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Abstract—Current Internet congestion control protocols
operate independently on a per-flow basis. Recent work has
demonstrated that cooperative congestion control strategies be-
tween flows can improve performance for a variety of applications,
ranging from aggregated TCP transmissions to multiple-sender
multicast applications. However, in order for this cooperation to
be effective, one must first identify the flows that are congested
at the same set of resources. In this paper, we present techniques
based on loss or delay observations at end hosts to infer whether
or not two flows experiencing congestion are congested at the same
network resources. Our novel result is that such detection can be
achieved for unicast flows, but the techniques can also be applied
to multicast flows. We validate these techniques via queueing
analysis, simulation, and experimentation within the Internet.
In addition, we demonstrate preliminary simulation results that
show that the delay-based technique can determine whether two
TCP flows are congested at the same set of resources. We also
propose metrics that can be used as a measure of the amount of
congestion sharing between two flows.

Index Terms—Hypothesis testing, inference, network conges-
tion, queueing analysis.

I. INTRODUCTION

T HE RECENT success of the Internet arguably stems from
the philosophy that complexity should be relegated to the

endpoints of the network. In the Internet, data is transmitted
using only best-effort service, with reliability and congestion
control being implemented only within the Internet’s end sys-
tems. Current approaches to congestion control, such as those
incorporated into TCP and those proposed for multicast con-
gestion control, have a sender regulate its transmission ratein-
dependentlyfrom other senders, based on feedback (typically,
loss indications) received from its receiver(s).

Recent work has demonstrated thatcooperativecongestion
control strategies among different sessions or among different
senders in a single session (in the case of multicast) can im-
prove performance for a variety of applications, ranging from
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aggregated TCP transmissions to multiple-sender multicast ap-
plications.

• The benefits of performing congestion control overflow
aggregatesare explored in [1], [2]. Here, an aggregate con-
sists of a set of flows that are treated as a single, virtual
flow for the purposes of congestion control. For example,
in the presence of contention, a WWW session with mul-
tiple on-going (TCP and/or continuous media) streams
that interfere with each other over a common bottleneck
might choose to optimize session utility by more drasti-
cally reducing the rate of one session in the face of con-
gestion, while only slightly decreasing the rate of another.
The server’s aggregate session rate remains the same as
if each session was treated as an isolated TCP session, but
the rate of the individual sessions within the aggregate can
vary (from what would be achieved under vanilla TCP)
according to server policy.

• In many-to-one or many-to-many applications, a receiver
within a single “session” may receive data from multiple
senders. When a receiver detects congestion, the specific
actions taken by the senders to reduce their transmission
rates should depend upon whether or not the senders share
a common resource bottleneck on the path to that receiver.
Distributed gaming [3], teleconferencing, and accessing
data in parallel from multiple mirror sites simultaneously
[4], [5] are examples of such applications.

A key technical issue underlying both of these scenarios is the
ability to detect whether two “flows” (whether individual uni-
cast sessions or different senders within a single multicast ses-
sion) share a common resource bottleneck. In this paper, we ad-
dress the fundamental issue of detecting shared points of con-
gestion among flows. Informally, thepoint of congestion(POC)
for two flows is the same when the same set of resources (e.g.,
routers) are dropping or excessively delaying packets from both
flows due to backup and/or overflowing of queues. We present
two techniques that operate on an end-to-end basis and use only
end-system observations to detect whether or not a pair of flows
experiences a common POC, also referred to as a shared point of
congestion (SPOC). One technique uses observations of packet
losses to identify whether or not packets are being dropped at
the same POC. A second uses observations of end-to-end delays,
computed between end hosts whose clocks need not be synchro-
nized, to identify whether or not packets are experiencing sig-
nificant delays at the same POC. These techniques assume that
the flows share a common end point, i.e., it is either the case
that flow sources are co-located, or that flow receivers are co-lo-
cated.
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The key idea underlying the techniques presented in this
paper is the fact that adjacent packets in the same flow expe-
rience some amount of positive correlation in loss and delay
as they necessarily share any POCs. It follows that if two
flows have the same POC, then adjacent packets in the two
flows should similarly experience some amount of positive
correlation. However, values of standard quantitative measures
of correlation, such as correlation coefficients, depend on
several factors, such as the rate of the flows, the amount of
background (cross) traffic that passes through the flows’ POCs,
and the POCs’ processing capabilities. Hence, the standard
measures of correlation exhibited both within a flow and
between flows that have the same POC differ under different
network conditions. This makes it difficult to use these values
directly to determine whether or not two flows share a common
POC. Our novel insight is to construct a measure of correlation
between flows and a measure of correlation within a flow with
the following property: the measure between flows is greater
than the measure within a flow if and only if the flows share
the same POC. We call this method of identifying whether or
not two flows share a POC a comparison test, and demonstrate
how measures similar to those used within our comparison tests
can also be used to estimate the “level” of sharing between two
flows in cases where flows can have multiple POCs, some of
which are shared, and some of which are not.

We first use traditional queueing models to prove that, in
theory, our comparison tests can identify whether or not a POC
is shared. Next, we use simulation to examine the performance
of the comparison tests in more practical settings, where back-
ground traffic in the network consists of TCP and exponential
on-off sources. We show that over time, (as the number of packet
samples increases), the comparison tests always correctly iden-
tify whether or not the POC is shared, and that the techniques
based on delay converge an order of magnitude faster than those
based on loss. We also explore through simulation the accu-
racy of the techniques in detecting SPOCs when the network’s
routers deploy random early dropping (RED) [6], and where the
probing flows are TCP flows. We find that the delay-based tech-
nique can still correctly infer whether the POC is shared by the
flows, though the test must be run for a longer time to guar-
antee an answer within the same degree of accuracy. We also
find that the loss-based tests do not perform well in such envi-
ronments. Last, we demonstrate the performance of the tests in
practice using actual network traces over simple topology con-
figurations.

