustrate why skew is a crucial concern, consider evaluating 
OTTs between two hosts s and T, for which ,r.‘s clock runs O.Oi% 
faster than s’s, If we are computing OTTs between s and 7’. then 
over the course of only 10 minutes T’s clock will gain 60 msec over 
s’s clock. If WC ussu~nc that variations in OTT rcfiect yuewiug 
delays in the network, then this minor clock driJt could lead to CL 
lurge fhlse interpretation of growing congrstion. For example, if 
s sends 512 byte packets to T and the bandwidth of the path bc- 
tween them is Ti (1.544 Mbps), then a true 60 msec increase in 
delay reflects the equivalent of an additional 23 packets’ worth of 
queueing. Thus, quite “minor” skew differences between the two 
endpoint clocks can lead to quite large, erroneous assessments 01 
queueing delay. 

The first issue for detecting skew is to identify a skew “sig- 
nature” similar to that for clock adjustments shown in Figure 4. 
Figure IO shows an OTT pair plot that exhibits a clear skew sip- 
nature: the OTTs in one direction show a btcady overall incrcasc, 
while those in the opposite direction show a steady decrease. Both 
changes have a magnitude of about I20 msec over the 2 minute 
course of the connection, consistent with the receiver’s clock ad- 
vancing about 0.1% faster than the sender’s clock. It is difficult 
to see what sort of network dynamics could introduce such a true 
combined inflation and deflation of 07Ts over a two-minute pc- 
riod. so we conclude that the OTT pair plot shows strong cvidcncc 
of relative clock skew. 

We now turn to developing robust algorithms for dctccting and 
removing relative clock skew. 

6.1 Defining canonical sender/receiver skew 

We begin by defining exactly what quantity it is that we wish to 
estimate. First, we assume that the skew trends we identify will be 
linear. While we might possibly encounter non-linear skew, we did 
not find any clear examples of such in JVI or n/,. For linear skew. 
we can summarize the skew using a single value that reflects the 
excess rate at which one clock advances compared to the other. 

To avoid ambiguity (in terms of which clock we are comparing 
to which). we will always quantify how C,., the receiver’s clock, 
advances with respect to C,. Suppose Cr runs a factor r] faster 
than C,?. by which we mean that, if C,T reports that an interval AT 
has clapsed, then C,. will have reported the same interval as having 
length rlAT. 

The algorithms we develop arc based on how OTT measure- 

ments expand or shrink with respect to time. It is important to rec- 
ogniLe that the phrase “with respect to time” does IZO~ mean “with 
respect to true time.” since we have no way of measuring true time. 
Instead, it means “with respect to the clock at the packet origina- 
tor.” 

When discussing ;I linear trend in the measured OTTs of the 
packets sent by host Y. we will quantify the trend in terms of G,$, 
the growth in the 01-I’s of the packets sent by s. Suppose packet 
1,1 is sent at time T,:. according to C,. and arrives at time T,!, 
according to C,.. Likewise, suppose packet 1~ is sent at T,: and 
arrives at T,?. Suppose further that the transit times of the packets 
arc identical (no network-induced noise), so the only variations in 
their O’ITs arc due to clock skew. 

The measured 07Ts for the two packets are: 

4, =T,i -‘T:,, (jz = T,? - Tj. 

As G,Y quantilics the linear growth in measured OTTs over time: 

In the absence of relative skew, G, = G,. = 0.0, where G, quan- 
tilies the growth in OTTs of packets sent by T. If C,. runs faster 
than C,,, then the packets sent by s will exhibit increasing Chits 
and those sent by 7’ will exhibit dwxxsbzg OTTs, so we will have 
G,5 > 0 and G,. < 0. Naturally. the reverse holds if C, runs slower 
than C,-, 

It can he shown that: 

G,q = ,r-1 

G,. = 1-1 
“I 

1 
- - 1. 

