1. Introduction

A distributed network service requires reliable, ubiquitous and survivable provisions to prevent
accidental or malicious attacks on the servers and clients in the network or the values they
exchange. Reliability requires that clients can determine that received packets are authentic; that
is, were actually sent by the intended server and not manufactured or modified by an intruder.
Ubiquity requires that any client can verify the authenticity of any server using only public infor-
mation. Survivability requires protection from faulty implementations, improper operation and
possibly malicious clogging and replay attacks with or without data modification. These require-
ments are especially stringent with widely distributed network services, since damage due to fail-
ures can propagate quickly throughout the network, devastating archives, routing databases and
monitoring systems and even bring down major portions of the network.

The Network Time Protocol (NTP) contains provisions to cryptographically authenticate individ-
ual servers as described in the most recent protocol NTP Version 3 (NTPv3) specification [11];
however, that specification does not provide a scheme for the distribution of cryptographic keys,
nor does it provide for the retrieval of cryptographic mediathat reliably bind the server identifica-
tion credentials with the associated private keys and related public values. However, conventional
key agreement and digital signatures with large client populations can cause significant perfor-
mance degradations, especially in time critical applications such as NTP. In addition, there are
problems unique to NTP in the interaction between the authentication and synchronization func-
tions, since each requires the other.

This document describes a cryptographically sound and efficient methodology for usein NTP and
similar distributed protocols. As demonstrated in the reports and briefings cited in the references
at the end of this document, there is a place for PKI and related schemes, but none of these
schemes alone satisfies the requirements of the NTP security model. The various key agreement
schemes [8], [13], [5] proposed by the IETF require per-association state variables, which contra-
dicts the principles of the remote procedure call (RPC) paradigm in which servers keep no state
for a possibly large client population. An evaluation of the PKI model and algorithms as imple-
mented in the OpenSSL library leads to the conclusion that any scheme requiring every NTP
packet to carry a PKI digital signature would result in unacceptably poor timekeeping perfor-
mance.

A revised security model and authentication scheme called Autokey was proposed in earlier
reports[10], [9]. It is based on a combination of PKI and a pseudo-random sequence generated by
repeated hashes of a cryptographic value involving both public and private components. This
scheme has been tested and evaluated in alocal environment and in the CAIRN experiment net-
work funded by DARPA. A detailed description of the security model, design principles and
implementation experience is presented in this document.

Additional information about NTP, including executive summaries, briefings and bibliography
can be found on the NTP project page linked from www.ntp.org. The NTPv4 reference implemen-
tation for Unix and Windows, including sources and documentation in HTML, is available from
the NTP repository at the same site. All of the features described in this document, including sup-
port for both IPv4 and I1Pv6 address families, are included in the current development version at
that repository. The reference implementation is not intended to become part of any standard that



may be evolved from this document, but to serve as an example of how the procedures described
in this document can be implemented in a practical way.

2. NTP Security Model

NTP security requirements are even more stringent than most other distributed services. First, the
operation of the authentication mechanism and the time synchronization mechanism are inextrica-
bly intertwined. Reliable time synchronization requires cryptographic keys which are valid only
over designated time intervals; but, timeintervals can be enforced only when participating servers
and clients are reliably synchronized to UTC. Second, the NTP subnet is hierarchical by nature, so
time and trust flow from the primary servers at the root through secondary serversto the clients at
the leaves.

A client can claim authentic to dependent applications only if all servers on the path to the pri-
mary servers are bone-fide authentic. In order to emphasize this requirement, in this document the
notion of “authentic” is replaced by “proventic”, a noun new to English and derived from prove-
nance, as in the provenance of a painting. Having abused the language this far, the suffixes fixable
to the various noun and verb derivatives of authentic will be adopted for proventicaswell. InNTP
each server authenticates the next lower stratum servers and proventicates (authenticates by
induction) the lowest stratum (primary) servers. Serious computer linguists would correctly inter-
pret the proventic relation as the transitive closure of the authentic relation.

t isimportant to note that the notion of proventic does not necessarily imply the time is correct. A
NTP client mobilizes a number of concurrent associations with different servers and uses a crafted
agreement algorithm to pluck truechimers from the population possibly including falsetickers. A
particular association is proventic if the server certificate and identity have been verified by the
means described in this document. However, the statement “the client is synchronized to proven-
tic sources’ means that the system clock has been set using the time values of one or more
proventic client associations and according to the NTP mitigation algorithms. While a certificate
authority (CA) must satisfy this requirement when signing a certificate request, the certificate
itself can be stored in public directories and retrieved over unsecured network paths.

Over the last several yearsthe IETF has defined and evolved the IPSEC infrastructure for privacy
protection and source authentication in the Internet, The infrastructure includes the Encapsulating
Security Payload (ESP) [7] and Authentication Header (AH) [6] for 1Pv4 and I1Pv6. Cryptographic
algorithms that use these headers for various purposes include those developed for the PKI,
including MD5 message digests, RSA digital signatures and severa variations of Diffie-Hellman
key agreements. The fundamental assumption in the security model is that packets transmitted
over the Internet can be intercepted by other than the intended receiver, remanufactured in various
ways and replayed in whole or part. These packets can cause the client to believe or produce
incorrect information, cause protocol operationsto fail, interrupt network service or consume pre-
cious network and processor resources.

In the case of NTP, the assumed goal of the intruder is to inject false time values, disrupt the pro-
tocol or clog the network, servers or clients with spurious packets that exhaust resources and deny
service to legitimate applications. The mission of the algorithms and protocols described in this
document is to detect and discard spurious packets sent by other than the intended sender or sent
by the intended sender, but modified or replayed by an intruder. The cryptographic means of the



reference implementation are based on the OpenSSL cryptographic software library available at
www.openssl.org, but other libraries with equivalent functionality could be used as well. It is
important for distribution and export purposes that the way in which these algorithms are used
precludes encryption of any data other than incidental to the construction of digital signatures.

There are a number of defense mechanisms already built in the NTP architecture, protocol and
agorithms. The fundamental timestamp exchange scheme is inherently resistant to spoof and
replay attacks. The engineered clock filter, selection and clustering algorithms are designed to
defend against evil cliques of Byzantine traitors. While not necessarily designed to defeat deter-
mined intruders, these algorithms and accompanying sanity checks have functioned well over the
years to deflect improperly operating but presumably friendly scenarios. However, these mecha-
nisms do not securely identify and authenticate serversto clients. Without specific further protec-
tion, an intruder can inject any or all of the following mischiefs.

The NTP security model assumes the following possible threats. Further discussion isin [9] and
in the briefings at the NTP project page, but beyond the scope of this document.

1. Anintruder can intercept and archive packets forever, as well as all the public values ever
generated and transmitted over the net.

2. An intruder can generate packets faster than the server, network or client can process them,
especialy if they require expensive cryptographic computations.

3. Inawiretap attack the intruder can intercept, modify and replay a packet. However, it cannot
permanently prevent onward transmission of the original packet; that is, it cannot break the
wire, only tell lies and congest it. Except in unlikely cases considered in Appendix D, the
modified packet cannot arrive at the victim before the original packet.

4. Inamiddleman or masquerade attack the intruder is positioned between the server and client,
so it can intercept, modify and replay a packet and prevent onward transmission of the original
packet. Except in unlikely cases considered in Appendix D, the middleman does not have the
server private keys or identity parameters.

The NTP security model assumes the following possible limitations. Further discussion isin [9]
and in the briefings at the NTP project page, but beyond the scope of this document.

1. The running times for public key algorithms are relatively long and highly variable. In gen-
eral, the performance of the time synchronization function is badly degraded if these algo-
rithms must be used for every NTP packet.

2. In some modes of operation it is not feasible for a server to retain state variablesfor every cli-
ent. It is however feasible to regenerated them for a client upon arrival of a packet from that
client.

3. Thelifetime of cryptographic values must be enforced, which requires areliable system clock.
However, the sources that synchronize the system clock must be cryptographically proventi-
cated. This circular interdependence of the timekeeping and proventication functions requires
special handling.



4. All proventication functions must involve only public values transmitted over the net with the
single exception of encrypted signatures and cookies intended only to authenticate the source.
Private values must never be disclosed beyond the machine on which they were created.

5. Public encryption keys and certificates must be retrievable directly from servers without
requiring secured channels; however, the fundamental security of identification credentials
and public values bound to those credentials must be a function of certificate authorities and/
or webs of trust.

6. Error checking must be at the enhanced paranoid level, as network terrorists may be able to
craft errored packets that consume excessive cycles with needless result. While this document
includes an informal vulnerability analysis and error protection paradigm, a forma model
based on communicating finite-state machine analysis remains to be devel oped.

Unlike the Secure Shell security model, where the client must be securely authenticated to the
server, in NTP the server must be securely authenticated to the client. In ssh each different inter-
face address can be bound to a different name, as returned by areverse-DNS query. In this design
separate public/private key pairs may be required for each interface address with a distinct name.
A perceived advantage of this design is that the security compartment can be different for each
interface. This alows afirewall, for instance, to require some interfaces to proventicate the client
and others not.

However, the NTP security model specifically assumes that access control is performed by means
external to the protocol and that all time values and cryptographic values are public, so thereisno
need to associate each interface with different cryptographic values. To do so would create the
possibility of a two-faced clock, which is ordinarily considered a Byzantine hazard. In other
words, thereis one set of private secrets for the host, not one for each interface. Inthe NTP design
the host name, as returned by the Unix gethostname() library function, represents al interface
addresses. Since at least in some host configurations the host name may not be identifiable in a
DNS query, the name must be either configured in advance or obtained directly from the server
using the Autokey protocol.

3. Approach

The Autokey protocol described in this document is designed to meet the following objectives.
Again, in-depth discussions on these objectives is in the web briefings and will not be elaborated
in this document. Note that here and elsewhere in this document mention of broadcast mode
means multicast mode as well, with exceptions noted in the NTP software documentation.

1. It must interoperate with the existing NTP architecture model and protocol design. In particu-
lar, it must support the symmetric key scheme described in [11]. As a practical matter, the ref-
erence implementation must use the same internal key management system, including the use
of 32-bit key I1Ds and existing mechanismsto store, activate and revoke keys.

2. It must provide for the independent collection of cryptographic values and time values. A
NTP packet is accepted for processing only when the required cryptographic values have been
obtained and verified and the NTP header has passed all sanity checks.



3. It must not significantly degrade the potential accuracy of the NTP synchronization algo-
rithms. In particular, it must not make unreasonable demands on the network or host processor
and memory resources.

4. It must be resistant to cryptographic attacks, specifically those identified in the security model
above. In particular, it must be tolerant of operational or implementation variances, such as
packet loss or misorder, or suboptimal configurations.

5. It must build on a widely available suite of cryptographic algorithms, yet be independent of
the particular choice. In particular, it must not require data encryption other than incidental to
signature and cookie encryption operations.

6. It must function in all the modes supported by NTP, including server, symmetric and broad-
cast modes.

7. 1t must not require intricate per-client or per-server configuration other than the availability of
the required cryptographic keys and certificates.

8. The reference implementation must contain provisions to generate cryptographic key files
specific to each client and server.

4. Autokey Cryptography

Autokey public key cryptography is based on the PK1 algorithms commonly used in the Secure
Shell and Secure Sockets Layer applications. As in these applications Autokey uses keyed mes-
sage digests to detect packet modification, digital signatures to verify the source and public key
algorithms to encrypt cookies. What makes Autokey cryptography unique is the way in which
these algorithms are used to deflect intruder attacks while maintaining the integrity and accuracy
of the time synchronization function.

NTPv3 and NTPv4 symmetric key cryptography use keyed-M D5 message digests with a 128-bit
private key and 32-bit key ID. In order to retain backward compatibility with NTPv3, the NTPv4
key ID space is partitioned in two subspaces at a pivot point of 65536. Symmetric key 1Ds have
values less than the pivot and indefinite lifetime. Autokey key 1Ds have pseudo-random values
equal to or greater than the pivot and are expunged immediately after use. Both symmetric key
and public key cryptography authenticate as shown below. The server looks up the key associated
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Figure 1. Receiving Messages

with the key ID and calculates the message digest from the NTP header and extension fields
together with the key value. The key ID and digest form the message authentication code (MAC)
included with the message. The client does the same computation using its local copy of the key



and compares the result with the digest in the MAC. If the values agree, the message is assumed
authentic.

There are three Autokey protocol variants corresponding to each of the three NTP modes:. server,
symmetric and broadcast. All three variants make use of specially contrived session keys, called
autokeys, and a precomputed pseudo-random sequence of autokeys with the key IDs saved in a
key list. Asin the original NTPv3 authentication scheme, the Autokey protocol operates sepa-
rately for each association, so there may be several autokey sequences operating independently at
the same time.