The work that most closely resembles our work presented
here is that of Harfoushet al. [7], which presents an alternative
loss-based technique to identify whether two flows share a
common POC. The technique relies on the senders ability
to transmit packet pairs, which restricts applicability of their
technique to the case where the flow sources are co-located.
They demonstrate that their technique converges to the cor-
rect result faster than an improved version of the technique
presented here, but do not compare their technique to our
delay-based technique. It can be inferred from their simulation
results that our delay-based technique still converges faster
than their loss-based technique. More recent work has looked
at somewhat similar approaches to infer network tomography

from unicast probes [8], [9]. In [10], the authors identify
potential benefits of having separate end systems share locally
observed statistics, such as available bandwidth and loss rate. It
is observed in [11] that a comparison of IP addresses might be
of assistance in determining which flows share bottlenecks, but
the work subsequently states, “Determining a better estimate
of which flows share a bottleneck is an open problem.” While
[1] and [2] demonstrate the value of performing congestion
control over flow aggregates, [2] considers the detection of
shared POCs to be future work, while the aggregated flows in
[1] are limited to those having identical source-to-destination
network paths. This significantly restricts the set of flows that
can be aggregated. At a recent workshop, Padmanabhan [12]
demonstrated that only flows sharing a point of congestion
exhibit high correlation in packet delay, and hypothesized that
this correlation could be used to make such a detection. An
unpublished project report by Katabiet al.[13] presents a clever
entropy-based technique to partition a set of unicast receivers
at the same end system into clusters that share a common
bottleneck. Their technique is very efficient in the number of
packets needed to accurately perform the clustering, and is
robust when the bandwidth to the end host constitutes at least
20% of the bandwidth at the bottleneck (i.e., light background
traffic). In comparison, our loss-based techniques require more
packet transmissions, but our delay-based techniques require a
similar number of packet transmissions to Katabi’s technique.
Our techniques do not scale as easily to large receiver sets.
However, our techniques remain robust under heavier back-
ground traffic loads, and can also detect shared POCs among
flows in which the senders and not the receivers are co-located.

Our work differs significantly from previous work in that
using multicast loss traces infers network characteristics, such
as multicast tree topology and the loss rates on individual links
within the network. The work by Ratnasamyet al. [14] and
that of the MINC project [15] require transmission of multi-
cast probes. Their approaches identify a shared POC among re-
ceivers receiving from a single source, relying on the fact that
a multicast router forwards a packet on either all or none of
the downstream links that are requesting the multicast transmis-
sion. These approaches are not designed for the case when flow
senders are not co-located. Furthermore, because the end-to-end
multicast route between a source and receiver can differ sub-
stantially from the unicast route between the same end points,
results pertaining to shared POCs based on the multicast route
need not apply to unicast traffic. More recently, they have ex-
tended their work to unicast using techniques [16] that are able
to reconstruct multicast session topologies based on end-system
observations of losses and delays experienced by unicast probes.
The intuition as to why they could extend their work to within
a unicast environment follows from the intuition as to why our
techniques work.

There are several practical issues that we identify in this paper
as open areas of research and do not solve; these require further
consideration before our techniques can or should be applied
within an operational network for the purposes of congestion
control. Our goal in this paper is to make a fundamental first
step in solving the problem of congestion control for aggregated
streams.
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The remainder of the paper proceeds as follows. Section II
overviews the two testing techniques for performing the detec-
tion of a shared POC, and provides a high-level intuition as to
why the techniques work. Section III presents queueing analyses
that demonstrate the effectiveness of the tests using theoretical
models of the POCs. Section IV presents simulation results that
demonstrate the performance of the techniques under more real-
istic traffic conditions. Section V presents results of experiments
conducted over the Internet. Section VI briefly discusses some
open issues. Finally, Section VII concludes the paper.

II. TECHNIQUE DESCRIPTION

In this section, we present two techniques, theloss-corrtech-
nique and thedelay-corrtechnique, that use loss and delay mea-
surements, respectively, at receivers to determine whether or not
a pair of sessions (also called flows) have the same POC. The
POC for a flow is the set of locations (routers) at which the
flow’s packets are lost or experience excessive queueing delay.
We say we aretestingtwo flows when we are trying to identify
whether or not they have the same POC. For conciseness, we
say that two flowsshare congestionif their POCs are identical,
and that flowsdo not share congestionif the intersection of their
POCs is empty. In this section, we assume that the flows’ POCs
are either identical or mutually exclusive, which means that the
question, “Do flow A and flow B share congestion?” can be an-
swered with a simple “yes” or “no.” Later in the paper, we ad-
dress how to handle cases where two flows’ POCs can partially
overlap.

We emphasize that we assumea priori that both sessions
are experiencing congestion. We assume that another testing
method is first used to determine that each of the pair of ses-
sions being considered is congested, such as observing the loss
rate or expected delay exceeding a threshold. Once a conclusion
has been reached that both sessions are congested, our test can
be applied to determine whether or not this congestion emanates
from the same set of network points.

Our findings are that the delay-corr technique converges in
much less time to the correct hypothesis than the loss-corr tech-
nique. However, there are two reasons why an application might
prefer to use a technique that generates estimates using only loss
statistics.

• The delay-corr technique requires time stamping of
packets. We have noticed in our experimental results
that performing the time stamping at the user level is
sufficient, but becomes less reliable if the hosts are
heavily loaded. Thus, the delay-corr technique requires
more resources than the loss-corr technique.

• Heavy delay congestion is likely to manifest itself in
routers with larger queues, whereas heavy loss congestion
is likely to manifest itself in routers with smaller queues.
While we suspect that the POC is often the same for both
forms of congestion, this need not be the case. Thus, the
best way to determine that the POC that causes loss is
shared is to apply the loss-corr technique (and wait the
extra time). Similarly, the best way to ensure that the
POC that causes delay is shared is to apply the delay-corr
technique (and use the additional resources).

(a) (b)

Fig. 1. Virtual topologies. (a) Inverted-Y topology. (b)Y topology.

We consider only topologies in which either the pair of
senders or the pair of receivers of both flows are co-located at
the same host. This assumption does restrict the set of pairs that
can be considered. However, as compared to a randomly chosen
pair of flows for which neither the senders nor the receivers
are co-located, flows that have at least one set of co-located
hosts 1) are easily located from the point of co-location, 2) are
more likely to share congestion, since portions of their paths
are guaranteed to overlap, and 3) require less communication
overhead (i.e., they can communicate over a LAN) to perform
aggregated congestion control.

Fig. 1 gives a pictorial representation of sample topologies
formed from the paths of the two flows with co-located hosts.

and are the senders of the two flows, and are the
two receivers, and the filled circles are routers at the interme-
diate hops. In theInverted-Ytopology [Fig. 1(a)], the senders are
co-located. Packets transmitted by the senders traverse a set of
common links up to some point in the network, after which the
flows travel along separate paths. In thetopology [Fig. 1(b)],
the receivers are co-located. Packets transmitted by the senders
initially traverse a separate set of links. At some point along each
flow’s data-path, the flows meet and the remaining path to the
receivers is identical.

