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Abstract. Optimal linear predictors can be utilised in ABR control algorithms
for the management of self-similar network traffic. However, estimates of the
Hurst parameter are required to generate these predictors, and uncertainity in
these estimates results in a potential mismatch of the predictors to the traffic.
When mismatched congestion control algorithms are used within the network,
the impact on the network system is greater queue lengths at buffers and more
significant cell losses. The sensitivity of these algorithms to the Hurst parameter
estimate is investigated both analytically and using simulations. It is shown that
an asymmetry in the sensitivity occurs in the region where the Hurst parameter is
significantly underestimated.

1 Introduction

A significant amount of research in the area of teletraffic modeling has been focused on
proving the self-similarity of network traffic [1, 2]. Methods of accurately estimating
the Hurst parameter, the index of self-similarity, is a key issue within this area, and
these range from relatively simple methods, such as the variance-time plots and R/S
statistic analysis [3], to more sophisticated techniques, such as Whittle’s estimator and
estimators based on the wavelet transform [3, 4]. Having demonstrated that network
traffic is self-similar, the subsequent step is to determine the impact of self-similarity
on the network as a system. The performance of a queue is fundamentally different
when the input process to the queue is self-similar [5], with the distribution of the
queue length now being heavy-tailed. In the case of finite buffers, higher cell losses
occur within the system and these losses decrease hyperbolically as the buffer size is
increased, rather than the exponential decrease which occurs with Poisson processes
[6].

These rather serious consequences of self-similar traffic has driven research, though
a limited extent, to consider methods of recognising the characteristics of self-similarity
within network resource management techniques [7–9]. Our research has focused on
incorporating the characteristics of self-similarity into congestion control algorithms,
and in particular rate-control mechanisms for the ABR service in ATM networks [10,
11]. This work has demonstrated that the buffer memory requirements and cell losses
can be reduced if the control algorithms are developed using the stochastic structure of



the self-similar background traffic, and that adaptive algorithms based on on-line Hurst
parameter estimators can be implemented which track non-stationarities which occur in
the traffic.

An area which has not been addressed by any known research work is that of in-
vestigating the effect of poor knowledge of the actual Hurst parameter when resource
management algorithms are designed specifically with self-similarity in mind. In this
paper, this sensitivity is investigated more thoroughly, both through analysis of the rel-
ative change in variance of prediction errors resulting from the mismatched algorithm
and through simulations, where data sets are tested with a range of algorithms devel-
oped from different Hurst parameter values.

2 Self-similarity of Network Traffic

2.1 Concepts and Models

There is significant statistical evidence that a wide range of classes of network traf-
fic is self-similar in nature. This means that there is no natural length of the bursts in
the traffic, and the traffic remains bursty over a range of time scales (hence the term
“self-similar”). The Hurst parameterH is the index of self-similarity of a process, and
a process is categorized as long-range dependent (LRD) when the parameter lies in the
interval 0:5 < H < 1:0. Long-range dependence means that the correlations within
a process decrease hyperbolically rather than exponentially, so that the autocovariance
function for LRD processes is non-summable. While the burstiness of LRD traffic can
cause buffer overflows and losses, long-range dependence can be used to one’s advan-
tage in terms of prediction [10, 12]. These large correlations mean that there is sig-
nificantly more information within previous states regarding the current state in LRD
processes than in short-range dependent (SRD) processes, and more accurate predic-
tions can be achieved from appropriately filtering stored measurements of the process
in the past.

There are a number of well-known models used for processes which display self-
similarity. Fractional Brownian motion is the canonical example of a self-similar
process, and its incremental process (called fractional Gaussian noise—fGn), has the
autocovariance function:
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where the asymptotic behaviour of the autocovariance function shows that the process
is long-range dependent. A self-similar process can be parsimoniously represented by
an fGn model, if the mean, variance and Hurst parameter of the process are known.
Another important class of self-similar models is the fractional ARIMA family of mod-
els, which are a natural extension of the ARIMA(p; d; q) models where the differencing
parameterd is allowed to assume fractional values.