An autokey is computed from four fields in network byte order as shown below:
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Figure 2. NTPv4 Autokey
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The four values are hashed by the MD5 message digest algorithm to produce the 128-bit autokey
value, which in the reference implementation is stored along with the key ID in a cache used for
symmetric keys as well as autokeys. Keys are retrieved from the cache by key 1D using hash
tables and a fast |ookup algorithm.

For use with I1Pv4, the Source IP and Dest I P fields contain 32 bits; for use with IPv6, these fields
contain 128 bits. In either case the Key ID and Cookie fields contain 32 bits. Thus, an IPv4
autokey has four 32-bit words, while an IPv6 autokey has ten 32-bit words. The source and desti-
nation IP addresses and key ID are public values visible in the packet, while the cookie can be a
public value or shared private value, depending on the mode.

The NTP packet format has been augmented to include one or more extension fields piggybacked
between the original NTP header and the message authenticator code (MAC) at the end of the
packet. For packets without extension fields, the cookie is a shared private value conveyed in
encrypted form. For packets with extension fields, the cookie has a default public value of zero,
since these packets can be validated independently using digital signatures.

There are some scenarios where the use of endpoint |P addresses may be difficult or impossible.
These include configurations where network address translation (NAT) devices are in use or when
addresses are changed during an association lifetime due to mobility constraints. For Autokey, the
only restriction is that the address fields visible in the transmitted packet must be the same as
those used to construct the autokey sequence and key list and that these fields be the same as those
visible in the received packet.

Provisions are included in the reference implementation to handle cases when these addresses
change, as possible in mobile IP. For scenarios where the endpoint | P addresses are not available,
an optional public identification value could be used instead of the addresses. Examples include
the Interplanetary Internet, where bundles are identified by name rather than address. Specific
provisions are for further study.



The figure below shows how the autokey list and autokey values are computed. The key list con-
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Figure 3. Constructing Key List

sists of a sequence of key IDs starting with a random 32-bit nonce (autokey seed) equal to or
greater than the pivot as the first key ID. The first autokey is computed as above using the given
cookie and the first 32 bits of the result in network byte order become the next key I1D. Operations
continue to generate the entire list. It may happen that a newly generated key ID is less than the
pivot or collides with another one already generated (birthday event). When this happens, which
occurs only rarely, the key list isterminated at that point. The lifetime of each key is set to expire
one poll interval after its scheduled use. In the reference implementation, the list is terminated
when the maximum key lifetime is about one hour, so for poll intervals above one hour a new key
list containing only a single entry is regenerated for every poll.

The index of the last key ID in the list is saved along with the next key ID for that entry, collec-
tively called the autokey values. The autokey values are then signed. The list is used in reverse
order asin the figure below, so that the first autokey used is the last one generated. The Autokey
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protocol includes a message to retrieve the autokey values and signature, so that subsequent pack-
ets can be validated using one or more hashes that eventually match the last key 1D (valid) or
exceed the index (invalid). Thisis called the autokey test in the following and is done for every
packet, including those with and without extension fields. In the reference implementation the
most recent key 1D received is saved for comparison with the first 32 bitsin network byte order of
the next following key value. This minimizes the number of hash operations in case a packet is
lost.

5. Autokey Operations

The Autokey protocol has three variations, called dances, corresponding to the NTP server, sym-
metric and broadcast modes. The server dance was suggested by Steve Kent over lunch sometime
ago, but considerably modified since that meal. The server keeps no state for each client, but uses
a fast algorithm and a 32-bit random private value (server seed) to regenerate the cookie upon



arrival of a client packet. The cookie is calculated as the first 32 bits of the autokey computed
from the client and server addresses, akey 1D of zero and the server seed as cookie. The cookieis
used for the actual autokey calculation by both the client and server and is thus specific to each
client separately.

In previous Autokey versions the cookie was transmitted in clear on the assumption it was not
useful to a wiretapper other than to launch an ineffective replay attack. However, a middleman
could intercept the cookie and manufacture bogus messages acceptable to the client. In order to
reduce the risk of such an attack, the Autokey Version 2 server encrypts the cookie using a public
key supplied by the client. While requiring additional processor resources for the encryption, this
makes it effectively impossible to spoof a cookie or masquerade as the server.

[Note in passing. In an attempt to avoid the use of overt encryption operations, an experimental
scheme used a Diffie-Hellman agreed key as a stream cipher to encrypt the cookie. However, not
only was the protocol extremely awkward, but the processing time to execute the agreement,
encrypt the key and sign the result was horrifically expensive - 15 seconds in a vintage Sun IPC.
This scheme was quickly dropped in favor of generic public key encryption.]

The server dance uses the cookie and each key 1D on the key list in turn to retrieve the autokey
and generate the MAC in the NTP packet. The server uses the same values to generate the mes-
sage digest and verifies it matches the MAC in the packet. It then generates the MAC for the
response using the same values, but with the client and server addresses exchanged. The client
generates the message digest and verifies it matchesthe MAC in the packet. In order to deflect old
replays, the client verifies the key ID matches the last one sent. In this mode the sequentia struc-
ture of the key list is not exploited, but doing it this way simplifies and regularizes the implemen-
tation while making it nearly impossible for an intruder to guess the next key ID.

In broadcast dance clients normally do not send packets to the server, except when first starting up
to verify credentials and calibrate the propagation delay. At the same time the client runs the
broadcast dance to obtain the autokey values. The dance requires the association 1D of the partic-
ular server association, since there can be more than one operating in the same server. For this
purpose, the server packet includes the association 1D in every response message sent and, when
sending the first packet after generating a new key list, it sends the autokey values as well. After
obtaining and verifying the autokey values, the client verifies further server packets using the
autokey sequence.

The symmetric dance is similar to the server dance and keeps only a small amount of state
between the arrival of a packet and departure of the reply. The key list for each direction is gener-
ated separately by each peer and used independently, but each is generated with the same cookie.
The cookie is conveyed in away similar to the server dance, except that the cookie is a random
value. There exists a possible race condition where each peer sends a cookie request message
before receiving the cookie response from the other peer. In this case, each peer winds up with
two values, one it generated and one the other peer generated. The ambiguity is resolved simply
by computing the working cookie as the EXOR of the two values.

Autokey choreography includes one or more exchanges, each with a specific purpose, that must
be completed in order. The client obtains the server host name, digest/signature scheme and iden-
tity scheme in the parameter exchange. It recursively obtains and verifies certificates on the trail
leading to a trusted certificate in the certificate exchange and verifies the server identity in the



identity exchange. In the values exchange the client obtains the cookie and autokey values,
depending on the particular dance. Finally, the client presents its self-signed certificate to the
server for signature in the sign exchange.

The ultimate security of Autokey is based on digitally signed certificates and a certificate infra-
structure compatible with [1] and [4]. The Autokey protocol builds the certificate trail from the
primary servers, which presumably have trusted self-signed certificates, recursively by stratum.
Each stratum n + 2 server obtains the certificate of a stratum n server, presumably signed by a
stratum n — 1 server, and then the stratum n + 1 server presents its own self-signed certificate for
signature by the stratum n server. As the NTP subnet forms from the primary servers at the root
outward to the leaves, each server accumulates non-duplicative certificates for al associations
and for al trails. In typical NTP subnets, thisresultsin agood deal of useful redundancy and cross
checking and making it even harder for aterrorist to subvert.

In order to prevent masquerade, it is necessary for the stratum n server to prove identity to the
stratum n + 1 server when signing its certificate. In many applications a number of servers share a
single security compartment, so it isonly necessary that each server verifiesidentity to the group.
Although no specific identity scheme is specified in this document, Appendix E describes a num-
ber of them based on cryptographic challenge-response algorithms. The reference implementation
includes all of them with provision to add more if required.

Once the certificates and identity have been validated, subsequent packets are validated by digital
signatures or autokey sequences. These packets are presumed to contain valid time values; how-
ever, unless the system clock has already been set by some other proventic means, it is not known
whether these values actually represent a truechime or falsetick source. As the protocol evolves,
the NTP associations continue to accumulate time values until a majority clique is available to
synchronize the system clock. At this point the NTP intersection algorithm culls the falsetickers
from the population and the remaining truechimers are allowed to discipline the clock.

The time values for truechimer sources form a proventic partial ordering relative to the applicable
signature timestamps. This raises the interesting issue of how to mitigate between the timestamps
of different associations. It might happen, for instance, that the timestamp of some Autokey mes-
sage is ahead of the system clock by some presumably small amount. For this reason, timestamp
comparisons between different associations and between associations and the system clock are
avoided, except in the NTP intersection and clustering algorithms and when determining whether
a certificate has expired.

Once the Autokey values have been instantiated, the dances are normally dormant. In all except
the broadcast dance, packets are normally sent without extension fields, unless the packet is the
first one sent after generating a new key list or unless the client has requested the cookie or
autokey values. If for some reason the client clock is stepped, rather than slewed, all crypto-
graphic and time values for all associations are purged and the dances in all associations restarted
from scratch. This insures that stale values never propagate beyond a clock step. At intervals of
about one day the reference implementation purges all associations, refreshes all signatures, gar-
bage collects expired certificates and refreshes the server seed.



6. Public Key Signatures and Timestamps

While public key signatures provide strong protection against misrepresentation of source, com-
puting them is expensive. This invites the opportunity for an intruder to clog the client or server
by replaying old messages or to originate bogus messages. A client receiving such messages
might be forced to verify what turns out to be an invalid signature and consume significant pro-
CESSOr resources.

In order to foil such attacks, every signed extension field carries a timestamp in the form of the
NTP seconds at the signature epoch. The signature spans the entire extension field including the
timestamp. If the Autokey protocol has verified a proventic source and the NTP algorithms have
validated the time values, the system clock can be synchronized and signatures will then carry a
nonzero (valid) timestamp. Otherwise the system clock is unsynchronized and signatures carry a
zero (invalid) timestamp. The protocol detects and discards replayed extension fields with old or
duplicate timestamps, as well as fabricated extension fields with bogus timestamps, before any
values are used or signatures verified.

There are three signature types currently defined:

1. Cookie signature/timestamp: Each association has a cookie for use when generating akey list.
The cookie value is determined along with the cookie signature and timestamp upon arrival of
a cookie request message. The values are returned in a a cookie response message.

2. Autokey signature/timestamp: Each association has a key list for generating the autokey
sequence. The autokey values are determined along with the autokey signature and timestamp
when a new key list is generated, which occurs about once per hour in the reference imple-
mentation. The values are returned in a autokey response message.

3. Public values signature/timestamp: All public key, certificate and leap second table values are
signed at the time of generation, which occurs when the system clock isfirst synchronized to a
proventic source, when the values have changed and about once per day after that, even if
these values have not changed. During protocol operations, each of these values and associ-
ated signatures and timestamps are returned in the associated request or response message.
While there are in fact several public value signatures, depending on the number of entries on
the certificate list, the values are all signed at the same time, so there is only one public value
timestamp.

The most recent timestamp received of each type is saved for comparison. Once a valid signature
with valid timestamp has been received, messages with invalid timestamps or earlier valid times-
tamps of the same type are discarded before the signature is verified. For signed messages this
deflects replays that otherwise might consume significant processor resources; for other messages
the Autokey protocol deflects message modification or replay by awiretapper, but not necessarily
by a middleman. In addition, the NTP protocol itself is inherently resistant to replays and con-
sumes only minimal processor resources.

All cryptographic values used by the protocol are time sensitive and are regularly refreshed. In
particular, files containing cryptographic basis values used by signature and encryption algo-
rithms are regenerated from time to time. It is the intent that file regenerations occur without spe-
cific advance warning and without requiring prior distribution of the file contents. While
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cryptographic datafiles are not specificaly signed, every file is associated with afilestamp in the
form of the NTP seconds at the creation epoch. It is not the intent in this document to specify file
formats or names or encoding rules, however, whatever conventions are used must support aNTP
filestamp in one form or another. Additional details specific to the reference implementation are
in Appendix B.

Filestamps and timestamps can be compared in any combination and use the same conventions. It
IS necessary to compare them from time to time to determine which are earlier or later. Since these
guantities have a granularity only to the second, such comparisons are ambiguous if the values are
the same. Thus, the ambiguity must be resolved for each comparison operation as described in
Appendix C.

It is important that filestamps be proventic data; thus, they cannot be produced unless the pro-
ducer has been synchronized to a proventic source. As such, the filestamps throughout the NTP
subnet represent a partial ordering of all creation epochs and serve as means to expunge old data
and insure new data are consistent. As the data are forwarded from server to client, the filestamps
are preserved, including those for certificate and leap seconds files. Packets with older filestamps
are discarded before spending cycles to verify the signature.