= G,,+I 

(1) 

(2) 

(3) 

For 71 = 1 + F, whcrc ICI < 1, WC have: 

G, =F, G,.=-F=--E 
l+f 

Because clock skews are often only a few parts per thousand or 
ten thousand, we are usually in this regime (but see 5 6.6 below). 
Consequently, an easy inaccuracy to introduce is to assume that: 

G,s = -G,, 

(i.e.. the slopes are equal but opposite), since this often appears to 
he the case when inspecting OTT pair plots. To ensure full xcu- 

racy. we instead take cart to always use Eqns 1 and 2 to express 
relative clock skew in terms of 11, or Eqn 3 to translate G,. to G,. 
We will refer to values of G,Y and G, that are consistent with re- 
spcct to Eqn 3 as “equivalent but opposite trends.” 

6.2 DifFiculties with noise 

One particular problem with testing for clock skew is that, due to 
qucucing Iluctuations, one direction of a path can have such highly 
variable OTTs that these completely mask the smaller-scale trend 
or O’IT increase or decrease due to skew, even after de-noising. 
Figure I I shows an cxamplc, in which congestion on the forward 
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Figure 12: Enlargement of reverse path 

path completely obscures the relative clock skew, which is apparent 
from the enlargement of the return path shown in Figure 12. Such 
noise most often obscures the forward path (presumably due to ex- 
tra queueing induced by the data packets), but it can also obscure 
the reverse path. Thus, we cannot always rely on the signature ol 
clual equivalent-but-opposite OTT trends; sometimes we must sct- 
tie instead for simply a compelling trend in one direction. 

Furthermore. network-induced noise also scuttles what might 
seem the most straightforward approach to detecting skew, namely 
fitting a line to the de-noised OTT measurements, 9t and *?t (ii 5.2). 
Even using de-noised measurements, least-squares fitting fails to 
provide solid skew detection, because residual noise in 6f and ft 
makes it too difficult to reliably distinguish between a skewing 
trend and coincidental opposite queueing trends. All it takes is one 
period of elevated queueing at either end of a connection to throw 
off the tit. 

Unfortunately, the same also occurs using robust titting tech- 
niques, such as estimating the line’s slope as the median of all of 
the pairwise slopes between the individual de-noised measurcmcnts 
[HMT83]. The difficulty lies in both false positives and false neg- 
atives generated due to queueing Huctuations. Clearly, we need an 
even more robust technique. 

6.3 A test based on cumulative minima 

Eventually we recognized that the most salient feature of relative 
clock skew is not simply the overall trend (slope) of the OTT mea- 
surements, but the fact that the smallest such measurements contin- 
ually increase or decrease. This observation suggests the following 
statistical test, the strength of which is that it is nearly immune to 
transient increases in OTT measurements due to queueing buildups. 

Suppose we have IL observations Xt,, 1 < i 5 n, where t, is 
the time of the observation and Xt, is the value of the observation. 
We assume that the t,‘s are monotone increasing, and that the Xt, 
arc distinct. Further, we assume without loss of generality that we 
wish to test for a negative trend in XtL. We discuss applying the 
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Figure 13: Distribution of R(n, k) for n. = 15 

same test for a positive trend in 3 6.4 below. 
Consider the indicator: 

I/, = 
1, if Xt, < nun,<, Xt,, or if j = 1, and 
0 otherwise. 

That is, It, is I if Xtl represents a new “cumulative minimum” if 
we inspect Xt, from I up to j (but not all the way up to n), and 0 
if there is an earlier XL, that is less than Xi,. 

If the XI* are independent, then we immediately have: 

Consider now the function: MI = c,!=I It,, which is the 
number of cumulative minima seen as we Inspect Xti from the 
first value up to the jth value. The key observation we make is that, 
in the absence of a negative trend. the distribution of Mj will tend 
to be close to that for independent Xt, ; that is, we will find a few 
cumulative minima but not a great number: while, in the presence 
of a negative trend, we should tind many cumulative minima, since 
the Xtt tend to get smaller and smaller. 

Suppose we lind A& = k, that is, the Xt, exhibit k cumulative 
minima. We wish to compute the probability that we would have 
observed this many or more minima, given the independence as- 
sumption If we find the probability sufficiently low, we will reject 
the null hypothesis that the Xt, are independent. In its place we 
will accept the tentative hypothesis (which we will further test in 
3 6.5) that the X,, exhibit a negative trend. 