A shared POC exists if congestion occurs along the top por-
tion of the inverted- topology, or along the bottom portion of
the topology. We assume that in the(Inverted- ) topology,
after the flows’ paths are joined (deviate), they do not deviate
(re-join). Otherwise, the order of packet arrivals (departures)
could differ substantially from what is observed at a shared
POC. Note that if a pair of flows can be mapped onto either
of these two topologies, then (barring reordering) we can ob-
serve, from the point of co-location, the order in which packets
pass through the shared POC, if it exists. This allows us to infer
whether or not the flows share congestion using only informa-
tion that can easily be monitored at the three end-system loca-
tions. Hence, the techniques do not require any information per-
taining to router processing rates, link speeds, or traffic patterns
of any background traffic.

Let us now formalize the notation that will be used throughout
the paper to refer to the packet flows. Letand represent
the two flows that we are testing. Each of these flows is referred
to as aforeground flow, and we refer to the packets within the
flows asforeground transmissions. Any other traffic/packet in
the network that does not belong to either of these flows is re-
ferred to asbackgroundtraffic. Let represent theth packet
transmitted by , and represent theth packet transmitted
by . We write the th foreground packet transmitted (counting
packets in both flows) as , i.e., for each , there is some
where either , or .
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Fig. 2. Comparison test.

Finally, we define a function that allows us to identify thead-
jacencyof two packets in the foreground. For any two packets,

and , from either flow, or , we define the function
if , and 0 otherwise. indicates

whether or not two foreground packets are adjacent with respect
to the other foreground packets. In other words,

implies that there is somefor which and
.

A. Comparison Tests

Our techniques for detecting whether or not a pair of flows
share congestion are based on two fundamental observations of
Internet congestion.

• Losses or delays experienced by two packets passing
through the same POC exhibit some degree of positive
correlation (i.e., a loss or excessive delay observed by a
packet increases the likelihood that a later packet will be
lost or experience a large delay). However, in general, the
degree of correlation decreases as the time between the
packets’ transmissions is increased [17], [18].

• The losses or delays experienced by two packets that do
not share the same POC will exhibit little or no correlation.

Our idea is to measure the correlation between pairs of
packets both within a flow, and between flows. We choose
the pairs between flows such that if the POC for the flows is
shared, then on average, the time between arrivals at the POC of
packets in the between-flow pair is less than the time between
arrivals at the POC of packets of a single flow. Hence, the
between-flow pairs will experience higher levels of (positive)
correlation if the POC for the flows is shared. If it is not shared,
then the between-flow pairs will exhibit no correlation, and
the level of correlation will be higher for the single-flow pairs.
We refer to this simple method of making this determination
as acomparison test. The basic steps are reiterated in Fig. 2.
We refer to , the measure of correlation between the flows,
as thecross-measure(as in cross-correlation), and , the
measure of correlation within a flow, as theauto-measure(as
in auto-correlation).

The benefit of using a comparative test is that it gives a de-
finitive answer as to whether or not the flows share, regardless
of what the specific values of the cross- and auto-measures are.
Alternatively, one could construct measures that indicate con-
gestion when taking on certain values (e.g., a correlation coef-
ficient that is larger than some fixed value,). Often, the value
for depends on several factors, including the service rate of the
queues in the network, and the rate of the probe traffic, making
a unique value for unlikely.

B. Poisson Probes

We have noted that we need a method to generate packet sam-
ples in such a way that the average time of arrival at a shared
POC (if it exists) between a sample pair from separate flows is
less than that between a sample pair of packets from the same
flow. To simplify presentation, we consider a single method for
transmitting probes that is robust over both the Inverted-and

topologies. The method we use, commonly referred to as a
Poisson probe, is a flow whose inter-packet departure times are
described by a Poisson process. We represent the rate of’s
process by , and the rate of ’s process by . We assume
in our analysis that the transmission and queueing delays be-
tween the source and the POC do not significantly change the
inter-packet spacing, and thus the arrival process at the POC can
be modeled as Poisson with respective arrival rates ofand .
We note that the aggregate arrival process formed by combining
these two Poisson processes is itself a Poisson process with rate

. The length of time between the arrival at the POC of
two adjacent packets, and , from this aggregate process
of rate is on average smaller than the time interval be-
tween two successive packets from a single flow (e.g., and

) transmitted at rate .1 Furthermore, be-
cause the aggregate process is Poisson, the distribution of the
time interval between the adjacent packets is independent of the
packets’ flow origins (i.e., whether they came fromor ). It
follows that the average time interval between the arrival of two
adjacent packets from different flows is less than that between
two successive packets within a single flow.

In the remainder of this section, we describe how to com-
pute measures of and using loss and delay measure-
ments obtained from using Poisson probes. We conjecture that
these measures work for other probe distributions, and thus in
many cases, the measures can be appliedin-band, i.e., the probes
can be incorporated into the underlying data stream. However,
it is likely that the techniques are not robust for all possible dis-
tributions of traffic. One example is when each flow transmits
packets in groups (i.e., bursty traffic), that places packets within
a single flow very close together. In such cases, these techniques
can still be applied by transmitting a Poisson probeout-of-band,
alongside each of the two data flows. Results presented later in
this paper demonstrate that the detection of a shared POC can
be done efficiently in practice using a total probing bandwidth
of one kilobyte per second.

C. Loss-Corr Technique

The loss-corr technique is based on the intuitive notion that if
two packets proceed through the same bottleneck, and the first
packet is dropped, then the likelihood of the second packet being
dropped becomes higher as the time between the packets’ ar-
rivals to the bottleneck is decreased. Defineto be 0 if is
dropped prior to reaching the destination host to which it was
sent, and 1 if it is received at its destination. Define simi-
larly, to indicate whether or not packet reaches the receiving
host of , where .

1Note that a pair of successive packets within a flow need not be adjacent,
e.g., packets fromf may arrive between arrivals of successive packetsp

andp .
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For the Inverted- topology, the loss-corr cross-measure and
auto-measure are the following conditional probabilities:

(1)

(2)

The cross-measure we use for the Inverted-topology is the
conditional probability that a packet from is lost, given that
the preceding foreground packet was fromand was lost. The
auto-measure is the conditional probability that a packet from

is lost given that the previous packet fromis lost.
In the Inverted- topology, we have utilized the fact that

the relative order in which lost packets arrive at the POC
can be identified from the co-located sending end systems:
even when and , it is always possible to
determine whether or not . In the -topology,
this is not the case. For instance, a received sequence of

implies that packets and
were lost. However, one cannot determine from these

measurements whether preceded (or whether
preceded , etc.)2 It follows that co-located receiving

hosts cannot determine whether or not when
both and are lost. As a consequence, we cannot
compute the cross-measure defined by (1).