7. Autokey Protocol Overview

This section presents an overview of the three dances: server, broadcast and symmetric. Each
dance is designed to be non intrusive and to require no additional packets other than for regular
NTP operations. The NTP and Autokey protocols operate independently and simultaneously and
use the same packets. When the preliminary dance exchanges are complete, subsequent packets
are validated by the autokey sequence and thus considered proventic as well. Autokey assumes
clients poll servers at arelatively low rate, such as once per minute or slower. In particular, it is
assumed that a request sent at one poll opportunity will normally result in a response before the
next poll opportunity.

The Autokey protocol data unit isthe extension field, one or more of which can be piggybacked in
the NTP packet. An extension field contains either a request with optional data or a response with
data. To avoid deadlocks, any number of responses can be included in a packet, but only one
request. A response is generated for every request, even if the requestor is not synchronized to a
proventic source, but contain meaningful data only if the responder is synchronized to a proventic
source. Some requests and most responses carry timestamped signatures. The signature coversthe
entire extension field, including the timestamp and filestamp, where applicable. Only if the packet
passes all extension field tests are cycles spent to verify the signature.

All dances begin with the parameter exchange where the client obtains the server host name and
status word specifying the digest/signature scheme it will use and the identity schemes it supports.
The dance continues with the certificate exchange where the client obtains and verifies the certifi-
cates along the trail to a trusted, self-signed certificate usually, but not necessarily, provided by a
primary (stratum 1) server. Primary servers are by design proventic with trusted, self-signed cer-
tificates.

However, the certificate trail is not sufficient protection against middleman attacks unless an iden-
tity scheme such as described in Appendix E or proof-of-possession scheme in [14] is available.
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While the protocol for a generic challenge/response scheme is defined in this document, the
choice of one or another required or optional identification schemes is yet to be determined. If all
certificate signatures along the trail are verified and the server identity is confirmed, the server is
declared proventic. Once declared proventic, the client verifies packets using digital signatures
and/or the autokey sequence.

Once synchronized to a proventic source, the client continues with the sign exchange where the
server acting as CA signsthe client certificate. The CA interprets the certificate as a X.509v3 cer-
tificate request, but verifies the signature if it is self-signed. The CA extracts the subject, issuer,
extension fields and public key, then builds a new certificate with these data along with its own
serial number and begin and end times, then signs it using its own public key. The client uses the
signed certificate in its own role as CA for dependent clients.

In the server dance the client presents its public key and requests the server to generate and return
a cookie encrypted with this key. The server constructs the cookie as described above and
encryptsit using thiskey. The client decrypts the cookie for use in generating the key list. A simi-
lar dance is used in symmetric mode, where one peer acts as the client and the other the server. In
case of overlapping messages, each peer generates a cookie and the agreed common value is com-
puted as the EXOR of the two cookies.

The cookie is used to generate the key list and autokey values in al dances. In the server dance
thereis no need to provide these values to the server, so once the cookie has been obtained the cli-
ent can generate the key list and validate succeeding packets directly. In other dances the client
requests the autokey values from the server or, in some modes, the server provides them as each
new key list is generated. Once these values have been received, the client validates succeeding
packets using the autokey sequence as described previoudly.

A final exchange occurs when the server has the leap secondstable, asindicated in the host status
word. If so, the client requests the table and compares the filestamp with its own leap seconds
table filestamp, if available. If the server table is newer than the client table, the client replacesits
table with the server table. The client, acting as server, can now provide the most recent table to
any of its dependent clients. In symmetric mode, thisresultsin both peers having the newest table.

8. Autokey State Machine

This section describes the formal model of the Autokey state machine, its state variables and the
state transition functions.

8.1 Status Word

Each server and client operating also as a server implements a host status word, while each client
implements a server status word for each server. Both words have the format and content shown
below.

0 16 24 28

Digest/Signature NID Client Ident | Host

Figure 5. Status Word
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The low order 16 hits of the status word define the state of the Autokey protocol, while the high
order 16 hits specify the message digest/signature encryption scheme. Bits 24-31 of the status
word are reserved for server use, while bits 16-23 are reserved for client use. There are four addi-
tional bits implemented separately.

The host status word is included in the ASSOC request and response messages. The client copies
this word to the server status word and then lights additional status bits as the dance proceeds.
Once lit, these bits never come dark unless a general reset occurs and the protocol is restarted
from the beginning. The status bits are defined as follows:

ENB (31)

Lit if the server implements the Autokey protocol and is prepared to dance. Dim would be very
strange.

LPF (30)
Litif the server has loaded a valid leap secondsfile. This bit can be either lit or dim.
| DN (24-27)

These four bits select which identity scheme isin use. While specific coding for various schemes
is yet to be determined, the schemes available in the reference implementation and described in
Appendix E include the following.

0x0 Trusted Certificate (TC) Scheme (default)

0x1 Private Certificate (PC) Scheme

0x2 Schnorr aka ldentify-Friendly-or-Foe (IFF) Scheme
0x4 Guillard-Quisquater (GC) Scheme

0x8 Mu-Varadhargjan (MV) Scheme

The PC scheme is exclusive of any other scheme. Otherwise, the IFF, GQ and MV bits can be lit
in any combination.

The server status bits are defined as follows:

VAL 0x0100

Lit when the server certificate and public key are validated.

| FF 0x0200

Lit when the server identity credentials are confirmed by one of several schemes described later.
PRV 0x0400

Lit when the server signature is verified using the public key and identity credentials. Also called
the proventic bit elsewhere in this document. When lit, signed values in subsequent messages are
presumed proventic, but not necessarily time-synchronized.

CKY 0x0800
Lit when the cookie is received and validated. When lit, key lists can be generated.
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AUT 0x1000

Lit when the autokey values are received and validated. When lit, clients can validate packets
without extension fields according to the autokey sequence.

SGN 0x2000

Lit when the host certificate is signed by the server.

LPT 0x4000

Lit when the leap seconds tableis received and validated.

There are four additional status bits LST, LBK, DUP and SYN not included in the status word. All
except SYN are association properties, while SYNis ahost property. These bits may belit or dim as
the protocol proceeds; all except LST are active whether or not the protocol is running. LST is lit
when the key list is regenerated and signed and comes dim after the autokey values have been
transmitted. This is necessary to avoid livelock under some conditions. SYNis lit when the client
has synchronized to a proventic source and never dim after that. There are two error bits: LBK indi-
cates the received packet does not match the last one sent and DUP indicates a duplicate packet.
These bits, which are described in Appendix C, are lit if the corresponding error has occurred for
the current packet and dim otherwise.

8.2 Host State Variables

Host Name

The name of the host returned by the Unix gethostname() library function. The name must agree
with the subject name in the host certificate.

Host Status Word

Thisword isinitialized when the host first starts up. The format is described above.

Host Key

The RSA public/private key used to encrypt/decrypt cookies. Thisis aso the default sign key.
Sign Key

The RSA or DSA public/private key used to encrypt/decrypt signatures when the host key is not
used for this purpose.

Sign Digest

The message digest algorithm used to compute the signature before encryption.
|FF Parameters

The parameters used in the | FF identity scheme described in Appendix E.

GQ Parameters

The parameters used in the GQ identity scheme described in Appendix E.
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MV Parameters

The parameters used in the MV identity scheme described in Appendix E.
Server Seed

The private value hashed with the | P addresses to construct the cookie.
Certificate Information Structure (CIS)

Certificates are used to construct certificate information structures (CIS) which are stored on the
certificate list. The structure includes certain information fields from an X.509v3 certificate,
together with the certificate itself encoded in ASN.1 syntax. Each structure carries the public
value timestamp and the filestamp of the certificate file where it was generated. Elsewherein this
document the CIS will not be distinguished from the certificate unless noted otherwise.

A flagsfield in the CIS determines the status of the certificate. Thefield is encoded as follows:
SI GN Ox01

The certificate signature has been verified. If the certificate is self-signed and verified using the
contained public key, thisbit will be lit when the CIS is constructed.

TRST 0x02

The certificate has been signed by a trusted issuer. If the certificate is self-signed and contains
“trustRoot” in the Extended Key Usage field, this bit will be lit when the CIS is constructed.

PRI vV 0x04

The certificate is private and not to be revealed. If the certificate is self-signed and contains “ Pri-
vate’ in the Extended Key Usage field, this bit will be lit when the CIS is constructed.

ERRR 0x80
The certificate is defective and not to be used in any way.
Certificate List

CIS structures are stored on the certificate list in order of arrival, with the most recently received
ClSplaced first on thelist. Thelist isinitialized with the CIS for the host certificate, which isread
from the certificate file. Additional CIS entries are pushed on the list as certificates are obtained
from the servers during the certificate exchange. CIS entries are discarded if overtaken by newer
ones or expire dueto old age.

Host Certificate

The self-signed X.509v3 certificate for the host. The subject and issuer fields consist of the host
name, while the message digest/signature encryption scheme consists of the sign key and message
digest defined above. Optional information used in the identity schemes is carried in X.509v3
extension fields compatible with [4].

Public Key Values
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The public encryption key for the COOKIE request, which consists of the public value of the host
key. It carries the public values timestamp and the filestamp of the host key file.

L eapseconds Table Values

The NIST leap seconds table from the NIST leap seconds file. It carries the public values times-
tamp and the filestamp of the leap secondsfile.

8.3 Client State Variables (all modes)

Association ID

The association 1D used in responses. It is assigned when the association is mobilized.

Server Association ID

The server association ID used in requests. It is initialized from the first nonzero association 1D
field in aresponse.

Server Subject Name
The server host name determined in the parameter exchange.
Server |ssuer Name

The host name signing the certificate. It is extracted from the current server certificate upon
arrival and used to request the next item on the certificate trail.

Server Status Word
The host status word of the server determined in the parameter exchange.
Server Public Key

The public key used to decrypt signatures. It is extracted from the first certificate received, which
by design isthe server host certificate.

Server Message Digest

The digest/signature scheme determined in the parameter exchange.
|dentification Challenge

A 512-bit nonce used in the identification exchange.

Group Key

A 512-bit secret group key used in the identification exchange. It identifies the cryptographic
compartment shared by the server and client.

Receive Cookie Values
The cookie returned in a COOKI E response, together with its timestamp and filestamp.
Receive Autokey Values
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The autokey values returned in an AUTO response, together with its timestamp and filestamp.
Receive Leap second Values

The leap second table returned by a LEAP response, together with its timestamp and filestamp.

8.4 Server State Variables (broadcast and symmetric modes)
Send Cookie Values

The cookie encryption values, signature and timestamps.

Send Autokey Values

The autokey values, signature and timestamps.

Key List

A sequence of key IDs starting with the autokey seed and each pointing to the next. It is com-
puted, timestamped and signed at the next poll opportunity when the key list becomes empty.

Current Key Number
The index of the entry on the Key List to be used at the next poll opportunity.

8.5 Autokey Messages

There are currently eight Autokey requests and eight corresponding responses. A description of
these messages is given below; the detailed field formats are described in Appendix A.

8.5.1 Association Message (ASSOC)

The Association message is used in the parameter exchange to obtain the host name and related
values. The request contains the host status word in the filestamp field. The response contains the
status word in the filestamp field and in addition the host name as the unterminated string returned
by the Unix gethostname() library function. While minimum and maximum host name lengths
remain to be established, the reference implementation uses the values 4 and 256, respectively.
The remaining fields are defined previoudly in this document.

If the server response is acceptable and both server and client share the same identity scheme, ENB
islit. When the PC identity schemeisin use, the ASSOC response lights VAL, | FF and SI G since
the IFF exchange is complete at this point.

8.5.2 Certificate Message (CERT)

The Certificate message is used in the certificate exchange to obtain a certificate and related val-
ues by subject name. The request contains the subject name. For the purposes of interoperability
with older Autokey versions, if only the first two words are sent, the request is for the host certif-
icate. The response contains the certificate encoded in X.509 format with ASN.1 syntax as
described in Appendix G.
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If the subject name in the response does not match the issuer name, the exchange continues with
the issuer name replacing the subject name in the request. The exchange continues until either the
subject name matches the issuer name, indicating a self-signed certificate, or thetrst bitissetin
the CIS, indicating a trusted certificate. If a trusted certificate is found, the client stops the
exchange and lights VAL. If a self-signed certificate is found without encountering a trusted certif-
icate, the protocol loops until either a new certificate is signed or timeout.

8.5.3 Cookie Message (COOKIE)

The Cookie message is used in server and symmetric modes to obtain the server cookie. The
request contains the host public key encoded with ASN.1 syntax as described in Appendix G. The
response contains the cookie encrypted by the public key in the request. The signature and times-
tamps are determined when the cookie is encrypted. If the responseis valid, the client lights CKY.