2.2 Estimation of the Hurst Parameter

As stated in Section 2.1, the Hurst parameter plays a key role in characterizing the
self-similarity of a process. Thus, the estimation of this parameter from a set of mea-
surements is crucial in determining whether a process is self-similar, and has attracted a
significant amount of research. Self-similarity manifests itself within data in three fun-
damental ways—slowly decaying variances as the data is aggregated, long-range depen-
dence within the covariance structure and a spectral density which obeys a power-law
with divergence near the origin. Methods of estimating the Hurst parameter are based
on quantifying one of these behaviours, usually by estimating the slope of a graph based
on some transformation of the data.

Two heuristic estimation techniques are variance-time analysis and the rescaled ad-
justed range (R/S) statistic analysis [3]. Variance-time analysis is based on the asymp-
totic relationship of the variance of sample averagesX(m) of non-overlapping blocks
of data of sizem from the processX , with the relationship given by:

V ar(X(m)) � cm�� ; as m!1 (2)

with 0 < � < 1 for LRD processes. The other well-known heuristic technique isR/S
statistic analysis, where theR/Sstatistic exhibits the Hurst effect as described by the
relationship:

E[R(n)=S(n)] � cnH ; as n!1 (3)

with the parameterH typically about0:7.
More refined methods of data analysis are based on maximum likelihood type es-

timates (MLE) and the use of periodograms which effectively transform the data into
the frequency domain, to estimate the power-law behaviour near the origin. The well-
known Whittle’s estimator is an approximate MLE which is asymptotically normal and
efficient. The Abry-Veitch (AV) estimator is a fast estimation technique based on the
wavelet transform [4]. The wavelet domain is a natural framework from which to view
self-similar processes due to the scaling behaviour which is common to both fields. The
wavelet transform generates a set of detail coefficientsdx(j; k) from a data set, and for
a LRD processX, the variance of the detail coefficients at each levelj is given by the
relationship:

E[dx(j; �)
2] = C � 2j(2H�1) (4)

with C > 0. An important property of the AV estimator is that it can be reformulated
to generate on-line estimates of the Hurst parameter [13]. This is because it is based on
the fast pyramidal filter, which was originally intended for on-line applications. These
on-line estimates can be used within adaptive ABR control mechanisms [11].

3 Using Hurst Parameter Estimates in ABR Rate Control

The potential impact of self-similar traffic within networks, such as greater queue
lengths at nodes and increased cell losses, makes it necessary to incorporate the charac-
teristics of self-similarity into resource management algorithms. In particular, we have



investigated using the properties of long-range dependence to improve the accuracy of
predictions of traffic levels in the network to develop congestion control algorithms
for the ABR service [10]. Predictors are developed using the stochastic structure of
the self-similar background traffic, and the estimated Hurst parameter is important in
characterising this structure.

3.1 Modeling ABR Control

The concept of the ABR service is to utilise available bandwidth within the network
by controlling the sources which agree to the conditions of the ABR service contract.
This means that the network returns control information back to the ABR source re-
garding the allowable rate which the source can transmit at. The approach which has
been used in our research is to determine optimal predictions of future traffic levels,
and calculate the ABR rates from these predictions. The network model defined here is
based on controlling the bandwidth of the outgoing link by aiming to achieve a specified
link utilization. This follows the model proposed by Zhao and Li [14]. The congestion
avoidance policy can be formulated as follows,

U(k) +Rb(k) = � C (5)

where the control aim is to keep the offered load at a proportion� (0 < � < 1) of the
outgoing link capacityC.

The total rate-controlled bandwidthU(k) is made up of the summation of the indi-
vidual bandwidths used by theN rate-controlled connections. Each connection has its
own round-trip delayÆj through the network. Then the state variable of the system can
be defined as deviation from the target utilization, that is

x(k) = � C �
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We can further define the variableW (k) = � C �Rb(k), thus resulting in the equation

x(k) = �
NX
j=1

uj(k � Æj) +W (k) (7)

Equation (7) is in the form of a multi-input single-output (MISO) control system.
The aim of this control system is to determine the inputsuj(k) so that the variance
E[x2(k)] is minimized. However, a control system for a MISO system is computation-
ally too expensive. To simplify the system, the available bandwidth is equally shared
among rate-controlled connections. Thus, we can define:

wj(k) =
W (k)

N
; j = 1; : : : ; N (8)

The system now becomes a collection of N subsystems, each with their own controller:

xj(k) = �uj(k � Æ1) + wj(k); j = 1; : : : ; N (9)



where the round-trip delays have been ordered such thatÆ1 � Æ2 � � � � � ÆN without
loss of generality.