Instead, we define another cross-measure that can be com-
puted by end hosts configured in a-topology, and another
auto-measure that, when compared to this cross-measure, meet
the requirements of the comparison test. We define
such that if and only if , , ,
and for all , and let other-
wise. In other words, is 1 if and only if and are
adjacently received packets (i.e., is lost for any ).
The cross-measure and auto-measure for thetopology are the
following conditional probabilities:

(3)

(4)

is the conditional probability that for any, a packet,
, from is lost, given that 1) the subsequent packet from
, is received, 2) the nearest foreground packet that is sub-

sequently received after is from ( for some ), and
3) that the preceding packet from, , is lost. The reader
should note that the sequence of events used in (3) can be identi-
fied at the co-located receivers in the-topology: the sequence
“pivots” on a pair of received packets to detect a pair of lost
packets that are likely to be adjacent. is the loss rate expe-
rienced by . We note that this version of is itself not a
measure of correlation, but we find that its value is smaller than
that of (3) only when the POCs are shared.

D. Delay-Corr Technique

The delay-corr technique applies thecorrelation coefficient
to the delays experienced by receivers. For a set of pairs of real

2It may be possible to predict the more likely case by looking at inter-packet
spacing within a flow. However, packets can experience unpredictable delays
(jitter) that would make such estimation less reliable.

valued numbers, , the correlation
coefficient of the set is defined as

(5)

where and
. Define to be theobserved delay

incurred by packet. , where is the departure
time of according to the sender’s clock, andis its arrival
time according to the receiver’s clock. Note that because of
unsynchronized clocks and/or clock drift, the observed delay
we compute need not equal the true time elapsed between
the packet’s departure from the sender and its arrival at the
receiver. The lack of time synchronization between clocks
does not affect the value of the correlation coefficient: the
correlation coefficient of two random variables, and , is
the same as that between and when is a constant.
A large skew in the clock rates can alter the effectiveness of
using the correlation coefficient of delay over long traces.
However, efficient algorithms for removing clock skew from
long traces are known [19], [20]. Henceforth, we simply refer
to the observed delay as the delay.

We similarly define to be the respective delays of ,
. For both the inverted- and topologies, and

are computed as

(6)

(7)

is the correlation coefficient computed from the delays
of pairs of packets that are adjacent with respect to the fore-
ground flows. The previously arriving (transmitted) packet must
be from , and the subsequent packet must be from. is
the correlation coefficient computed from the delays between
arrivals (transmissions) within that are adjacent with respect
to packets in .

III. QUEUEING ANALYSIS

In this section, we demonstrate the correctness of the com-
parison tests described in Section II in the context of various
queueing models. We assume that the time between transmis-
sions for each of the foreground flows, and , are described
by Poisson processes with rates ofand , respectively.

Fig. 3 depicts our models of a shared POC for flowsand
, and separate POCs for the flows. A POC is represented by

a queue. A shared POC [Fig. 3(a)] is represented by a single
queue; packets from both of the foreground flows enter this
queue at respective rates, and . Additionally, background
traffic enters the queue at a rate of. The queue services
packets at a rate of . Separate POCs [Fig. 3(b)] are repre-
sented by two queues. Packets fromenter a queue whose
background traffic arrival rate is and whose service rate is

, . Each packet that proceeds through the queueing
system is serviced by only one of the two queues (e.g., packets
from do not previously or subsequently proceed through the
queue servicing packets from). There are no restrictions on
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(a) (b)

Fig. 3. Queueing models for shared and separate POCs. (a) Shared. (b)
Separate.

any of the rates (foreground rates can differ from one another;
in the two-queue case, background flow rates can differ in the
two queues). Unless specifically stated otherwise, background
traffic arrivals and queue service completions are described by
any general i.i.d. distribution.

In the next subsection, we prove that, given the queues are all
queues (where the buffer size can differ among

the various queues as well), the loss-corr technique correctly
identifies whether or not the foreground flows share a POC
in the inverted- topology. We do not have a proof that the
loss-corr technique correctly identifies whether or not two flows
share in the topology. However, we have formulated a set of
recursive equations that allow us to compute the steady-state
values of (3) and (4) as functions of , and , when the
POC is shared and behaves as an queue. We then
compared the values of these equations for a variety of values
of , and , and found (3) to always be larger than (4)
(the desired result). These results are presented in [21].

In the following subsection, we demonstrate that, given all
queues are queues (foreground traffic remains
Poisson, background traffic and service times satisfy any i.i.d.
general distribution), the delay-corr technique successfully dis-
tinguishes between shared and separate POCs for both the
and Inverted- topologies. Since the queue’s capacities are un-
bounded, the proof requires the additional assumption that the
aggregate rate of traffic into any of the queues is less than the
processing rate for that queue.

A. Loss-Corr Technique, Inverted-Topology

We write , to represent two queues.
We define to be a sequence of insert and remove events,

, and let be the number of packets in
after in-order application of events to the queue.

We write to be the number of packets in the queue
prior to the application of . We assume that the system has
been in operation for some time whenis applied to the queue
so that it need not be the case that . An insert
event increases the queue length by one unless already full, and
a remove event decreases the queue length by one unless it is
already empty.

Lemma 1: Consider two queues, and , of iden-
tical buffer capacities, . If , then

for all as well.
Lemma 1 can be proven trivially by induction over the length

of the sequence. The proof is omitted.
Lemma 2: Consider a queue of capacity where

(the queue is full). Let be a suffix sequence
of , i.e., where for some ,

and where . Then
.

Proof: Consider the application of to the queue. After
applying the (possibly empty) prefix to the
queue, it must be the case that . The result
then follows from Lemma 1, since the remaining sequence of

to be applied is , hence for
.

Lemma 2 states that for arbitrary sequences of eventsand
, the application of to a full queue will result in a queue

whose height is less than or equal to that of a full queue to which
is first applied, followed by . Intuitively, this is because

application of can only reduce the height of the queue from
its original full position. The result then follows from Lemma 1.

Theorem 1: In an in which both foreground
flows enter into the same queue, ,

(i.e., ).
An intuitive approach to proving this theorem would be to

use a sample-path argument. Consider any sequencethat con-
tains a pair of arrivals from , such that the sequence provides
a sample point used in computing the conditional probability,

. We wish to construct 1–1 mapping
that maps each such sequence to a sequencethat provides
a sample point for , ,
such that yields a “positive” sample (i.e., and

whenever yields a “positive” sample (i.e.,
and ) such that occurs with higher probability
measure (conditioned on ) than does (conditioned
on ). An intuitive mapping is one in which equals
suffix of that starts from the last arrival of a packet from,
when one exists. The problem with this mapping does not cover
those sequences that do not contain an arrival from , and
we are unable to identify an appropriate 1–1 mapping to com-
plete the proof in this manner. Instead, we resort to an alternative
approach that uses similar intuition, though in a less straightfor-
ward manner.3

Proof: Let be a finite-length se-
quence of events, each , where means
that the th event is an arrival from , means that the
th event is an arrival from , means that theth event

is a background arrival, and means that theth event is a
service completion (this event has no effect on the queue if the
queue is already empty).