8.5.4 Autokey Message (AUTO)

The Autokey message is used to obtain the autokey values. The request contains no value. The
response contains two 32-bit words in network order. The first word isthe final key 1D, while the
second is the index of the final key ID. The signature and timestamps are determined when the
key list is generated. If the response isvalid, the client lights AUT.

8.5.5 Leapseconds Table Message (LEAP)

The Leapseconds Table message is used to exchange leap seconds tables. The request and
response messages have the same format, except that the R bit is dim in the request and lit in the
response. Both the request and response contains the leap seconds table as parsed from the leap
seconds file from NIST. If the client already has a copy of the leap seconds data, it uses the one
with the latest filestamp and discards the other. If the response isvalid, the client lights LPT.

8.5.6 Sign Message (SIGN)

The Sign message requests the server to sign and return a certificate presented in the request. The
request contains the client certificate encoded in X.509 format with ASN.1 syntax as described in
Appendix G. The response contains the client certificate signed by the server private key. If the
certificate isvalid when received by the client, it islinked in the certificate list and the client lights
SGN.

8.5.7 ldentity Messages (IFF, GQ, MV)

The request contains the client challenge, usually a 160- or 512-bit nonce. The response contains
the result of the mathematical operation defined in Appendix E. The Response is encoded in
ASN.1 syntax as described in Appendix G. The response signature and timestamp are determined
when the response is sent. If the responseisvalid, the client lights | FF.

8.6 Protocol State Transitions

The protocol state machineisvery ssimple but robust. The state is determined by the server status
bits defined above. The state transitions of the three dances are shown below. The capitalized
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truth values represent the server status bits. All server bits are initialized dark and light up upon
the arrival of a specific response message, as detailed above.

When the system clock isfirst set and about once per day after that, or when the system clock is
stepped, the server seed is refreshed, signatures and timestamps updated and the protocol restarted
in all associations. When the server seed is refreshed or a new certificate or leap second table is
received, the public values timestamp is reset to the current time and all signatures are recom-
puted.

8.6.1 Server Dance

The server dance begins when the client sends an ASSOC request to the server. It ends when the
first signature is verified and PRv is lit. Subsequent packets received without extension fields are
validated by the autokey sequence. An optional LEAP exchange updates the leap seconds table.
Note the order of the identity exchanges and that only the first one will be used if multiple
schemes are available. Note aso that the SIGN and LEAP requests are not issued until the client
has synchronized to a proventic source.

while (1) {
wait_for_next_poll;
make NTP_header;
i f (response_ready)
send_r esponse;

i f (!ENB) /* parameters exchange */
ASSCC r equest ;
else if (IVAL) /* certificate exchange */

CERT_r equest ( Host _Nane) ;

else if (IDN & GQ && !l FF) /* GQidentity exchange */
GQ chal I enge;

else if (IDN & IFF & !l FF) /* IFF identity exchange */
| FF_chal | enge;

else if (IIFF) /* TC identity exchange */
CERT_r equest (| ssuer _Nane) ;

else if (ICKY) /* cooki e exchange */
COKI E_r equest ;

else if (SYN && !SI QG /* sign exchange */

SI GN_request (Host_Certificate);
else if (SYN & LPF & !'LPT) /* | eapseconds exchange */
LEAP_r equest;

}

When the PC identity scheme is in use, the ASSOC response lights VAL, | FF and SI G the
COOKIE response lights cky and AUT and the first valid signature lights PRV.

8.6.2 Broadcast Dance

THe only difference between the broadcast and server dancesisthe inclusion of an autokey values
exchange following the cookie exchange. The broadcast dance begins when the client receives the
first broadcast packet, which includes an ASSOC response with association ID. The broadcast cli-
ent uses the association 1D to initiate a server dance in order to calibrate the propagation delay.
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The dance ends when the first signature is verified and PRV is lit. Subsequent packets received
without extension fields are validated by the autokey sequence. An optional LEAP exchange
updates the leapseconds table. When the server generates a new key list, the server replaces the
ASSOC response with an AUTO response in the first packet sent.

while (1) {
wait _for_next poll;
make NTP_header;
i f (response_ready)
send_r esponse;

i f (!ENB) /* parameters exchange */
ASSCOC r equest;
else if (!VAL) /* certificate exchange */

CERT_r equest ( Host _Nan®) ;

else if (IDN & GQ && !l FF) /* GQidentity exchange */
GQ chal I enge;

else if (IDN & IFF & !l FF) /* IFF identity exchange */
| FF_chal | enge;

else if (IIFF) /* TC identity exchange */
CERT_request (| ssuer_Nane) ;

else if (!CKY) /* cooki e exchange */
COKI E_r equest ;

else if (!AUT) /* aut okey val ues exchange */
AUTO request;

else if (SYN &&!' SIQ /* sign exchange */

SI GN request (Host _Certificate);
else if (SYN & LPF & !LPT) /* | eapseconds exchange */
LEAP_r equest ;
}

When the PC identity scheme is in use, the ASSOC response lights VAL, | FF and SI G the
COOKIE response lights cKky and AUT and the first valid signature lights PRV.

8.6.3 Symmetric Dance

The symmetric dance is intricately choreographed. It begins when the active peer sends an
ASSOC request to the passive peer. The passive peer mobilizes an association and both peers step
the same dance from the beginning. Until the active peer is synchronized to a proventic source
(which could be the passive peer) and can sign messages, the passive peer loops waiting for the
timestamp in the ASSOC response to light up. Until then, the active peer dances the server steps,
but skips the sign, cookie and |eapseconds exchanges.
while (1) {
wait_for_next_poll;
make NTP_header ;

i f (!ENB) /* parameters exchange */
ASSCC r equest ;
else if (!VAL) /* certificate exchange */

CERT_r equest ( Host _Nane) ;

else if (IDN & GQ && !l FF) /* GQidentity exchange */
&Q chal I enge;

else if (IDN & IFF & !l FF) /* IFF identity exchange */
| FF_chal | enge;
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else if (IIFF) /* TC identity exchange */
CERT_r equest (| ssuer _Nane) ;

else if (SYN && !SI QG /* sign exchange */
SI GN request(Host _Certificate);

else if (SYN && ! CKY) /* cooki e exchange */
COCKI E_r equest ;

else if (ILST) /* aut okey val ues response */
AUTO r esponse;

else if (!AUT) /* aut okey val ues exchange */

AUTO r equest;
else if (SYN & LPF & !'LPT) /* | eapseconds exchange */
LEAP_r equest ;
}

When the PC identity scheme is in use, the ASSOC response lights VAL, | FF and SI G the
COOKIE response lights cky and AUT and the first valid signature lights PRV.

Once the active peer has synchronized to a proventic source, it includes timestamped signatures
with its messages. The first thing it does after lighting timestamps is dance the sign exchange so
that the passive peer can survive the default identity exchange, if necessary. Thisis pretty weird,
since the passive peer will find the active certificate signed by its own public key.

The passive peer, which has been stalled waiting for the active timestamps to light up, now mates
the dance. Theinitial value of the cookieis zero. If a COOKIE response has not been received by
either peer, the next message sent is a COOKIE request. The recipient rolls a random cookie,
lights cKY and returns the encrypted cookie. The recipient decrypts the cookie and lights CKY. It is
not a protocol error if both peers happen to send a COOKIE request at the same time. In this case
both peers will have two values, one generated by itself peer and the other received from the other
peer. In such cases the working cookie is constructed as the EXOR of the two values.

At the next packet transmission opportunity, either peer generates a new key list and lights LST;
however, there may already be an AUTO request queued for transmission and the rules say no
more than one request in a packet. When available, either peer sends an AUTO response and dims
LST. The recipient initializes the autokey values, dims LST and lights AUT. Subsequent packets
received without extension fields are validated by the autokey sequence.

The above description assumes the active peer synchronizes to the passive peer, which itself is
synchronized to some other source, such as aradio clock or another NTP server. In this case, the
active peer isoperating at a stratum level one greater than the passive peer and so the passive peer
will not synchronize to it unless it loses its own sources and the active peer itself has another
source.

9. Error Recovery

The Autokey protocol state machine includes provisions for various kinds of error conditions that
can arise due to missing files, corrupted data, protocol violations and packet |oss or misorder, not
to mention hostile intrusion. This section describes how the protocol responds to reachability and
timeout events which can occur due to such errors. Appendix C contains an extended discussion
on error checking and timestamp validation.
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A persistent NTP association is mobilized by an entry in the configuration file, while an ephem-
eral association is mobilized upon the arrival of a broadcast, manycast or symmetric active
packet. A general reset re initializes all association variables to the initial state when first mobi-
lized. In addition, if the association is ephemeral, the association is demobilized and all resources
acquired are returned to the system.

Every NTP association has two variables which maintain the liveness state of the protocol, the 8-
bit reachability register defined in [11] and the watchdog timer, which is new in NTPv4. At every
poll interval the reachability register is shifted left, the low order bit is dimmed and the high order
bit is lost. At the same time the watchdog counter is incremented by one. If an arriving packet
passes al authentication and sanity checks, the rightmost bit of the reachability register islit and
the watchdog counter is set to zero. If any bit in the reachability register islit, the server is reach-
able, otherwiseit is unreachable.

When the first poll is sent by an association, the reachability register and watchdog counter are
zero. If the watchdog counter reaches 16 before the server becomes reachable, a general reset
occurs. Thisresets the protocol and clears any acquired state before trying again. If the server was
once reachable and then becomes unreachable, a general reset occurs. In addition, if the watchdog
counter reaches 16 and the association is persistent, the poll interval is doubled. This reduces the
network load for packets that are unlikely to elicit aresponse.

At each state in the protocol the client expects a particular response from the server. A request is
included in the NTP packet sent at each poll interval until avalid responseisreceived or ageneral
reset occurs, in which case the protocol restarts from the beginning. A general reset also occurs
for an association when an unrecoverable protocol error occurs. A general reset occurs for al
associations when the system clock isfirst synchronized or the clock is stepped or when the server
seed is refreshed.

There are special cases designed to quickly respond to broken associations, such as when a server
restarts or refreshes keys. Since the client cookie is invalidated, the server rejects the next client
request and returns a crypto-NAK packet. Since the crypto-NAK has no MAC, the problem for
the client is to determine whether it is legitimate or the result of intruder mischief. In order to
reduce the vulnerability in such cases, the crypto-NAK, aswell as all responses, is believed only
if the result of a previous packet sent by the client and not areplay, as confirmed by the LBK and
DUP status bits described above. While this defense can be easily circumvented by a middleman,
it does deflect other kinds of intruder warfare.

There are a number of situations where some event happens that causes the remaining autokeys
on the key list to become invalid. When one of these situations happens, the key list and associ-
ated autokeys in the key cache are purged. A new key list, signature and timestamp are generated
when the next NTP message is sent, assuming there is one. Following isalist of these situations.

4. When the cookie value changes for any reason.

5. When aclient switches from server mode to broadcast mode. There is no further need for the
key list, since the client will not transmit again.

6. When the poll interval is changed. In this case the calculated expiration times for the keys
become invalid.
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7. |If aproblem is detected when an entry is fetched from the key list. This could happen if the
key was marked non-trusted or timed out, either of which implies a software bug.
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A. Packet Formats

The NTPv4 packet consists of a number of fields made up of 32-bit (4 octet) words in network
byte order. The packet consists of three components, the header, one or more optional extension
fields and an optional authenticator.

A.1 Header Field Format

The header format is shown below, where the size of somefieldsis shown in bitsif not the default
32 hits.

4

LI JvN] Mode | Strat | Poll | Prec
Root Delay
Root Dispersion
Reference Identifier

Reference Timestamp (64)

Originate Timestamp (64)

Cryptosum Receive Timestamp (64)

Transmit Timestamp (64)

Extension Field 1 (optional)

Extension Field 2... (optional)

A
4

Key/Algorithm Identifier

Authenticator
(Opti(inal) Message Digest (128)

Figure 6. NTP Header Format

The NTP header extends from the beginning of the packet to the end of the Transmit Timestamp
field. The format and interpretation of the header fields are backwards compatible with the
NTPv3 header fields as described in [11].

A non-authenticated NTP packet includes only the NTP header, while an authenticated one con-
tains in addition an authenticator which takes the form of a message authentication code (MAC).
The MAC consisting of the Key ID and Message Digest fields.The format and interpretation of
the NTPv4 MAC is described in [11] when using the Digital Encryption Standard (DES) algo-
rithm operating in Cipher-Block Chaining (CBC) node. This agorithm and mode of operation is
no longer supported in NTPv4. The preferred replacement in both NTPv3 and NTPv4 isthe Mes-
sage Digest 5 (MD5) algorithm, which is included in both reference implementations. For MD5
the Message Digest field is4 words (8 octets) and the Key ID field is 1 word (4 octets).