Our control aim now is to minimizeE[x2j (k)]. This is equivalent (refer to [15]) to
requiringx̂j(k) = 0 for all k. Taking the expectation of (9) and settingx̂j(k) = 0, we
have the following general control law for each subsystem:

uj(k) = ŵj(k + Æj jW (m) : m � k) (10)

Thus, we require the allowed rates of the individual source ratesuj(k) to be equal to
the predicted values of the system parameterswj(k+ Æj), which are determined by the
amount of bandwidth available in the outgoing link. This prediction can be achieved by
using the self-similarity of the network traffic.

3.2 Optimal Prediction of Self-similar Processes

As we have defined our system model in Section 3.1, we require the prediction of the
background network traffic which is traversing a particular node in the network to deter-
mine the desired rates of the controlled sources. This information experiences a delayÆ
in the network before the effects can be observed at the same node. Hence, we require
a Æ-step predictor. The long-range dependence property of network traffic can be em-
ployed to provide more accurate predictions. The optimal linear predictorG

�

Æ is of the
form:

X̂k+Æ = G
�T
Æ XM (11)

whereXk is a covariance stationary stochastic process with zero mean, variance�2 and
autocovariance function
�(k) andXM is the vector of stored traffic measurements
fXk; Xk�1; : : : ; Xk�M+1g

0.M is the memory-length of the predictor. The solution is
given in [16] and is found by taking the expectationsE(Xk+ÆXk+Æ�m) on both sides
of (11) form = k �M + 1; : : : ; k, resulting in the matrix equation:

� �
G

�
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where� �(i; j) = 
�(i � j) is theM �M covariance matrix,
�Æ = (
�(Æ); 
�(Æ +
1); : : : ; 
�(Æ +M � 1))0 is M-values of the autocovariance function starting at lagÆ
andGÆ is the prediction vector. The variance of the prediction errors is given by

v�Æ = 
�(0)� 
�Æ
T� ��1
�Æ (13)

The predicted background traffic levels for traffic with non-zero mean�b are then cal-
culated as:

R̂�

b (k + Æ) = �b +G
�T
Æ (Rb(k)� �b) (14)

3.3 Sensitivity of ABR Control to Hurst Parameter Estimates

Of course, absolute knowledge of the stochastic structure of the background traffic is
not possible, and the stochastic structure must be estimated from observations of the



traffic. Thus, predictors which are developed for the traffic are inevitably mismatched
to some degree to that traffic. This effect of this mismatch can be determined analytical.
Consider that the actual predictors are developed from an estimated autocovariance
function:

�̂ĜÆ = 
̂Æ (15)

The variance of the prediction errors using this mismatched predictor now becomes

v̂Æ = E
h
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i
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The relative increase in the variance of the prediction errors is

Kv =
v̂ � v�

v�
(17)

which gives Theorem 1.

Theorem 1. The relative increase in the variance of the prediction errors resulting from
a linear predictor which is mismatched to the stochastic structure of the background
traffic is given by:

Kv =
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Using Theorem 1, the sensitivity of congestion control algorithms for the ABR ser-
vice to the Hurst parameter estimates can be investigated. The fractional Gaussian noise
model is used to calculate the relative increase in the variance of the prediction errors
when an estimate of the Hurst parameterĤ is used. The autocorrelation function for
fGn is given in (1), and the relative changeKv is calculated for pairs of(H�; Ĥ). The
resulting surface is shown in Fig. 1. The figure reveals an asymmetry in the sensitivity
of the predictors to the Hurst parameter estimates, with an asymptote situated at the
point (H�; Ĥ) = (1:0; 0:5). Thus, the relative increase in variance in the prediction
errors rapidly grows when the burstiness of the data becomes more significant, ie. as
H� % 1:0, and yet the Hurst parameter is estimated to be close to SRD, ie.Ĥ & 0:5.
This result emphasizes the importance of recognising the presence of self-similarity
within network traffic if it exists. By incorporating the characteristics of self-similarity
into resource management algorithms, the impact of the burstiness of self-similar traffic
can be avoided.