Let be the set of all possible finite-length sequences
of events. Define a function where

, or where for . In other
words, is the longest prefix of whose last event is an

3The more formal proof presented here corrects an oversight of the proof that
appeared in [21], [22].
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Fig. 4. Decompositions of three samples of! into g (!) andg (!).

arrival from . Note that if contains no , then
is the empty sequence. Let be the longest suffix of that
contains no . i.e., where

or else , for . Note that each
sequence has a unique decomposition as ,
where is the concatenation operation. Such a decomposition is
demonstrated in Fig. 4.

Define to be the probability measure over.4 This is
well defined since all events are generated from a Poisson
process, so the measure of a sequence is independent of
any previous history (previous arrivals, state of the queue).
Furthermore, it follows from the Poisson assumption that the
measures of prefixes and suffixes are independent and satisfy

.
We now define several random variables that will allow us

to formally describe the conditional probabilities stated in the
theorem over the set of sequences in. Define to be a random
variable on where if , the last event in , is
the first (and only) arrival from in and 0 otherwise. Define

to be a random variable on where if is
the empty sequence or is a sequence in which for all

and , and equals 0 otherwise. Define
to be a random variable onwhere if contains

no event , and only the last event, , is an arrival from
. Note that . Also

note that for any where , there is a unique
pair, , where and .
Namely, and .

In addition, we note that . This is
because the set of finite sequences that yield nonzero terms in
the sum are all and only those in which the last event is the
first arrival from . Hence, any infinite-length sampling that
contains an arrival from is prefixed by exactly one member

4We emphasize thatP is a probabilitymeasure[23] and not a probability
distribution. Note also thatS is a countable set, so that the measure of a setS �

S that contains a set of sequences, where no sequence inS is a subsequence of
another! 2 S , is simply P (!).

of the set, and the set of infinite-length sequences that do not
contain an arrival from have measure zero. This yields

(8)

Define to be random variable on where for
if the last event of is a packet ar-

rival, and applying to a queue of capacity whose buffer
is initially full causes this last arrival to be dropped (i.e., the
queue is full upon its arrival). It follows from Lemma 2 that

, in other words,
we have . We make use of the PASTA
property [24] that the first event “of interest” [arrival of
for , for

, ] is Poisson and
hence the distribution of the queue’s height is described by
its steady state distribution. Defining to be the steady-state
probability that the queue length is, we have

(9)

(10)

We can rewrite the conditional probability,
, as

(11)

(12)

(13)

(14)

where we use to establish the inequality
in (11), and (8) gives the equality between (12) and (13). The
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inequality is strict since there exists at least one
where and .

Theorem 2: In two queues in which the fore-
ground flows enter separate queues, it is the case that

,
(i.e., ).

Proof: Arrivals (departures) to (from) the first queue have
no impact on the second queue, and can be ignored when con-
sidering the status of the second queue. Because all arrivals
and departures from the queues are Poisson, by PASTA [24],

for
any packet in . Thus, we need only prove that

.
We prove this by a sample path argument. Similar to

Theorem 1, we define to be the set of all possible
finite-length sequences through the queue. Since packets
from pass through a separate queue, each event,of

is chosen from . Define to
be the probability measure over (again this is well defined
due to the memoryless nature of the Poisson distribution).

Define to be a random variable on as in Theorem 1:
when the first and only arrival from is the last

event, , in the sequence, and 0 otherwise. Defineto be
a random variable on where if applying the se-
quence, , to the queue with initial length

causes the last event, to result in a packet drop, and
0 otherwise.

can also be obtained by picking an arbitrary
point in time (such that the queue is in steady state) and con-
sidering the sequence leading up to the first arrival of a packet
from .

(15)

We compute by considering se-
quences that start at the point in time of the arrival of a packet
from .

(16)

We note that for any where and any such that
, it follows from Lemma 1 that .

In particular, there is some for which where for
some , while . Also, since ,
we get

Applying this inequality to (15) and (16) completes the proof.

B. Delay-Corr Technique: Inverted-and Topologies

We now demonstrate that the delay-corr technique will cor-
rectly infer whether or not the two flows share in a queueing

system where the background traffic arrives according to an ar-
bitrary, ergodic, and stationary process, and the service times are
characterized by an arbitrary distribution. We do require that the
random variables that represent the background traffic and ser-
vice times be i.i.d. The analysis also assumes that the system has
entered into the stationary regime, i.e., the system is initially in
the steady state.

Our arguments rely on the following technical lemma that is
established in [21].

Lemma 3: Let be a nondecreasing function over ,
where , and let and be functions
such that ,

, and there is some such that
for , and for , .
Then . Similarly, if

is nonincreasing with , then
.

The following lemma implies that the delay correlation be-
tween two adjacent foreground packets is higher than that be-
tween two nonadjacent foreground packets. Its proof appears in
the Appendix.

Lemma 4: Consider an server (infinite capacity
queue) where background traffic arrives with an aggregate ar-
rival rate of , foreground traffic arrives according to a Poisson
process with rate , and packets are served at an average rate
of . Then for .

Armed with this lemma, we can now prove the result that
when the POC for both flows is the same

queue.
Theorem 3: Consider the same queue as in

Lemma 4, where the foreground flow consists of packets from
flows and whose arrivals to the queue are each described
by Poisson processes with ratesand , respectively,

. Then .
Proof: We start by noting that ,

. In other
words, each packet has the same expected delay. Simi-
larly, ,

. Hence, to prove the theorem, we
need only show that

.
A Poisson process of rate has the same distribu-

tion as a Poisson process with rate that has been
thinned with probability . As defined in
(6), computes the correlation coefficient between ad-
jacent packets in the aggregate foreground flow. Hence,

. Alterna-
tively, as defined in (7), is the correlation coefficient
between packets from that are adjacent with respect to

(i.e., packets and ). Let be a
random variable that equals 1 if is from for all where

and 0 otherwise. Let be a
random variable that equals 1 if and are from , and
0 otherwise. Hence, and are adjacent packets in
with respect to packets in when both and

. Using the fact that packet delays are inde-
pendent of their marking ( ,

) and that
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and are independent random variables [such that
],

then

where Lemma 4 yields the above inequality.
Thus far, we have shown that when the flows

share POCs. We now prove that when the flows do
not share POCs.