A.2 Extension Field Format

In NTPv4 one or more extension fields can be inserted after the NTP header and before the MAC,
which is always present when an extension field is present. The extension fields can occur in any
order; however, in some cases there is a preferred order which improves the protocol efficiency.
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While previous versions of the Autokey protocol used severa different extension field formats, in
version 2 of the protocol only a single extension field format is used.

Each extension field contains arequest or response message in the following format:

Field Type | Length
Association ID
Timestamp
Filestamp
Value Length

Value

Signature Length

Signature

Padding (as needed)

Figure 7. NTP Extension Field Format

Each extension field except the last is zero-padded to a word (4 octets) boundary, while the last is
zero-padded to a doubleword (8 octets) boundary. The Length field covers the entire extension
field, including the Length and Padding fields. While the minimum field length is 8 octets, a max-
imum field length remains to be established. The reference implementation discards any packet
with afield length more than 1024 octets.

The presence of the MAC and extension fields in the packet is determined from the length of the
remaining area after the header to the end of the packet. The parser initializes a pointer just after
the header. If the length is not a multiple of 4, aformat error has occurred and the packet is dis-
carded. The following cases are possible based on the remaining length in words.

0
The packet is not authenticated.

4
The packet is an error report or crypto-NAK resulting from a previous packet that failed the mes-
sage digest check. The 4 octets are presently unused and should be set to O.

2,34
The packet is discarded with aformat error.

5
The remainder of the packet isthe MAC.

>5
One or more extension fields are present.

If an extension field is present, the parser examines the Length field. If the length isless than 4 or
not a multiple of 4, aformat error has occurred and the packet is discarded; otherwise, the parser
increments the pointer by this value. The parser now uses the same rules as above to determine
whether a MAC is present and/or another extension field. An additional implementation-depen-
dent test is necessary to ensure the pointer does not stray outside the buffer space occupied by the
packet.
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In the Autokey Version 2 format, the Code field specifies the request or response operation, while
the Version field is 2 for the current protocol version. There are two flag bits defined. Bit O is the
response flag (R) and bit 1 is the error flag (E); the other six bits are presently unused and should
be set to 0. The remaining fields will be described later.

In the most common protocol operations, a client sends a request to a server with an operation
code specified in the Code field and lights the R bit. Ordinarily, the client dims the E bit as well,
but may in future light it for some purpose. The Association ID field is set to the value previously
received from the server or O otherwise. The server returns a response with the same operation
code in the Code field and the R bit lit. The server can also light E bit in case of error. The Associ-
ation 1D field is set to the association ID sending the response as a handle for subsequent
exchanges. If for some reason the association ID value in arequest does not match the association
ID of any mobilized association, the server returns the request with both the R and E bitslit. Note
that it isnot a protocol error to send an unsolicited response with no matching request.

In some cases not all fields may be present. For requests, until a client has synchronized to a
proventic source, signatures are not valid. In such cases the Timestamp and Signature Length
fieldsare 0 and the Signature field is empty. Responses are generated only when the responder has
synchronized to a proventic source; otherwise, an error response message is sent. Some request
and error response messages carry no value or signature fields, so in these messages only the first
two words are present.

The Timestamp and Filestamp words carry the seconds field of an NTP timestamp. The Times-
tamp field establishes the signature epoch of the data field in the message, while the filestamp
establishes the generation epoch of the file that ultimately produced the data that is signed. Since
a signature and timestamp are valid only when the signing host is synchronized to a proventic
source and a cryptographic data file can only be generated if a signature is possible, the response
filestamp is always nonzero, except in the Association response message, where it contains the
server status word.
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B. Cryptographic Key and Certificate Management

This appendix describes how cryptographic keys and certificates are generated and managed in
the NTPv4 reference implementation. These means are not intended to become part of any stan-
dard that may be evolved from this document, but to serve as an example of how these functions
can be implemented and managed in atypical operationa environment.

The ntp-keygen utility program in the NTP software library generates public/private key files,
certificate files, identity parameter files and public/private identity key files. By default the modu-
lus of all encryption and identity keys is 512 bits. All random cryptographic data are based on a
pseudo-random number generator seeded in such a way that random values are exceedingly
unlikely to repeat. The files are PEM encoded in printable ASCII format suitable for mailing as
MIME objects.

Every file has a filestamp, which is a string of decimal digits representing the NTP seconds the
file was created. The file name is formed from the concatenation of the host name, filestamp and
constant strings, so files can be copied from one environment to another while preserving the
origina filestamp. The file header includes the file name and date and generation timein printable
ASCII. The utility assumes the host is synchronized to a proventic source at the time of genera-
tion, so that filestamps are proventic data. This raises an interesting circularity issue that will not
be further explored here.

The generated files are typically stored in NFS mounted file systems, with files containing private
keys obscured to al but root. Symbolic links are installed from default file names assumed by the
NTP daemon to the selected files. Since the files of successive generations and different hosts
have unique names, there is no possibility of name collisions.

Public/private keys must be generated by the host to which they belong. OpenSSL public/private
RSA and DSA keys are generated as an OpenSSL structure, which is then PEM encoded in
ASN.1 syntax and written to the host key file. The host key must be RSA, since it is used to
encrypt the cookie, as well as encrypt signatures by default. In principle, these files could be gen-
erated directly by OpenSSL utility programs, as long as the symbolic links are consistent. The
optional sign key can be RSA or DSA, sinceit is used only to encrypt signatures.

Identity parameters must be generated by the ntp-keygen utility, since they have proprietary for-
mats. Since these are private to the group, they are generated by one machine acting as a trusted
authority and then distributed to all other members of the group by secure means. Public/private
identity keys are generated by the host to which they belong aong with certificates with the pub-
lic identity key.

Certificates are usually, but not necessarily, generated by the host to which they belong. The ntp-
keygen utility generates self-signed X.509v3 host certificate files with optional extension fields.
Certificate requests are not used, since the certificate itself is used as a request to be signed.
OpenSSL X.509v3 certificates are generated as an OpenSSL structure, which is then PEM
encoded in ASN.1 syntax and written to the host certificate file. The string returned by the Unix
gethostname() routine is used for both the subject and issuer fields. The serial number and begin
time fields are derived from the filestamp; the end time is one year hence. The host certificate is
signed by the sign key or host key by default.
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An important design goal is to make cryptographic data refreshment as simple and intuitive as
possible, so it can be driven by scripts on a periodic basis. When the ntp-keygen utility is run for
thefirst time, it creates by default a RSA host key file and RSA-MD?5 host certificate file and nec-
essary symbolic links. After that, it creates anew certificate file and symbolic link using the exist-
ing host key. The program run with given options creates identity parameter files for one or both
the IFF or GQ identity schemes. The parameter files must then be securely copied to all other
group members and symbolic links installed from the default names to the installed files. In the
GQ scheme the next and each subsequent time the ntp-keygen utility runs, it automatically creates
or updates the private/public identity key file and certificate file using the existing identity param-
eters.
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C. Autokey Error Checking

Exhaustive examination of possible vulnerabilities at the various processing steps of the NTPv3
protocol as specified in [11] have resulted in arevised list of packet sanity tests. There are 12 tests
in the NTPv4 reference implementation, called TEST1 through TEST12, which are performed in
a specific order designed to gain maximum diagnostic information while protecting against an
accidental or malicious clogging attacks. These tests are described in detail in the NTP software
documentation. Those relevant to the Autokey protocol are described in this appendix.

The sanity testsare classified in four tiers. The first tier deflects access control and message digest
violations. The second, represented by the autokey sequence, deflects spoofed or replayed pack-
ets. The third, represented by timestamped digital signatures, binds cryptographic values to verifi-
able credentials. The fourth deflects packets with invalid NTP header fields or out of bounds time
values. However, the tests in this last group do not directly affect cryptographic protocol vulnera-
bility, so are beyond the scope of discussion here.

C.1 Packet Processing Rules

Every arriving NTP packet is checked enthusiastically for format, content and protocol errors.
Some packet header fields are checked by the main NTP code path both before and after the
Autokey protocol engine cranks. These include the NTP version number, overall packet length
and extension field lengths. Extension fields may be no longer than 1024 octets in the reference
implementation. Packets failing any of these checks are discarded immediately. Packets denied by
the access control mechanism will be discarded later, but processing continues temporarily in
order to gather further information useful for error recovery and reporting.

Next, the cookie and session key are determined and the MAC computed as described above. If
the MAC fails to match the value included in the packet, the action depends on the mode and the
type of packet. Packets failing the MAC check will be discarded later, but processing continues
temporarily in order to gather further information useful for error recovery and reporting.

The NTP transmit and receive timestamps are in effect nonces, since an intruder cannot effec-
tively guess either value in advance. To minimize the possibility that an intruder can guess the
nonces, the low order unused bitsin all timestamps are obscured with random values. If the trans-
mit timestamp matches the transmit timestamp in the last packet received, the packet is a dupli-
cate, so the DUP bit islit. If the packet mode is not broadcast and the last transmit timestamp does
not match the originate timestamp in the packet, either it was delivered out of order or an intruder
has injected a rogue packet, so the LBK bit is lit. Packets with either the DUP or LBK hit lie be
discarded later, but processing continues temporarily in order to gather further information useful
for error recovery and reporting.

Further indicators of the server and client state are apparent from the transmit and receive times-
tamps of both the packet and the association. The quite intricate rules take into account these and
the above error indicators They are designed to discriminate between legitimate cases where the
server or client are in inconsistent states and recoverable, and when an intruder is trying to desta-
bilize the protocol or force consumption of needless resources. The exact behavior is beyond the
scope of discussion, but isclearly described in the source code documentation.
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Next, the Autokey protocol engine is cranked and the dances evolve as described above. Some
requests and all responses have value fields which carry timestamps and filestamps. When the
server or client is synchronized to a proventic source, most requests and responses with value
fields carry signatures with valid timestamps. When not synchronized to a proventic source, value
fields carry an invalid (zero) timestamp and the signature field and signature length word are
omitted.

The extension field parser checks that the Autokey version number, operation code and field
length are valid. If the error bit islit in arequest, the request is discarded without response; if an
error isdiscovered in processing the request, or if the responder is not synchronized to a proventic
source, the response contains only the first two words of the request with the response and error
bits lit. For messages with signatures, the parser requires that timestamps and filestamps are valid
and not areplay, that the signature length matches the certificate public key length and only then
verifies the signature. Errors are reported via the security logging facility.

All certificates must have correct ASN.1 encoding, supported digest/signature scheme and valid
subject, issuer, public key and, for self-signed certificates, valid signature. While the begin and
end times can be checked relative to the filestamp and each other, whether the certificate is valid
relative to the actual time cannot be determined until the client is synchronized to a proventic
source and the certificate is signed and verified by the server.

When the protocol starts the only response accepted is ASSOC with valid timestamp, after which
the server status word must be nonzero. ASSOC responses are discarded if this word is nonzero.
The only responses accepted after that and until the PRV hit is lit are CERT, IFF and GQ. Once
identity is confirmed and IFF islit, these responses are no longer accepted, but all other responses
are accepted only if in response to aprevioudy sent request and only in the order prescribed in the
protocol dances. Additional checks are implemented for each request type and dance step.

C.2 Timestamps, Filestamps and Partial Ordering

When the host starts, it reads the host key and certificate files, which are required for continued
operation. It also reads the sign key and leap seconds files, when available. When reading these
files the host checks the file formats and filestamps for validity; for instance, al filestamps must
be later than the time the UTC timescale was established in 1972 and the certificate filestamp
must not be earlier than its associated sign key filestamp. In general, at the time the files are read,
the host is not synchronized, so it cannot determine whether the filestamps are bogus other than
these simple checks.

In the following therelation A — B isLamport’s “happens before” relation, whichistrueif event
A happens before event B. When timestamps are compared to timestamps, the relation is false if
A o B; that is, faseif the events are ssmultaneous. For timestamps compared to filestamps and
filestamps compared to filestamps, the relation istrueif A ~ B. Note that the current time plays

no part in these assertions except in (6) below; however, the NTP protocol itself insures a correct
partial ordering for al current time values.

The following assertions apply to all relevant responses:
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. The client saves the most recent timestamp TO and filestamp FO for the respective signature
type. For every received message carrying timestamp T1 and filestamp F1, the message isdis-
carded unless TO - T1 and FO - F1. The requirement that TO — T1 is the primary
defense against replays of old messages.

. For timestamp T and filestamp F, T - T; that is, the timestamp must not be earlier than the
filestamp. This could be due to afile generation error or asignificant error in the system clock
time.