Let n(n, k) = P[Mr, 2 k]. Given 0 < k < 71, we can 
compute R(~L, k) recursively, as follows: 

Iqn, I;) = 

1 

1, if k = 0, 
1 /?L!, if k = 7~ and (4) 
f1(11- l,k-l)+(n-l)K(71-l,k) ifk < n. 1L 

The first case is the degenerate one that grounds the recursive defi- 
nition: the probability that there are at least 0 cumulative minima is 
always I. The second case corresponds to every single Xii being 
a cumulative minimum. This only occurs if the Xt, ‘s are sorted in 
descending order, which, if they are independent, has probability 
l/n!. 

The last case corresponds to conditioning on whether Xt, is a 
cumulative minimum or not. For independent Xt;, it will be a CU- 
mulative minimum with probability l/n, and not with probability 
(71 - 1)/71. 

Figure I3 shows the distribution of R(n, k) for R. = 15. The 
key feature of the distribution that makes it a powerful test for a 
negative trend is the rapid fall-off in probability above a certain 
point, in this case around k = 8. Because if the Xt,‘s do indeed 
have a negative trend we should tind k quite close to 71, this means 
we can readily distinguish between the case of a negative trend and 
that of no trend. without requiring that all of the Xi, be increas- 
ingly negative. Thus, WC can accommodate considerable noise. 
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6.4 Applying the test to a positive trend 

The test developed in 3 6.3 for detecting a negative trend can also 
be applied to detecting a positive trend. with one subt~cly. At lirst 
blush one might think that, to do so, one simply LISCS maxima in lieu 
of minima. This works in principle, but fails when applied to OTT 
sequences, because of the positive additive nature of OTT noise 
(3 5.2). That is, the maxima will be often dominated by the noisiest 
OTT values, rather than by OTT values that slowly rise due to skew. 
so the noise will obscure any positive trend due to clock skew. This 
remains a problem even after de-noising, since all it takes is a single 
period of elevated OTT values, long enough to span an cntirc dc- 
noising interval, to pollute the de-noised values with what will in 
some cases be a global maximum. When searching for a negative 
trend. such an interval will, on the other hand, simply not include 
a cumulative minimum; but it will not prevent the test fr-om tinding 
other minima due to clock skew. 

There is a simple tix for this problem, though: we apply the 
cumulative minima test to E;, = X’r,,-,+r, which is simply XI? 
viewed in reverse. The reversal converts a positive trend in XI, 
to a negative trend in Yr, , which the cumulalivc minima algorithm 
then readily detects. 

6.5 Identifying skew trends 

With the cumulative minima test we finally have a robust algorithm 
for detecting trends. These trends, however, might not bc due to 
clock skew but to networking effects, so we need to develop furthet 
hruristic checks to correctly detect linear skew. 

Suppose we have two sequences of de-noised OTT measurc- 
ments, BL and Ft. corresponding as usual to the full-sized data pack- 
ets sent from the connection sender to the receiver. and the acks sent 
back from the receiver to the data sender. For each sequence. we 
first determine whether it is a skc>w carzdidutc~ as follows. 

Let ut denote the given sequence. Let R,(~L, I;) bc the proba- 
bility that the sequence ut matches the null hypothesis of no trend 
(independence) given by Eqn 4. We consider ut a skew candidatc 
if either: 

1. &(7~, k) < lo-” and 2~t is either it, or ?I,, is Bt and its 
trend is negative. This latter test is because queueing buildup 
due to the data packets sent along the forward path can often 
produce a strong positive trend; or 

2. I&,(11, Ic) < lo-” and it is tightly clustmd around the 
“trend line,” which is computed using a robust linear lit (pet 
the algorithm discussed above) to just the (denoised) timings 
corresponding to the cumulative minima or maxima. 
The goal here is to allow for a skew candidate if the 1~ points 
lit quite closely lo a (linear) trend, even though their cumula- 
tive minima probability is not so small. This can happen, fog 
example, if we do not have a large number of points in ‘it. 

Note that the limit of IO-:’ precludes assuming a skew cnndi- 
date if there are fewer than 7 points, since l/t?! % 1.4 lo-, 
(but see below). 