Lemma 5: is an increasing function of
.
This lemma is also intuitive. It says that the expected delay of

is an increasing function of the delay of . A detailed
proof is given in [21]

Theorem 4: Let and have separate queues as bottle-
necks, and let ’s queue be an queue as in The-
orem 3 (except that does not pass through the queue). Then

.
Proof: First, note that , since the delays expe-

rienced by two packets drawn from separate foreground flows
are independent. The denominator of a correlation coefficient is
always larger than 0. Hence, we need only show that the numer-
ator in the correlation coefficient of is larger than 0.

By Lemma 5, is an increasing function of
. Noting that

, it follows that
there must exist somefor which

, so that we can apply Lemma 3 with ,
, and

, we get that the right-hand side of (17)
is larger than 0, which completes the proof.

IV. PERFORMANCE INSIMULATION

In this section, we use simulation to examine four scenarios.
In the first two scenarios, we simulate flows that are config-
ured in an Inverted- topology. In the second two scenarios,
the flows are configured in a topology. In the first and third
scenarios, the flows’ POCs are independent, and in the second
and fourth, the flows’ POCs are shared. Fig. 5 demonstrates
the topology on which we ran our simulations using thens-2

Fig. 5. Topology used in simulation experiments.

simulator [25]. For the topology, probe receivers are con-
nected to the leftmost node, the sender foris connected to
the bottom-right node, the sender for to the top-right. For
the Inverted- topology, we simply swap the locations of each
flow’s sender with its receiver. We construct POCs by assigning
links that we want congested to process at a rate of 1.5 Mb/s,
and links that we do not want congested to process at a rate of
1000 Mb/s. The links that are assigned the 1.5-Mb/s capacity
are either the set of links numbered 1 through 3 (shared POC)
or the set of links numbered 4 through 8 (separate POCs). All
background data traffic flows in the same direction as that of
the foreground flows, and traverses a subset of links that are as-
signed the 1.5-Mb/s capacity (i.e., there is no background traffic
on the high bandwidth links). Background flows are placed on
the path of each probe. The number of such flows is chosen uni-
formly between 10 and 20, and each flow uses the TCP protocol
with probability 0.75. Otherwise, it is a CBR flow with on-off
service times. The CBR rate is chosen uniformly between 10
and 20 kb/s, and the average on time and off time is chosen uni-
formly between 0.2 and 3.0 s. For each of the four scenarios, we
run 1000 experiments, starting the background traffic at time

, and then starting the probes at time , and ending
the experiment at time .

Fig. 6 plots the percentage of experiments run over the In-
verted- topology that, using the loss-corr and delay-corr tech-
niques, correctly infer whether or not the flows share as a func-
tion of time. As clock time progresses and additional packets ar-
rive at the receivers, the estimates of and are computed
over an increasing sample set size. The hope is that over time,
as the estimates of and increase in accuracy, more tests
will correctly infer whether or not the flows’ POCs are shared.

Fig. 6(a) plots the results of 1000 experiments in which the
flows’ POCs are separate. Fig. 6(b) plots the results of 1000
other experiments in which the flows’ POCs are shared. In each
experiment, both foreground flows send 20-B packets at an av-
erage rate of 25 packets per second. The clock time varies ex-
ponentially on the axis, where a time of zero indicates the
time that the first probe packet arrived at either receiver. The
axis indicates the percentage of the experiments that satisfy the
property being plotted. Curves labeled “no response” plot the
percentage of tests that cannot form a hypothesis by the time
indicated on the axis (the test must have at least one sample
that can be used to compute an estimate for bothand
before it forms a hypothesis). Curves labeled “correct” plot the
percentage of tests returning a hypothesis whose hypothesis is
correct at the time indicated on theaxis (i.e., tests that have
not yet returned a hypothesis are omitted when computing the
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(a) (b)

Fig. 6. Inverted-Y topology. (a) Independent congestion. (b) Shared congestion.

(a) (b)

Fig. 7. Y topology. (a) Independent congestion. (b) Shared congestion.

values of the “correct” curves). Ninety-five percent level confi-
dence intervals are generated by averaging over 20 samples at a
time, such that the distribution of the average of the samples is
approximately normal. Points are omitted when confidence in-
tervals are too wide.

We can make several observations from these graphs. First,
the rate at which the delay-corr technique correctly assesses
whether or not a POC is shared is an order of magnitude faster
than that of the loss-corr technique. For instance, for 90% of the
experiments to draw a correct conclusion, the delay-corr tech-
nique obtains a sufficient number of samples within a second,
whereas the loss-corr technique must proceed for between 10
and 50 s over the various experiments. This is not surprising,
given the fact that the delay-corr technique is able to use almost
every packet to compute its measures, whereas the loss-corr
technique only uses samples that contain certain sequences of
packet losses. We also note a trend that for the loss-corr tech-
nique when POCs are shared, the percentage of hypotheses that
are correct initially decreases with time. This is likely to be a
result of a bias caused by the fact that the samples used to com-
pute arrive at a slower rate than those used to compute.

Fig. 7 plots similar results for a -topology as those in Fig. 6.
There is little difference in the results of the delay-corr technique

between the two topologies. This is not surprising, since the dif-
ference in topology does not affect the way the delay-corr ex-
periment is executed. On the other hand, the loss-corr technique
for the -topology converges at a slower rate than the loss-corr
technique for the Inverted- topology. This is because in most
cases, the value of computed using (3) is not significantly
different from the value of computed using (4), so more
samples are necessary to correctly assess with a given level of
confidence which one is larger. Furthermore, the conditioning
within (3) is stricter than that for (1), such that on average it
takes longer to get the same number of samples.

A. Network Variations: RED and TCP

Our theoretical and preliminary simulation work considers
a networking environment in which routers utilize drop-tail
routing and in which the time between transmissions of the
foreground flows is exponentially distributed. We now present
a preliminary exploration through simulation on variations of
this model. In particular, we consider networking environments
in which 1) routers enable random early detection (RED) and 2)
the foreground flows are TCP. Our findings are that the loss-corr
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(a) (b)

(c) (c)

Fig. 8. Variation of queue management policy (RED) and probe type (TCP). (a) RED: independent congestion. (b) RED: shared congestion. (c) TCP: independent
congestion. (d) TCP: shared congestion.

technique becomes unreliable, and that the delay-based tech-
nique converges to the correct result, but that in order to achieve
a high degree of confidence, considerably more time is required.