. For sign key filestamp S certificate filestamp C, cookie timestamp D and autokey timestamp
A S- C - D -5 A;that is, the autokey must be generated after the cookie, the cookie after
the certificate and the certificate after the sign key.

. For sign key filestamp S and certificate filestamp C specifying begin time B and end time E,
S- C - B - E;thatis, thevalid period must not be retroactive.

. A certificate for subject Ssigned by issuer | and with filestamp C1 obsol etes, but does not nec-
essarily invalidate, another certificate with the same subject and issuer but with filestamp CO,

where CO - C1.

. A certificate with begin time B and end time E is invalid and can not be used to sign certifi-
catesif t -~ B or E - t, where t is the current time. Note that the public key previousy
extracted from the certificate continues to be valid for an indefinite time. This raises the inter-
esting possibilities where a truechimer server with expired certificate or a falseticker with
valid certificate are not detected until the client has synchronized to a clique of proventic
truechimers.
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D. Security Analysis

This section discusses the most obvious security vulnerabilities in the various Autokey dances.
First, some observations on the particular engineering parameters of the Autokey protocol arein
order. The number of bitsin some cryptographic values are considerably smaller than would ordi-
narily be expected for strong cryptography. One of the reasons for this is the need for compatibil-
ity with previous NTP versions; another is the need for small and constant latencies and minimal
processing requirements. Therefore, what the scheme gives up on the strength of these values
must be regained by agility in the rate of change of the cryptographic basis values. Thus, autokeys
are used only once and seed values are regenerated frequently. However, in most cases even a suc-
cessful cryptanalysis of these values compromises only a particular association and does not rep-
resent a danger to the general population.

Throughout the following discussion the cryptographic algorithms and private values themselves
are assumed secure; that is, a brute force crypt analytic attack will not reveal the host private key,
sign private key, cookie value, identity parameters, server seed or autokey seed. In addition, an
intruder will not be able to predict random generator values or predict the next autokey. On the
other hand, the intruder can remember the totality of all past values for all packets ever sent.

D.1 Protocol Vulnerability

While the protocol has not been subjected to a formal analysis, a few preliminary assertions can
be made. The protocol cannot loop forever in any state, since the watchdog counter and general
reset insure that the association variables will eventually be purged and the protocol restarted
from the beginning. However, if something is seriously wrong, the timeout/restart cycle could
continue indefinitely until whatever iswrong is fixed. Thisis not a clogging hazard, as the time-
out period is very long compared to expected network delays.

The LBK and DUP bits described in the main body and Appendix C are effective whether or not
cryptographic means are in use. The DUP bit deflects duplicate packets in any mode, while the
LBK bit deflects bogus packets in all except broadcast mode. All packets must have the correct
MAC, as verified with correct key ID and cookie. In all modes the next key 1D cannot be pre-
dicted by awiretapper, so are of no use for cryptanalysis.

Aslong as the client has validated the server certificate trail, a wiretapper cannot produce a con-
vincing signature and cannot produce cryptographic values acceptabl e to the client. Aslong asthe
identity values are not compromised, a middieman cannot masquerade as a legitimate group
member and produce convincing certificates or signatures. In server and symmetric modes after
the preliminary exchanges have concluded, extension fields are no longer used, a client validates
the packet using the autokey sequence. A wiretapper cannot predict the next Key 1Ds, so cannot
produce a valid MAC. A middleman cannot successfully modify and replay a message, since he
does not know the cookie and without the cookie cannot produce avalid MAC.

In broadcast mode a wiretapper cannot produce a key list with signed autokey values that a client
will accept. The most it can do isreplay an old packet causing clients to repeat the autokey hash
operations until exceeding the maximum key number. However, a middleman could intercept an
otherwise valid broadcast packet and produce a bogus packet with acceptable MAC, since in this
case it knows the key ID before the clients do. Of course, the middieman key list would eventu-
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ally be used up and clients would discover the ruse when verifying the signature of the autokey
values. There does not seem to be a suitable defense against this attack.

During the exchanges where extension fields are in use, the cookie is a public value rather than a
shared secret and an intruder can easily construct a packet with avalid MAC, but not avalid sig-
nature. In the certificate and identity exchanges an intruder can generate fake request messages
which may evade server detection; however, the LBK and DUP bits minimize the client exposure
to the resulting rogue responses. A wiretapper might be able to intercept a request, manufacture a
fake response and loft it swiftly to the client before the real server response. A middleman could
do this without even being swift. However, once the identity exchange has completed and the
PRV hit lit, these attacks are readily deflected.

A client instantiates cryptographic variables only if the server is synchronized to a proventic
source. A server does not sign values or generate cryptographic datafiles unless synchronized to a
proventic source. This raises an interesting issue: how does a client generate proventic crypto-
graphic files before it has ever been synchronized to a proventic source? [Who shaves the barber
if the barber shaves everybody in town who does not shave himself?] In principle, this paradox is
resolved by assuming the primary (stratum 1) servers are proventicated by external phenomeno-
logical means.

D.2 Clogging Vulnerability

There are two clogging vulnerabilities exposed in the protocol design: a encryption attack where
the intruder hopes to clog the victim server with needless cookie or signature encryptions or iden-
tity calculations, and a decryption attack where the intruder attempts to clog the victim client with
needless cookie or verification decryptions. Autokey uses public key cryptography and the algo-
rithms that perform these functions consume significant processor resources.

In order to reduce exposure to decryption attacks the LBK and DUP bits deflect bogus and
replayed packets before invoking any cryptographic operations. In order to reduce exposure to
encryption attacks, signatures are computed only when the data have changed. For instance, the
autokey values are signed only when the key list is regenerated, which happens about once an
hour, while the public values are signed only when one of them changes or the server seed is
refreshed, which happens about once per day.

In some Autokey dances the protocol precludes server state variables on behalf of an individual
client, so a request message must be processed and the response message sent without delay. The
identity, cookie and sign exchanges are particularly vulnerable to a clogging attack, since these
exchanges can involve expensive cryptographic algorithms as well as digital signatures. A deter-
mined intruder could replay identity, cookie or sign requests at high rate, which may very well be
a useful munition for an encryption attack. Ordinarily, these requests are seldom used, except
when the protocol is restarted or the server seed or public values are refreshed.

Once synchronized to a proventic source, a legitimate extension field with timestamp the same as
or earlier than the most recent received of that type isimmediately discarded. Thisfoilsamiddie-
man cut-and-paste attack using an earlier AUTO response, for example. A legitimate extension
field with timestamp in the future is unlikely, as that would require predicting the autokey
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sequence. In either case the extension field is discarded before expensive signature computations.
This defense is most useful in symmetric mode, but a useful redundancy in other modes.

The client isvulnerable to a certificate clogging attack until declared proventic, after which CERT
responses are discarded. Before that, a determined intruder could flood the client with bogus cer-
tificate responses and force spurious signature verifications, which of course would fail. The
intruder could flood the server with bogus certificate requests and cause similar mischief. Once
declared proventic, further certificate responses are discard, so these attacks would fail. The
intruder could flood the server with replayed sign requests and cause the server to verify the
request and sign the response, although the client would drop the response due invalid timestamp.

An interesting adventure is when an intruder replays a recent packet with an intentional bit error.
A stateless server will return a crypto-NAK message which the client will notice and discard,
since the LBK bit islit. However, alegitimate crypto-NAK is sent if the server has just refreshed
the server seed. In this case the LBK bit is dim and the client performs a general reset and restarts
the protocol as expected. Another adventure is to replay broadcast mode packets at high rate.
These will be rejected by the clients by the timestamp check and before consuming signature
cycles.

n broadcast and symmetric modes the client must include the association ID in the AUTO request.
Since association ID values for different invocations of the NTP daemon are randomized over the
16-bit space, it is unlikely that a bogus request would match a valid association with different |P
addresses, for example, and cause confusion.
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E. Identity Schemes

The Internet infrastructure model described in [1] is based on certificate trails where a subject
proves identity to a certificate authority (CA) who then signs the subject certificate using the CA
issuer key. The CA in turn proves identity to the next CA and obtains its own signed certificate.
The trail continues to a CA with a self-signed trusted root certificate independently validated by
other means. If it is possible to prove identity at each step, each certificate along the trail can be
considered trusted relative to the identity scheme and trusted root certificate.

The important issue with respect to NTP and ad hoc sensor networksiis the cryptographic strength
of the identity scheme, since if a middleman could compromise it, the trail would have a security
breach. In electric mail and commerce the identity scheme can be based on handwritten signa-
tures, photographs, fingerprints and other things very hard to counterfeit. As applied to NTP sub-
nets and identity proofs, the scheme must allow aclient to securely verify that a server knows the
same secret that it does, presuming the secret was previoudy instantiated by secure means, but
without revealing the secret to members outside the group.

While the identity scheme described in RFC-2875 [14] is based on a ubiquitous Diffie-Hellman
infrastructure, it is expensive to generate and use when compared to others described here. There
are five schemes now implemented in Autokey to prove identity: (1) private certificates (PC), (2)
trusted certificates (TC), (3) amodified Schnorr algorithm (IFF aka Identify Friendly or Foe), (4)
a modified Guillou-Quisquater algorithm (GQ), and (5) a modified Mu-Varadhargjan algorithm
(MV). The available schemes are selected during the key generation phase, with the particular
scheme selected during the parameter exchange. Following is a summary description of each of
these schemes.

The IFF, GQ and MV schemes involve a cryptographically strong challenge-response exchange
where an intruder cannot learn the group key, even after repeated observations of multiple
exchanges. These schemes begin when the client sends a nonce to the server, which then rollsiits
own nonce, performs a mathematical operation and sends the results along with a message digest
to the client. The client performs a second mathematical operation to produce a digest that must
match the one included in the message. To the extent that a server can prove identity to a client
without either knowing the group key, these schemes are properly described as zero-knowledge
proofs.

E.1 Certificates

Certificate extension fields are used to convey information used by the identity schemes, such as
whether the certificate is private, trusted or contains a public identity key. While the semantics of
these fields generally conforms with conventional usage, there are subtle variations. The fields
used by Autokey Version 2 include:

E.1.1 Basic Constraints

Thisfield defines the basic functions of the certificate. It contains the string “critical, CA: TRUE”,
which means the field must be interpreted and the associated private key can be used to sign other
certificates. While included for compatibility, Autokey makes no use of thisfield.
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E.1.2 Key Usage

This field defines the intended use of the public key contained in the certificate. It contains the
string “digital Signature,keyCertSign”, which means the contained public key can be used to ver-
ify signatures on data and other certificates. While included for compatibility, Autokey makes no
use of thisfield.

E.1.3 Extended Key Usage

This field further refines the intended use of the public key contained in the certificate and is
present only in self-signed certificates. It contains the string “Private” if the certificate is desig-
nated private or the string “trustRoot” if it is designated trusted. A private certificate is always
trusted.

E.1.4 Subject Key Identifier:

Thisfield contains the public identity key used in the GQ identity scheme. It is present only if the
GQ scheme is configured.

E.2 Private Certificate (PC) Scheme

The PC scheme shown below involves the use of a private certificate as group key. A certificateis
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Figure 8. Private Certificate (PC)ldentity Scheme

designated private by a X509 Version 3 extension field when generated by utility routines in the
NTP software distribution. The certificate is distributed to all other group members by secure
means and is never revealed inside or outside the group. A client is marked trusted in the Parame-
ter Exchange and authentic when the first signature is verified. This scheme is cryptographically
strong as long as the private certificate is protected; however, it can be very awkward to refresh
the keys or certificate, since new values must be securely distributed to a possibly large popula-
tion and activated simultaneously.

The PC scheme uses a private certificate as group key. A certificate is designated private for the
purpose of the this scheme if the CIS Private bit is lit. The certificate is distributed to al other
group members by secret means and never revealed outside the group. There is no identity
exchange, since the certificate itself is the group key. Therefore, when the parameter exchange
completesthe VAL, IFF and SGN bitsarelit in the server status word. When the following cookie
exchange is complete, the PRV bit is lit and operation continues as described in the main body of
this document.
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E.3 Trusted Certificate (TC) Scheme

All other schemes involve a conventional certificate trail as shown below. As described in RFC-
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Figure 9. Trusted Certificate (TC) ldentity Scheme

2510, each certificate is signed by an issuer one step closer to the trusted host, which has a self-
signed trusted certificate, A certificate is designated trusted by a X509 Version 3 extension field
when generated by utility routinesin the NTP software distribution. A host obtains the certificates
of al other hosts along the trail leading to a trusted host by the Autokey protocol, then requests
theimmediately ascendant host to sign its certificate. Subsequently, these certificates are provided
to descendent hosts by the Autokey protocol. In this scheme keys and certificates can be refreshed
at any time, but a masguerade vulnerability remains unless a request to sign a client certificate is
validated by some means such as reverse-DNS. If no specific identity scheme is specified in the
| dentification Exchange, thisisthe default TC scheme.