Figure 1 also indicates that another conclusion can be drawn regarding the Hurst
parameter sensitivity. The asymmetry at the point diagonally opposite from the asymp-
tote, (H�; Ĥ) = (0:5; 1:0) suggests that it is actually beneficial to err on the side of
over-estimating the Hurst parameter and to assume a greater burstiness than may actu-
ally exist within the traffic. While this may be intuitively appealing, it does demand an
explanation.
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Fig. 1. The sensitivity of linear predictors to Hurst parameter estimates using the fractional
Gaussian model.

Predictors for the boundary values for the Hurst parameter are shown in 2. From the
predictors, it is clear why the asymmetry occurs and the reason for its orientation. When
H� = 0:99, the optimal predictor is shown in Fig. 2(a) where significant weight is given
to previous samples because of the LRD effect. However, if the predictor in Fig. 2(b)
is used, no weight is given to the previous samples (even though there is a significant
amount of information in these samples). This results in significant prediction errors.
Consider the other situation, whereH� = 0:5 represents in normally distributed white
Gaussian noise, and the mismatched predictor in Fig. 2(a) is used rather than the one
in Fig. 2(b). In this case, there is no information about the future sample in the stored
data samples and the optimal predictor gives no weight to any of the samples. When
the mismatched predictor in Fig. 2(a) is used, weight is given to these samples, but
since the burstiness of the samples is minimal (H� = 0:5), each individual sample
does not impact the weighted sum as significantly and overall the prediction errors are
comparitively smaller.
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Fig. 2. Predictors for the boundary Hurst parameter values: (a)Ĥ = 0:99, (b) Ĥ = 0:5.



4 Simulation Results

The asymmetry of the sensitivity of ABR controllers with respect to the Hurst para-
meter estimates is investigated in this Section using data sets, giving simulation results
which we can compare with the analytical results. The simulation model of the ABR
system is shown in Fig. 3, and it consists of six ABR sources competing for the use of
a congested link. Each source has its own round-trip delay, and the sources are ordered
according to the delayÆj = f10; 8; 6; 4; 2; 1g. The congested link is also carrying non-
ABR background traffic, which uses a significant proportion of the link capacity, in this
case50% of the capacity on average.

Link
Congested

ABR Sources

δ=2

δ=4

δ=1

δ=6

δ=10

δ=8

Background Traffic

Fig. 3. The network model for the simulation study.

The background traffic is modelled by data sets which consist of ten aggregated
VBR data sets [17, 18] which have been randomly shifted in time and have been filtered
to remove GOP correlation structure of the VBR data. The sources of these aggregated
data sets and the Hurst parameter estimates for the data sets are summarised in Table 1.
Two additional data sets (theCombination VBR DataandWhite Gaussian Noisesets)
were used for comparison. TheCombination VBR Datawas produced by aggregating
all the previous VBR data sets sources in the table, which had been randomly shifted in
time. Finally theWhite Gaussian Noisedata set was generated from a normally distrib-
uted random number generator, and transformed so that it has an equivalent mean and
variance to theStar Warsdata set.

Comparing the estimates from the different estimation techniques, it is observed that
while there is sufficient agreement between the techniques that self-similarity is evident
in each of the aggregated VBR data sets and that, for most cases, the confidence 95%
generated from the AV estimator contains all three estimates, there is also sufficient
discrepancy between the values for the Hurst parameter to leave uncertainity in the
choice of the value when an ABR congestion control algorithm is being developed.
To determine the effect of this uncertainity on the performance of the ABR system,
predictors for the simulation model were developed across the entire interval of possible
estimates,̂H 2 [0:5; 1:0) and the system was simulated using each predictor.



Table 1. Comparison between the Hurst parameter estimates for the variance-time (V-T), R/S
statistic (R/S) and Abry-Veitch (AV) estimation methods.