Fig. 8 presents our results of simulation experiments applying
these variations in the network environment. Fig. 8(a) and (b)
presents the results ofns simulations upon a -topology.
The experiment is similar in all respects to the experiments
conducted previously in this section with the exception that
the routers activate RED. We see that the probability that the
loss-corr technique returns the correct result does not converge
to one as the test is run for more time. However, the probability
that the delay-corr technique returns the correct result does con-
verge to one, but at a rate that is an order of magnitude slower
than that when the network consists of drop-tail routers. These
results are not surprising. First, RED will randomly drop probes
as the queue fills; this by itself introduces noise into the test
statistic. Second, RED is designed to encourage TCP sessions
to “back off” prior to overflowing its bottleneck queue. This
reduces the likelihood that the queue will be full and reduces the
rate of packet loss. Third, RED maintains a more stable queue
length, reducing the variance of the queueing delay process.

Fig. 8(c) and (d) presents the results ofns simulations upon
an inverted- topology, similar in all respects to the previous
experiments (drop-tail routers) with the exception that the fore-
ground flows are TCP flows. Again, we see that the loss-corr
technique’s probability of returning the correct result does
not converge to one. The delay-corr techniques probability of
returning the correct result when the bottlenecks are shared con-
verges toward 1 at a rate that is at least two orders of magnitude
slower than when the probe transmissions are exponentially
distributed and transmitted at an average rate of 20 per second.
We suspect that with additional time, the delay-corr technique’s
reliability would converge to 1, but that it is unlikely that the
test would be run in practice for more than two minutes. These
results are not surprising, either. The bursty nature of TCP
packet transmissions diminishes instances of the sequences
in which packets from alternate flows arrive adjacent to one
another. In addition, the bursty nature increases the likelihood
that statistically, packet arrivals from the same flow will appear
closer together in time to one another than packets across flows.
It is this same property that provides the intuition as to why the
tests work.
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TABLE I
SITE NAME ABBREVIATIONS

(a) (b)

Fig. 9. Experimental topologies. (a) Shared. (b) Independent.

V. ACTUAL TRACES

We have demonstrated the robustness of our comparison tests
through queueing analysis and simulation. Now, we present re-
sults of experiments used to evaluate how the tests work in
practice. We apply the tests to flows that traverse the Internet,
choosing end-system locations such that we can be reasonably
sure as to whether or not the flows share congestion. We then ex-
amine the results of our comparison tests. The set of end systems
used in the experiments consists of machines located at ACIRI
(California), UCL (London, U.K.), Columbia (New York, NY),
AT&T-San Jose (California), and three of our own machines, la-
beled UMass-1 through UMass-3. Table I presents a shorthand
notation for these sites that is used in the subsequent figures and
tables.

Fig. 9 demonstrates an example of a set of end-system sites
for experiments such that we can be reasonably sure (without
using the comparison tests) whether or not the flows share
a POC. The example in Fig. 9 involves four sites, UMass-1,
UMass-2, Columbia, and UCL, three of which are located
in the U.S., and one in Europe. UMass-1 and UMass-2 are
in fact located on the same LAN, such that the paths from
(to) UMass-1 and UMass-2 to (from) UCL shared all links
in common except for the initial (final) hop (this was verified
using traceroute ). We expect that in this configuration
[Fig. 9(a)], the two flows will share congestion. We believe that
at the time of our experiments, the path from (to) UMass-1 to
(from) UCL and the path from (to) Columbia to (from) UCL
were traversed separate trans-Atlantic links, and that the paths
were disjoint along all links in the U.S. [Fig. 9(b)]. We came to
this conclusion via an examination oftraceroute statistics
(a more detailed discussion of our use oftraceroute is pre-
sented later in the paper). We expect that in this configuration,
the flows will not share congestion. In either case, we can then
apply the comparison tests and see whether or not the results of
the test correctly identify whether or not the POCs are shared.

Table II summarizes the results of experiments performed
during the middle of the day on November 1 and November
3, 1999, using the hosts listed in Table I. Each experiment ran
for 600 s, with each foreground source sending 20-byte UDP
Poisson probes (not counting bytes in the IP header) at a rate of
25 per second. Each packet contained a sequence number and a
time stamp whose time was computed at the source immediately
prior to the socket call that transmitted the packet. Packet arrival

times at the receiver were recorded at the receiver immediately
after the socket call was performed to retrieve the packet data.
All time stamping was performed at the user level.

The first column in Table II indicates the date on which the ex-
periment was performed. The second column indicates whether
the topology was a or Inverted- topology. The third column
indicates the hosts that participated in the experiment, using the
abbreviations for the host names supplied in Table I. For the
topology, the labeling, (A, B C), indicates that senders at host
A and host B transmitted probes to receivers co-located at host
C. For the Inverted- topology, the labeling is of the form (A

B, C), indicating that the co-located senders at host A trans-
mitted probes to receivers at hosts B and C.

The fourth column provides a rough approximation of the av-
erage delay experienced over the shared path of the two flows,
as well as the average delay over the respective independent
portions of the paths. These values were obtained through two
calls to traceroute that were executed during the experi-
ment from the locations of the probe sender(s), one for each
source–destination pair. The shared links are the longest se-
quence of links, starting from the point of the co-located hosts,
that contain the same sequence of IP addresses. The remaining
links are unshared. The delay for a sequence of links is the av-
erage of the delays as reported bytraceroute at one end-
point of the sequence minus the average of the delays as reported
by traceroute at the other end.5 If a sequence of links is as-
signed a delay that is less than zero, we assume that the delay on
this sequence of links is negligible, and write the delay as0.

For the topology, the entry, ,
that is associated with the labeling, (A, B C), indicates that
the unshared portion of the path from host A to host C has an
average delay of ms, the unshared portion of the path from
host B to host C has an average delay ofms, and the shared
portion of these paths has an average delay ofms. For the
inverted- topology, the entry that is associated
with the labeling, (A B, C), indicates that it takes on average

ms to traverse the shared portion of the paths, and on average,
and ms to traverse the unshared portions of the paths to B

and C, respectively.
We use the relative values of these path delays to estimate

whether or not the POCs are shared. If the delay over the shared
portion is small with respect to the nonshared portions, we as-
sume that the POC is not shared. Otherwise, we assume it is.
A line is drawn in the middle of the table separating the exper-
iments whose flows we assume traverse a shared POC (above
the line) from those whose flows we assume traverse separate
POCs (below the line). We wish to point out that these assump-
tions are only a “best guess” as to whether the congestion is
actually shared or not. The information obtained bytracer-
oute can be used to distinguish the number of links that two

5No more than three are reported per hop, but in all our calls, at least one was
reported where necessary, allowing us to compute an average.
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TABLE II
TRACE RESULTS

paths share and can give coarse estimates of delays experienced
on those links. This information is helpful only in that without
any other information, two paths that share numerous links in
common are more likely to experience shared congestion than
two paths that have few links in common. In addition, high de-
lays can be an indication that either router queues are backed
up or that the router is incapable of handling high loads. Hence,
using these observations is by no means a definitive way to de-
termine whether or not two flows share points of congestion, but
aside from comparison tests such as those that we propose, there
is little that can be done using today’s technology to determine
whether or not two flows share common points of congestion.
Hence, we feel that the means that we use to make a “best guess”
is the best approach we have available to test our techniques in
a practical setting.