The TC identification exchange follows the parameter exchange in which the VAL bit is lit. It
involves a conventional certificate trail and a sequence of certificates, each signed by an issuer
one stratum level lower than the client, and terminating at atrusted certificate, as described in [1].
A certificate is designated trusted for the purpose of the TC scheme if the CIS Trust bit islit and
the certificate is self-signed. Such would normally be the case when the trail ends at a primary
(stratum 1) server, but the trail can end at a secondary server if the security model permits this.

When a certificate is obtained from a server, or when a certificate is signed by a server, A CISfor
the new certificate is pushed on the certificate list, but only if the certificate filestamp is greater
than any with the same subject name and issuer name already on the list. The list is then scanned
looking for signature opportunities. If a ClSissuer name matches the subject name of another CIS
and the issuer certificate is verified using the public key of the subject certificate, the Sign bitislit
in the issuer CIS. Furthermore, if the Trust bit islit in the subject CIS, the Trust bit islit in the
issuer CIS.

The client continues to follow the certificate trail to a self-signed certificate, lighting the Sign and
Trust bits as it proceeds. If it finds a self-signed certificate with Trust bit lit, the client lights the
|FF and PRV bits and the exchange completes. It can, however, happen that the client finds a self-
signed certificate with Trust bit dark. This can happen when a server is just coming up, has syn-
chronized to a proventic source, but has not yet completed the sign exchange. Thisis considered a
temporary condition, so the client ssimply retries at poll opportunities until the server certificateis
signed.

E.4 Schnorr (IFF) Scheme

The Schnorr (IFF) identity scheme is useful when certificates are generated by means other than
the NTP software library, such as atrusted public authority. In this case a X.509v3 extension field
might not be available to convey the identity public key. The scheme involves a set of parameters
which persist for the life of the scheme. New generations of these parameters must be securely
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transmitted to all members of the group before use. The scheme is self contained and independent
of new generations of host keys, sign keys and certificates.

Certificates can be generated by the OpenSSL library or an external public certificate authority,
but conveying an arbitrary public value in a certificate extension field might not be possible. The
TA generates |FF parameters and keys and distributes them by secure means to all servers, then
removes the group key and redistributes these data to dependent clients. Without the group key a
client cannot masquerade as a legitimate server.

The IFF parameters are generated by OpenSSL routines normally used to generate DSA keys. By
happy coincidence, the mathematical principles on which IFF is based are similar to DSA, but
only the moduli p, g and generator g are used in identity calculations. The parameters hide in a
RSA cuckoo structure and use the same members. The values are used by an identity scheme
based on DSA cryptography and described in [15] and [16] p. 285. The p is a 512-bit prime, g a
generator of the multiplicative group Z,* and g a 160-bit prime that divides p—1 and isaqth root

of 1 mod p; that is, gq = 1 mod p. The TA rolls a private random group key b (0 < b < g), then

computes public client key v = gq_b mod p. The TA distributes (p, g, g, b) to al servers using
secure means and (p, g, g, V) to all clients not necessarily using secure means.

The IFF identity scheme is shown below. The TA generates aDSA parameter structure for use as
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Figure 10. Schnorr (IFF) Identity Scheme

Response Client

|FF parameters. The |FF parameters are identical to the DSA parameters, so the OpenSSL library
DSA parameter generation routine can be used directly. The DSA parameter structure shown in
Tableiswritten to afile asa DSA private key encoded in PEM. Unused structure members are set

|FF DSA [tem Include
p p modulus al
q q modulus al
g g generator al
b priv_key group key server
% pub_key client key client

Table 1. IFF Identity Scheme Parameters
to one.
Alice challenges Bob to confirm identity using the following protocol exchange.

1. Alicerollsrandomr (0 <r < () and sends to Bob.
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2. Bob rolls random k (0 < k < g), computesy = k+br mod g and x = g“ mod p, then sends
(y, hash(x)) to Alice.

3. Alicecomputes z = gyvr mod p and verifies hash(z) equals hash(x).

If the hashes match, Alice knows that Bob has the group key b. Besides making the response
shorter, the hash makesiit effectively impossible for an intruder to solve for b by observing a num-
ber of these messages. The signed response binds this knowledge to Bob's private key and the
public key previously received in his certificate. On success the IFF and PRV bits are lit in the
server status word.

E.5 Guillard-Quisquater (GQ) Scheme

The Guillou-Quisquater (GQ) identity scheme is useful when certificates are generated using the
NTP software library. These routines convey the GQ public key in a X.509v3 extension field. The
scheme involves a set of parameters which persist for the life of the scheme and a private/public
identity key, which isrefreshed each time a new certificate is generated. The utility inserts the cli-
ent key in an X.509 extension field when the certificate is generated. The client key is used when
computing the response to achallenge. The TA generates the GQ parameters and keys and distrib-
utes them by secure means to all group members. The scheme is self contained and independent
of new generations of host keys and sign keys and certificates.

The GQ parameters are generated by OpenSSL routines normally used to generate RSA keys. By
happy coincidence, the mathematical principles on which GQ is based are similar to RSA, but
only the modulus n is used in identity calculations. The parameters hide in a RSA cuckoo struc-
ture and use the same members. The values are used in an identity scheme based on RSA cryptog-
raphy and described in [3] and [16] p. 300 (with errors). The 512-bit public modulus n = pq,
where p and q are secret large primes. The TA rolls random group key b (0 < b < n) and distributes
(n, b) to al group members using secure means. The private server key and public client key are
constructed later.

The GQ identity scheme is shown below. When generating new certificates, the server rolls new

Trusted

Authority
Secure [Parameters| geq e

Group Key
Challenge

Parameters Parameters

Group Key Group Ke

Server Key

Server Response Client

Figure 11. Guillard-Quisquater (GQ) ldentity Scheme

random private server key u (0 < u < n) and public client key its inverse obscured by the group

key v = (u_l)b mod n. These values replace the private and public keys normally generated by
the RSA scheme. In addition, the public client key is conveyed in a X.509 certificate extension.
The updated GQ structure shown in Table is written as a RSA private key encoded in PEM.
Unused structure members are set to one.
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GQ RSA Item Include
n n modulus al
b e group key server
u p server key server
v q client key client

Table 2. GQ Identity Scheme Parameters
Alice challenges Bob to confirm identity using the following exchange.

1. Alicerollsrandomr (0 <r < n) and sendsto Bob.

2. Bobrollsrandom k (0 < k < n) and computes y = ku' mod n and x = K2 mod n. then sends
(y, hash(x)) to Alice.

3. Alicecomputes z = vryb mod n and verifies hash(z) equals hash(x).

If the hashes match, Alice knows that Bob has the group key b. Besides making the response
shorter, the hash makesiit effectively impossible for an intruder to solve for b by observing a num-
ber of these messages. The signed response binds this knowledge to Bob's private key and the
public key previously received in his certificate. Further evidence is the certificate containing the
public identity key, since thisis also signed with Bob’s private key. On success the IFF and PRV
bits are lit in the server status word.

E.6 Mu-Varadharajan (MV) Identity Scheme

The Mu-Varadhargjan (MV) scheme was originaly intended to encrypt broadcast transmissions
to receivers which do not transmit. There is one encryption key for the broadcaster and a separate
decryption key for each receiver. It operates something like a pay-per-view satellite broadcasting
system where the session key is encrypted by the broadcaster and the decryption keys are held in
atamper proof set-top box. We don’'t use it this way, but read on.

The MV scheme is perhaps the most interesting and flexible of the three challenge/response
schemes. It can be used when a small number of servers provide synchronization to alarge client
population where there might be considerable risk of compromise between and among the servers
and clients. The TA generates an intricate cryptosystem involving public and private encryption
keys, together with a number of activation keys and associated private client decryption keys. The
activation keys are used by the TA to activate and revoke individual client decryption keys with-
out changing the decryption keys themselves.

The TA provides the server with a private encryption key and public decryption key. The server
adjusts the keys by a nonce for each plaintext encryption, so they appear different on each use.
The encrypted ciphertext and adjusted public decryption key are provided in the client message.
The client computes the decryption key from its private decryption key and the public decryption

key in the message.

In the MV scheme the activation keys are known only to the TA. The TA decides which keys to
activate and provides to the servers a private encryption key E and public decryption keys g and
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0 which depend on the activated keys. The servers have no additional information and, in partic-
ular, cannot masquerade as a TA. In addition, the TA provides to each client j individual private
decryption keys X, and X, which do not need to be changed if the TA activates or deactivatesthis

key. The clients have no further information and, in particular, cannot masquerade as a server or
TA.

The MV values hidein aDSA cuckoo structure which uses the same parameters, but generated in
a different way. The values are used in an encryption scheme similar to El Gamal cryptography

and a polynomial formed from the expansion of product terms |‘| (x—xj), as described in
0<j<n
[12]. The paper has significant errors and serious omissions.

The MV identity schemeis shown below. The TA writesthe server parameters, private encryption
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Challenge —
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Server Key
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Figure 12. Mu-Varadharajan (MV) Identity Scheme

key and public decryption keysfor al serversasaDSA private key encoded in PEM, as shownin
the table below.

MV DSA ltem Include
p p modulus al
q q modulus server
E g privateencrypt  server
g priv_key  public decrypt server
o) pub _key  public decrypt server

Table 3. MV Scheme Server Parameters

The TA writes the client parameters and private decryption keys for each client as a DSA private
key encoded in PEM. It is used only by the designated recipient(s) who pay a suitably outrageous
fee for its use. Unused structure members are set to one, as shown in Table.

MV DSA Item Include
p p modulus al
X, priv_key private decrypt client
X, pub_key private decrypt client

Table 4. MV Scheme Client Parameters

42



The devil isin the details. Let g be the product of n distinct primes S| (j = 1...n), where each SF

also called an activation key, has m significant bits. Let prime p = 2q+ 1, so that g and each S

divide p—1 and p has M = nm+ 1 significant bits. Let g be a generator of the multiplicative

group Z,*; that is, ged(g, p—1) = 1 and gq = 1 mod p. We do modular arithmetic over Z; and

then project into Z;* as powers of g. Sometimes we have to compute an inverse b of random b
in Zg, but for that purpose we require ged(b, g) = 1. We expect M to be in the 500-bit range and n

relatively small, like 30. The TA uses a nasty probabilistic algorithm to generate the cryptosys-
tem.

1.

Generate the m-bit primes S (0<j <n), which may have to be replaced later. As a practical

matter, it is tough to find more than 30 distinct primes for M =512 or 60 primes for

M = 1024 . The latter can take several hundred iterations and several minutes on a Sun Blade
1000.

Compute modulus g = |‘| SiF then modulus p = 2q+ 1. If p is composite, the TA
0<j<n

replaces one of the primes with anew distinct prime and tries again. Note that q will hardly be

a secret since p is revealed to servers and clients. However, factoring g to find the primes

should be adequately hard, asthisisthe same problem considered hard in RSA. Question: isit

as hard to find n small prime factors totalling M bits as it is to find two large prime factors

totalling M bits? Remember, the bad guy doesn’t know n.

Associate with each Sj an element s such that S;Sj = S| mod ¢. One way to find an 5 is the
+9.
quotient S = % . The student should prove the remainder is always zero.

i
Compute the generator g of Z, using a random roll such that gcd(g,p—1) = 1 and

gq = 1 mod p. If not, roll again.

Once the cryptosystem parameters have been determined, the TA sets up a specific instance of the
scheme as follows.

1.

2.

Roll n random roots x; (0 < X < q) for apolynomial of order n. While it may not be strictly
necessary, Make sure each root has no factorsin common with g.

Expand the n product terms |‘| (x—xj) to form n + 1 coefficientsg; mod g (0O<i<n) in
0<j<n

powers of x using afast method contributed by C. Boncelet.
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3. Generate g; = 9" mod p for al i and the generator g. Verify rl gia‘x"l = 1 mod p
0<i<n0<j<n
for al i, j. Note the aixji exponent is computed mod g, but the g; is computed mod p. Also
note the expression given in the paper cited isincorrect.

4. Make master encryption key A = |‘| gixj mod p. Keep it around for awhile, since it
0<i<n0<j<n
IS expensive to compute.

5. Roll private random group key b (0 < b < q), where ged(b, g) = 1 to guarantee the inverse
exists, then compute b mod g. If bischanged, all keys must be recomputed.

6. Make private client keys X = bt Z xin mod q and X = ijjn mod q for all j. Note

0<is<n,i#j
that the keys for the jth client involve only s, but not s; ors. The TA sends (p, X $<j) to the
jth client(s) using secure means.