Data Set Source V-T Estimate R/S Estimate AV Estimate
with 95% CI

Star Wars 0.84 0.90 0.835
[0.774,0.897]

Mr. Bean 0.76 0.86 0.817
[0.634, 1.000]

James Bond: Goldfinger 0.89 0.86 0.851
[0.669, 1.034]

Jurassic Park 0.79 0.81 0.850
[0.6667, 1.033]

Terminator II 0.77 0.83 0.838
[0.732,0.943]

ATP Tennis Final 94: Becker - Sampras 0.77 0.85 0.884
[0.778, 0.989]

Soccer World Cup Final 94: Brazil - Italy 0.57 0.79 0.791
[0.685, 0.896]

Combination VBR Data 0.71 0.85 0.811
[0.629, 0.994]

White Gaussian Noise 0.47 0.51 0.495
[0.469, 0.522]

Buffers at network nodes are designed to handle traffic overflows which occur in
the network. In our case, these overflows represent positive prediction errors. The max-
imum queue length is used as measures of the performance of the network, and an
indicator of the sensitivity of the control algorithms to the Hurst parameter estimate
under the assumption of infinite network buffers. For finite buffers, the cell loss ratio
(CLR) is used as the performance metric. These simulation results are shown in Figs. 4
and 5.

It is observed from these figures that the performance of the ABR system is highly
sensitive to the Hurst parameter estimate with self-similar background traffic. This oc-
curs in the region of the interval̂H = [0:5; 1:0) whereĤ is close to the0:5 value,
which means that the design has assumed short-range dependence within the network
traffic. This sensitivity is revealed in longer queues in the nodes, and greater cell losses.
The sensitivity of the system is significantly reduced when the estimates for the Hurst
parameter are in the interval̂H 2 (0:75; 1:0). Comparing these simulation results with
the surface for predictor sensitivity derived analytically (Fig. 1), we have further con-
firmation that the actual values of the Hurst parameters for this type of data is in the
intervalĤ 2 (0:75; 1:0).

TheCombination VBR DataandWhite Gaussian Noisedata sets provide an inter-
esting comparison. In both cases the overall sensitivity toĤ is significantly less than
in the other cases. In the case of theWhite Gaussian Noisedata set, this reduction in
sensitivity agrees with the conclusions from our analytical work, that there is insignifi-
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cant change in network performance when a mismatched filter is used with SRD traffic.
The slight increase in the maximum queue lengths and CLR as the Hurst parameter is
increased across the interval[0:5; 1:0) confirms that the true value for the Hurst para-
meter is close to0:5. In the case of theCombination VBR Dataset, while the sensitivity
is not as significant as the other VBR data sets, it still appears that the assumption of
self-similarity and a higher estimate for the Hurst parameter does result in marginally
improved network performance.

While our simulation results do not prove self-similarity for the aggregated VBR
data sets (which is not the purpose of this research), two main conclusions can be drawn
from these results. Firstly, significant losses will occur within the ABR control system
if the self-similarity of network traffic is not accounted for in the design of the control
algorithms. These losses in the system can be reduced by incorporating the character-
istics of self-similarity into the algorithms. Secondly, if two estimatesĤ1 andĤ2 have
been obtained for the Hurst parameter of the network traffic, whereĤ1 � Ĥ2, then it
is more judicious to choose the greater estimateĤ2 when designing the ABR control
algorithm, provided that̂H2 < 1:0.

5 Conclusions

There is an inevitable uncertainity in the specific value which is assigned to the Hurst
parameter when research moves from attempting to prove self-similarity to utilising
its characteristics within network architecture. This issue of the impact of the Hurst
parameter value has been addressed here both analytically and through simulations.
The analytical study revealed an asymmetry in the sensitivity of the predictors to the
estimate, especially in the region where the Hurst parameter was significantly under-
estimated and the background traffic was assumed to be SRD when in reality it was
significantly LRD in character. The sensitivity was also addressed using simulations of
an ABR control system using aggregated VBR data sets to model background network
traffic. Previous research has statistically proven the self-similarity of the data used, and
our own Hurst parameter estimates agreed with that conclusion. The simulations inves-
tigated the performance of network buffers when a set of congestion control algorithms
were used which were derived from Hurst parameter values that spanned the interval
Ĥ 2 [0:5; 1:0). The results of our simulations confirmed the analytical study.

This research work has confirmed previous conclusions regarding self-similarity in
network traffic, specifically that there is significant impact on the network performance
if the self-similar nature of traffic is ignored. Thus, it is important to continue to develop
and improve Hurst parameter estimators, and to investigate methods of incorporating
the characteristics of self-similarity into network management techniques. In addition,
this research demonstrated that, when given a set of estimates of the Hurst parameters,
the most judicial choice of the Hurst parameter value is the highest one as this ensures
the best network performance.
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