The fifth column presents the loss rates. An entry, , as-
sociated with the labeling, (A, B C), or the labeling, (C
A, B), indicates that the loss rate of the flow involving host A is
, the loss rate of the flow involving host B is, and the average

loss rate over both of the flows is. We emphasize that the loss
rates are given as percentages, so values less than one indicate
that fewer than one out of every one hundred packets was lost.

The last four columns present the results of the experiments.
The column labeled “loss-corr result” presents the hypothesis
returned by the loss-corr technique after 600 s; to its right is the
time of the experiment when the comparison test last changed
its hypothesis, i.e., the time at which it “stabilized” on its final
hypothesis. A hypothesis of INSUF indicates that the technique
was unable to form a hypothesis due to a lack of samples. The
last two columns present similar results for the delay-corr tech-
nique.

We find that five of the 16 experiments that applied the
loss-corr technique were unable to construct a hypothesis. We
note that in all but one of these tests in which no hypothesis was
constructed, the host at ACIRI was the point of co-location.
The loss rates in these traces were so low, that no samples were
produced that could be used to estimate the cross-measure,

. Of the remaining eleven experiments, only three of eleven
fail to match the assumed correct hypothesis. Except for the
last experiment listed, all experiments that returned the wrong

hypothesis were conducted using flows with very low loss rates,
which suggests that these flows did not experience significant
levels of congestion.

In more than 80% of our experiments, the delay-corr test
returned the hypothesis that matched our assumption about
whether or not the POCs were shared. Two of the three tests
that failed consisted of sessions with very low loss rates. We
hypothesize that the low loss rates are an indication that the
links were in use far below their capacity, such that the level of
delay congestion was insignificant.

VI. OPEN ISSUES

There are several issues that remain open with regard to de-
tecting shared congestion that we have not considered. We touch
briefly on those that we feel are the most critical to solve. First,
in the Inverted- topology, the information necessary to com-
pute the cross-measures is distributed at the receiving hosts. In
this paper, our processing of the information is done off-line,
at a centralized point to which we transmit all data. One direc-
tion for future work is to design protocols that, accounting for
the fact that the information may be distributed, can efficiently
construct a hypothesis. A second direction is to scale the tests
such that they can detect POCs efficiently among several flows.
Katabi’s technique [13] is one possibility, but this technique is
currently limited to the -topology, where the ratio of band-
width utilized at the POC by the background traffic in relation to
the foreground traffic is small. In practice, we expect POCs exist
at points where many flows are being aggregated, and expect
that this ratio can be quite large. A solution that scales easily to
many flows over a variety of traffic conditions remains an open
problem.

Finally, our work has assumed that congestion at different
bottlenecks exhibit significantly lower levels of correlation of
congestion events such as loss or delay between packets at a
given bottleneck point than between packets at two different
bottleneck points. Recent work (such as [26]) conjectures that
certain events might be correlated across different parts of the
network. We suspect that due to the time scale over which such
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correlation phenomena are observed, such correlations are un-
likely to affect our results significantly. Nonetheless, we feel
that further study of the potential impact of such effects is war-
ranted.

VII. CONCLUSION

We have demonstrated two techniques that, via end-to-end
measurement, are able to accurately detect whether or not two
flows share the same points of congestion within the network.
One of our key insights is the construction of a comparison
test. Rather than trying to figure out the level of correlation
that indicates that two flows share a common point of conges-
tion, we compare the correlation across flows to the correlation
within a single flow to make the determination. Another insight
is that the detection can be performed by transmitting probes,
each of which have intra-transmission times that are described
by Poisson processes. These techniques can be applied to flow
topologies where the senders are co-located but the receivers are
not, as well as the case where the receivers are co-located but
the senders are not. We demonstrated the performance of these
techniques through a mix of proofs using traditional queueing
models, simulation over a wide range of controlled scenarios,
and results using actual Internet traces.

APPENDIX

PROOFS OFDELAY LEMMAS

Proof (of Lemma 4):Define to be the time of arrival of
at the queue. , where is the time in

which exits (i.e., completes being serviced by) the queue.
’s service is not completed until after 1)s service is com-

pleted, and then 2) all background packets that arrive between
and and all foreground packets are ser-

viced. Thus,
, where is the number of (background) ar-

rivals admitted into the queue during the time interval ,
is the time it takes to process theth of the these arrivals, is
the time it takes the server to process , and is the
total time within the interval that the processor is idle (no
jobs in queue).

By substituting the above expression in place of within
, we obtain

(17)

where . We make several observations that will
help in proving the lemma. First, note that is independent
of : the time spent by in the queue is independent of the
time it takes to arrive after ’s arrival. Second, the ser-
vice time, , of for each is independent of arrival
times of foreground packets and the delay of, and is there-
fore independent of for all and of as well. Simi-
larly, the service time, , of any background packet that arrives
after time is independent of arrival times and of . Third,
since the queue has infinite capacity, is independent
of the queueing system during the time interval of length .

Thus, and are independent, and , the ex-
pected number of background packets that arrives in the interval

, is simply . It follows that
, where has the same dis-

tribution as each (because service times are i.i.d.). The rate at
which packets can be processed at the queue is

.6 Finally, note that and
whenever . Letting

(the time between the first andth arrivals of
Poisson process with rate), we have that .

We now prove the result by showing that for ,
. After

replacing by in (17), we have that
.

Applying our observations of independence, we get

(18)

Note that starting from time , the queue cannot be
empty at least until after exits the queue. A simple
sample-path argument can be used to demonstrate that
increasing decreases the likelihood that the queue
is idle between arrivals of and for longer than
any aggregate length of time. More formally, for any

is a monotonically de-
creasing function of . It follows that

[apply Lemma 3 with ,
, and

]. Furthermore, we can
show that (the
expected time times the idle rate of the system) as follows. If
packet took 0 seconds to process, because it and are
Poisson arrivals, we can use the PASTA property to obtain that

. However, again
via a sample-path argument, the fact that has a nonnegative
service time can only reduce the expected idle time.

Applying this resulting inequality into (18), and substituting
, we get
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