It remains to define “tightly clustered.” To do so, WC corn- 
pute the inter-quartile range (75th percentile minus 25th per- 
centile) of the distance between the 2~~ and the trend lint. Ifit 
is less than or equal to the larger of the joint clock resolution, 
R.,,,., or 1 mscc, then a large number of the de-noised OTTs 
lie very closely to a pure linear trend. 

We next determine whether either .?r or ?‘t is compelling enough 
by itself to accept as evidence of a skew trend: or if the pair form a 
j&t skew candidate, to be investigated further; or if there is insul- 
ficient evidence for a skew trend. To do so, WC first consider which 
of them is individually a skew candidate. as follows: 

If neither is a candidate, then we check to see whether 
mas(R,(~r, k:), &(u, k)) 5 lo-‘. If so, then the joint 
probability that both have no trend (or, more precisely, are 
fully indcpcndent) is < 10V4. which we consider sufficiently 
low to consider them as joint skew candidates and proceed as 
discussed below. If either probability exceeds lo-“, then we 
reject the tract pair as a candidate for exhibiting a skew trend. 

If’?b is a skew candidate but L?t is not, then we accept ?t as 
reflecting clock skew quantified using the corresponding G,. 
We do so because sometimes WC have no hope of detecting 
a skew trend in .$ due to queueing buildup, as illustrated in 
Figure I I and Fipurc 12. 

If ,<, is a skew candidate but pt is not, then we check the 
direction of .S:r ‘s trend. If it is negative, then this goes against 
the networking tendency for a positive trend induced by the 
qucueing of the data packets along the forward path, and we 
accept Bc as reflecting clock skew quantified using G,. 

If the trend is positive, we must proceed carefully to screen 
out a false skew trend due to queueing. See [Pa981 for details. 

If both 6t and ft are skew candidates, then we consider them 
together a joint skew candidate. 

If the above proccdurc yields a joint skew candidate, we then 
evaluate the candidate as follows: 

I. If both candidates have the same trend direction, then we 
reject the possibility of a skew trend. 

2. If not, then WC translate the lirst candidate’s skew quantifica- 
tion into terms of the second candidate using Eqn 3. Let GI 
and Ga bc the corresponding skew quantifications. If 

that is. the difference between the two exceeds their average, 
then WC reject the pair as having too much variation in their 
slopes for them to be trustworthy indicators of skew. Other- 
wise, we accept the pair as indicative of a skew quantified as 
c = Gl+G’: , 2 

6.6 Results of checking for skew 

tcpanaly uses the method given in 5 6.5 to cheek each trace pair it 
analyzes for clock skew. As WC did for detecting clock adjustments, 
we gauged its accuracy by visually inspecting many of the skews 
it found (to detect false positives), and also (for false negatives) 
hy hand-inspecting randomly chosen traces, as well as those with 
strong, negative cross-correlations in their OTTs or excessively low 
minimum RTTs (per 5 5.4). These last, as for clock adjustments, 
often occur in the prcscnce of signiticant clock skew. Making these 
cheeks led to a number of the heuristics outlined above, and WC now 
lind the algorithm appears reliable, at least in terms of plausible 
skew trends we can dctcct visually. 

The method indicates that 295 trace pairs in Nr out of 2,335 
(I 3%) exhibited clock skews, and 487 out of 15,492 did so in Afz 
(3%). These proportions are high enough to argue for considerable 
caution when comparing timestamps from two different clocks. 

In both J$ and tin, about threc-yuarters of the skews were de- 
&ted on the basis of it alone not particularly surprising since 
often a skew trend in .i;~ will he lost in the OTT variations due to 
qucueing induced by the data pack&s. (We could avoid this prob- 
lem if WC could choose the particulars of our measurement traffic, 
rather than analyzing TCP bulk transfer traftic.) The largest skew 
in .IV~ was a whopping 71 = 5.5, meaning that one clock ran snore 
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Figure 14: Example of extreme clock skew 

than five times faster than the other! Figure 14 shows how skew 
like this appears in an OIT pair plot. In the forward direction, the 
connection’s elapsed time was only 2 set, but in the reverse direc- 
tion it took 10 set! 

This example is more than just an amusing curiosity. It oc- 
curred not once but 43 times in n/l (see Figure I). We note, how- 
ever, that this clock (which corresponds to the austr site) was one 
of the ones identified in fj 4 as being highly synchronized with a 
number of the other sites, indicating care was being taken Lo keep 
accurate time with it (presumably using NTP). Thus. this clock’s 
behavior is a compelling argument that just becmsc~ ~1 clock is bc- 
limcti to be well-synchronized does not rmrkr it immune ,from CI 
trmc) error! 

Aside from austr’s clock, the next largest skew we observed 
in n/l was 7 = 0.991, a frequency difference of about 0.9% This 
led to an OTT change of about 70 msec during an 8 set connec- 
tion. All in all, after removing connections involving austr, in NI 
the median skew had a magnitude of about 0.0230/o, and the mean 
0.035%~. These are small, but not negligible. 

In nip. the prevalence of trace pairs exhibiting skew was sig- 
nificantly lower (3% versus 13%). perhaps due to the USC among 
the participating sites of newer hardware with more reliable clocks. 
After removing one site that either had a very broken clock or very 
unusual network dynamics (we were unable to determine which: 
perhaps it was both), the largest skews we observed were on the 
order of 6%. Figure I5 shows an example. The pattern is quite 
striking, and clearly could lead to grossly inaccurate conclusions 
about network dynamics if undetected. Note that both sites in 
volved in this connection were among those identiticd as closely 
synchronized in Afz (5 4), again emphasizing that clocks that are i/z 
gencd well-synchronized can still exhibit very large errors. 

After removing these connections, the median skew magnitude 
of the remainder in tin is about 0.01 I%, and the mean around 
0.016%. These are a factor of two smaller than those in .&‘I, but 
still not completely negligible for assessing queueing in longcr- 
lived connections. 

6.7 Removing relative skew 

As discussed in the previous section, a non-negligible proportion 
of the trace pairs in our study suffer from relative clock skew. WC 
would like to remove this skew so WC can then reliably include 
those traces in subsequent analysis of network dynamics. Fortu- 
nately, the skew almost always appears well-described as linear, 
which means it is straight-forward to remove it. 

To remove skew of magnitude ‘11, we simply modify all the time- 
stamps t:’ generated by C,. using: 

t:” = t; + G,.(t; - t;;), (5) 

where G,. is given by Eqn 2 and t;; is the first timcstamp generated 
by C,. 
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Figure 15: Strong relative clock skew of 6% 

Applying Eqn 5 does not necessarily rectify C,‘s skew with 
respect to true time. However, we can still make the two sets of 
timcstamps consistent, and eliminate artificial trends in the network 
delays we compute, even if some absolute skew remains. 

After tcpanaly removes relative skew, it re-analyzes the clock. 
If it still detects relative skew, then either its initial assessment that 
the trace pair had relative skew was wrong, or the skew was not lin- 
ear. It flags this case separately, and also then refrains from any fur- 
ther timing analysis. Thus, re-analysis provides a self-consistency 
test for the soundness of our skew detection, This test failed less 
than 2% of the time. 

7 Clock synchronization vs. stability 

We finish our study with an investigation into the question of whether 
highly-synchronized clocks tend to be free of problems such as ad- 
justments and skew (which we will term “stable”). 

WC might hope that highly-synchronized clocks would also be 
stable because freedom from such problems would tend to greatly 
aid a clock in maintaining synchronization. On the other hand, 
if good synchronization is maintained by frequently adjusting an 
errant clock to match an external notion of accurate time, then such 
clocks might be I?ZOY~ likely to exhibit adjustments or skew, and 
hcncc be less stable than other clocks. 

The issue is an important one because it is quite cheap to de- 
termine whether a remote clock’s offset is close to that of a local 
clock (by piggybacking timestamps when exchanging packets). It 
relative accuracy is a good indicator that the remote clock is stable, 
then we can quickly determine that we can rely on the soundness 
of the timestamps generated by the remote clock, without having 
to go through all the effort of the methods developed in this paper 
for detecting adjustments and skew. Such a quick determination 
could prove invaluable for a transport protocol that needs to decide 
whether it can trust the timing feedback information being returned 
t’rom ;I remote peer. 

Table 1 shows the relationship between relative clock accuracy 
and the likelihood of observing a clock adjustment. We see that 
closely synchronized clocks, i.e., those with a relative offset under 
I sec. are only slightly less likely to exhibit a clock adjustment than 
less closely synchronized clocks. Thus, relative clock accuracy is 
not a good predictor of the absence of clock adjustments. 

Table 2 shows the relationship between relative clock accuracy 
and the likelihood of observing relative clock skew. For Mr. clock 
synchronization only provides an advantage if the clocks are highly 
synchronized, with a relative offset under 100 msec and preferably 
under IO msec. For ,hf~, however, synchronization of under I set 
provides a delinitc advantage in predicting a lower likelihood of 
skew. though much better synchronization provides little additional 
predictive power. For both Nr and tin, not even very close syn- 
chronization reduces the likelihood of encountering clock skew to 
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Paset I 
/ Relative offset 1 Likelihood of adjustment 1 

Nl < 1 set I I .4 ‘%I 

Table 1 : Relationship bctwcen rclativc clock accuracy and clock 
adjustments 

Dataset Relative offset Likelihood of’skcw 

N 
N: 

< 0.01 xc 0.05% 
< 0.1 see 5.6% 

2 < 2 1 1 xc see 13 12 ‘i/’ ‘I/r) 

N2 < 0.001 xc 1.3 % 

$2 
< 0.01 set 0.8X 7’ 

< 0.1 set I .3 ‘3’ 

Ml < 1 xc 1.x % 
N2 > 1 set 5.3 %’ 

Table 2: Relationship between relative clock accuracy and clock 
skew 

a negligible level (i.e., appreciably lower than I %I). 
We conclude that relative clock accuracy provides no benclil in 

assuring that clock adjustments will be unlikely, and some benefit 
in assuring that clock skew is leas likely, but not to such :I degree 
that we can ignore the possibility of’ clock skew when analyzing 
more than a handful of measurements. 

In addition, we conjecture that the closely-synchronizer1 1~0x1s 
in our study are most likely synchronized using NTP. If so, then 
the use of’ NTP does nor reduce the likelihood of clock adjustments 
introducing systematic errors when measuring packet transit times, 
and reduces hut does not eliminate the likelihood of’ clock skew 
introducing systematic errors. This finding does not mean that NTP 
fails to keep good time. Rather. the timescales on which it dots so 
significantly exceed those of’ our connections. NTP keeps good 
time on large time scales precisely by altering clock behavior on 
small time scales. 

8 Summary 

The problem of’ comparing timcstamps between unsynchronized 
clocks might at first appear relatively minor. But. as WC devcl- 
oped in the introduction, it actually has significant impact on the 
accuracy of wide-area network measurement. If we can compare 
such timestamps reliably, then we can USC “receiver-hased” mca- 
surement in order to directly measure the propcrtics along one di- 
rection of’s network path, rather than unavoidably conflating thcsc 
properties with those along the rcversc path, as happens with “ccho- 
based” measurement. 

Unsynchronized clocks arc subject to at lcast two types of’ er- 
rors: clock adjustments, in which one of’the clocks rapidly changes 
its current setting. and relative clock skew. in which one clock runs 
faster than the other. If undetected, hoth of these can intro&cc 
measurement artifacts that can masquerade as changes in delay due 
to genuine networking effects. In this paper we have undcrtakcn to 
develop robust algorithms for detecting both adjustments and rel- 
ative skew, even in the prcsencc of’ significant noise in the timilrg 
measurements. While our algorithms require some heuristic tuning 
to minimize inaccuracies in terms 01. lalsc positives and fnlse ncg+ 

tives, with this tuning in place we tind that they appear reliable, as 
best as we can judge without a source of independent calibration. 

In summa,-y. prudent large-scale mcasurcment and analysis of 
packet timings should include algorithms such as these as self- 
consistency cheeks to dctcct possible systematic errors. even in the 
presence of synchronir.ation via algorithms such as NTP, which WC 
find doca not render clocks immune from errors (!i 7). We further 
argue that even pairs ol.clocks using a more direct external synchro- 
ni/ation source such as GPS should bc subjected to such checks, as 
;I means 01’ assuring that no timing errors have crept in between the 
original. highly accurate time source, and the packet timestamps 
ultimately produced hy the inevitably imperfect computer clocks. 
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