7. The activation key isinitially g by construction. The TA revokes client j by dividing q by SE
The quotient becomes the activation key s. Note we always have to revoke one key; other-
wise, the plaintext and cryptotext would be identical. The TA computes E = AS

0= %> mod p,§ = % mod p and sends (p, E, §, §) to the servers using secure means.
Alice challenges Bob to confirm identity using the following exchange.

1. Alicerollsrandomr (0 <r <) and sends to Bob.

2. Bobrollsrandom k (0 < k < g) and computes the session encryption key E' EX mod p and

= A

public decryption key §' = gk modp and §' = gk mod p. He encrypts x
(hash(x), @', §') to Alice.

E'r and sends

3. Alice computesthe session decryption key E™* = g‘f(" g‘x" mod p, recovers the encryption key

E = (E'_l)_1 mod p, encrypts z = E'r mod p, then verifies that hash(z) = hash(x).

E.7 Interoperability Issues

A specific combination of authentication scheme (none, symmetric key, Autokey), digest/signa-
ture scheme and identity scheme (PC, TC, IFF, GQ, MV) is called a cryptotype, although not all
combinations are possible. There may be management configurations where the servers and cli-
ents may not all support the same cryptotypes. A secure NTPv4 subnet can be configured in sev-
eral ways while keeping in mind the principles explained in this section. Note however that some
cryptotype combinations may successfully interoperate with each other, but may not represent
good security practice.
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The cryptotype of an association is determined at the time of mobilization, either at configuration
time or some time later when a packet of appropriate cryptotype arrives. When a client, broadcast
or symmetric active association is mobilized at configuration time, it can be designated non-
authentic, authenticated with symmetric key or authenticated with some Autokey scheme, and
subsequently it will send packets with that cryptotype. When aresponding server, broadcast client
or symmetric passive association is mobilized, it is designated with the same cryptotype as the
received packet.

When multiple identity schemes are supported, the parameter exchange determines which oneis
used. The request message contains bits corresponding to the schemes it supports, while the
response message contains bits corresponding to the schemes it supports. The client matches the
server bits with its own and selects a compatible identity scheme. The server is driven entirely by
the client selection and remains stateless. When multiple selections are possible, the order from
most secure to least is GC, IFF, TC. Note that PC does not interoperate with any of the others,
since they require the host certificate which a PC server will not reveal.

Following the principle that time is a public value, a server responds to any client packet that
matches its cryptotype capabilities. Thus, a server receiving a non-authenticated packet will
respond with a non-authenticated packet, while the same server receiving a packet of a cryptotype
it supports will respond with packets of that cryptotype. However, new broadcast or manycast cli-
ent associations or symmetric passive associations will not be mobilized unless the server sup-
ports a cryptotype compatible with the first packet received. By default, non-authenticated
associations will not be mobilized unless overridden in a decidedly dangerous way.

Some examples may help to reduce confusion. Client Alice has no specific cryptotype selected.
Server Bob supports both symmetric key and Autokey cryptography. Alice's non-authenticated
packets arrive at Bob, who replies with non-authenticated packets. Cathy has a copy of Bob's
symmetric key file and has selected key ID 4 in packets to Bob. If Bob verifies the packet with
key ID 4, he sends Cathy a reply with that key. If authentication fails, Bob sends Cathy a thing
called a crypto-NAK, which tells her something broke. She can see the evidence using the utility
programs of the NTP software library.

Symmetric peers Bob and Denise have rolled their own host keys, certificates and identity param-
eters and lit the host status bits for the identity schemes they can support. Upon completion of the
parameter exchange, both parties know the digest/signature scheme and available identity
schemes of the other party. They do not have to use the same schemes, but each party must use the
digest/signature scheme and one of the identity schemes supported by the other party.

It should be clear from the above that Bob can support all the girls at the same time, aslong as he
has compatible authentication and identification credentials. Now, Bob can act just like the girls
in his own choice of servers; he can run multiple configured associations with multiple different
servers (or the same server, athough that might not be useful). But, wise security policy might
preclude some cryptotype combinations; for instance, running an identity scheme with one server
and no authentication with another might not be wise.
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F. File Examples

This appendix shows the file formats used by the OpenSSL library and the reference implementa-
tion. These are not included in the specification and are given here only as examples. In each case
the actual file contents are shown followed by a dump produced by the OpenSSL asnl program.

F.1 RSA-MD5cert File and ASN.1 Encoding

# nt pkey_RSA- MD5cert _whi nsy. udel . edu. 3236983143

# Tue Jul 30 01:59: 03 2002

----- BEA N CERTI FI CATE- - - - -

M | Bk TCCATugAWM BAgl EwPBxZz ANBgk ghki GOw0BAQQFADAaMRgwigYDVQQDEWI3
ad t c3kudWR bC51 ZHUwHhc NVDI wiNz MMVDEL OT A3VWh ¢ NVDMvNz MMVDEL OTA3W Aa
MRgwi-g YDVQQDEW93ad t c3kudWRI bC51 ZHUWY ANBgkghki GOWOBAQEFAANI ADBG
AKEA2PpCOz 6t 0SQBBt dG Bt +F6c SSde6zhay OMRj 5nAkOvt 605hdxWhudf Ke7ZOY
HRLLgACvVJEf BaSvESOFW dUgQ BA6Nr MGkwDWYDVROTAQH BAUWAWEB/ z ALBgNV
HQB EBAMCA0 QVSQYDVROOBEI EQEVFGZar 3af oZcHDmhbgi OmaBr t WIT LHRM Jswge
LugB1f bsNEgUgFebBR1Y9qLWYQUN7yl BD+3z9PI hc UOm nl wDQYJKoZI hvc NAQEE
BQADQQAVZM NbYV2Bj vFHIx+t OPB9/ / gi OV3f QoLK8hXXpyi AF4KLI eEqP13pKOH
TceF3e3bxSRTndkl hkl EACbYX66

----- END CERTI FI CATE- - - - -

0:d=0 hl=4 | = 401 cons: SEQUENCE
4:d=1 hl=4 | = 315 cons: SEQUENCE
8:d=2 hl=21= 3 cons: cont [ O]
10:d=3 hl=2 I = 1 prim | NTEGER 02
13:d=2 hl=2 1= 4 prim |NTEGER :-3FOF8E99
19:d=2 hl=2 | = 13 cons: SEQUENCE
21:d=3 hl=2 1= 9 prim OBJECT: nd5W t hRSAEncrypti on
32:d=3 hl=2 1= O prim NULL
34:d=2 hl=2 I = 26 cons: SEQUENCE
36:d=3 hl=2 1= 24 cons: SET
38:d=4 hl=2 = 22 cons: SEQUENCE
40:d=5 hl=2 |= 3 prim OBJECT: conmonName
45:d=5 hl=2 I = 15 prim PRI NTABLESTRI NG : whi nsy. udel . edu
62:d=2 hl=2 I = 30 cons: SEQUENCE
64:d=3 hl=2 |I= 13 prim UTCTI ME: 0207300159072
79:d=3 hl=2 |I= 13 prim UTCTI ME: 0307300159072
94:d=2 hl=2 I = 26 cons: SEQUENCE
96:d=3 hl=2 I = 24 cons: SET
98:d=4 hl=2 I = 22 cons: SEQUENCE
100:d=5 hl=2 I= 3 prim OBJECT: conmonName
105:d=5 hl=2 1= 15 prim PRI NTABLESTRI NG : whi nsy. udel . edu
122:d=2 hl=2 = 90 cons: SEQUENCE
124:d=3 hl=2 I = 13 cons: SEQUENCE
126:d=4 hl=2 |= 9 prim OBJECT:rsaEncryption
137:d=4 hl=2 |= O prim NULL
139:d=3 hl=2 1= 73 prim BIT STRI NG
214:d=2 hl=2 I = 107 cons: cont [ 3]
216:d=3 hl=2 | = 105 cons: SEQUENCE
218:d=4 hl=2 I= 15 cons: SEQUENCE
220:d=5 hl=2 | = 3 prim OBJECT: X509v3 Basic Constraints
225:d=5 hl=2 |= 1 prim BOOLEAN: 255
228:d=5 hl=2 1= 5 prim OCTET STRI NG
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235:d=4 hl=2 I= 11 cons: SEQUENCE

237:d=5 hl=2 |= 3 prim OBJECT: X509v3 Key Usage

242:d=5 hl=2 1= 4 prim OCTET STRI NG

248:d=4 hl=2 |= 73 cons: SEQUENCE

250:d=5 hl=2 | = 3 prim OBJECT: X509v3 Subject Key ldentifier
255:d=5 hl=2 = 66 prim OCTET STRI NG

323:d=1 hl=2 I= 13 cons: SEQUENCE

325:d=2 hl=2 |= 9 prim OBJECT: nd5W t hRSAEncrypti on

336:d=2 hl=21|= 0 prim NULL

338:d=1 hl=2 1= 65 prim BIT STRI NG

F.2 RSAkey File and ASN.1 Encoding

# nt pkey_RSAkey_ whi nsy. udel . edu. 3236983143

# Tue Jul 30 01:59: 03 2002

----- BEA N RSA PRI VATE KEY-----

M | BQgl BAAJBANj 6Ts+r aEk Nwb XRgwbf henEknXus4Wsj sEY+ZwJ Dr 7UCdOYXc Vo
bnXynu2TnB0Sy 6gAr 1 SRHWr x OThVp XVKk CAQVCQQCQpt 81HPAWS 9Z5NnI El QPx
Lbb5ScODyF8r Zf u9WL8p4Zb5UH3KYqZf AOAKOGTnmxur i FphgS9bELSwW5L60w4t 6D
Ai EA7ACLI KZt Cp91CaDohVi Phs7KBdRVg7D3n88z9MM gMCl QDr XRQVb2dqR/ ww
PHJ7al j KhhTE78mxLpn2Po82Pf Yl 4m hAJ1VsmWngc U+LEV8Fj | t QSJ3APi 48f L
LO7/fd/i CKI XAi EAnO 4CEpE8YVSyt L2/ PGQnFI j Lf Uxl M7 +X8KJC CsJcCl Cgu
Iw07kRQ2yci cL2QRVh8J8vQL68VF H53H+00bKDCd

----- END RSA PRI VATE KEY-----

0:d=0 hl=4 | = 314 cons: SEQUENCE

4:d=1 hl=21I= 1 prim | NTEGER 00

7:d=1 hl=2 1= 65 prim |NTEGER <hex string omitted>
74:d=1 hl=2 1= 1 prim | NTEGER 03

77:d=1 hl=2 1= 65 prim |INTECER <hex string omtted>
144:d=1 hl=2 I= 33 prim |INTECER <hex string omtted>
179:d=1 hl=2 I= 33 prim |INTECER <hex string omtted>
214:d=1 hl=2 1= 33 prim |NTEGER <hex string omtted>
249:d=1 hl=2 1= 33 prim |NTECGER <hex string omtted>
284:d=1 hl=2 1= 32 prim |NTEGER <hex string omtted>

F.3 IFFpar File and ASN.1 Encoding

# nt pkey_| FFpar _whi nsy. udel . edu. 3236983143

# Tue Jul 30 01:59:03 2002

----- BEA N DSA PRI VATE KEY-----

M HAAgEAAKEATf Bvqq9+3DH5BnBSc Mkr ugH4QEB760€ec1zj WR3gyoP2U+L8t Hf v
z2LmogOgE1cOMegQynyf QVSDUENKMyi DWQ VAJ18qdV84wm CGMAgs HKbp Awe pDX
AkAdy42(QqzZ8alUz QRWKkMuYTKby RRNCGLTJi 5eVJcCq65t W 5¢1bnn24xkbl +FXqck
GBWINC Dt SzuYglgFLxEuWs YaAKEA] c+nPJR7VY4Bj Dl eVTna07edDf cy S| 9vy8Pa
B4gAr k51LdJI J49yx EPUxFy/ KBl FEHOWMRZME1J7z7dQ Af 26z2Q UMXkbVz0OD+2Yo
Yl QT F33Q+N5No=

----- END DSA PRI VATE KEY--- - -

0:d=0 hl=3 | = 248 cons: SEQUENCE

3:d=1 hl=21= 1 prim | NTEGER 00

6:d=1 hl=2 1= 65 prim |NTEGER <hex string omitted>
73:d=1 hl=2 1= 21 prim |INTECER <hex string omtted>
96:d=1 hl=2 1= 64 prim |NTECER <hex string omtted>
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162:d=1 hl=2
229:d=1 hl=2

65 prim | NTEGER <hex string omtted>
20 prim |INTEGER <hex string omtted>
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G. ASN.1 Encoding Rules

Certain value fields in request and response messages contain data encoded in ASN.1 distin-
guished encoding rules (DER). The BNF grammer for each encoding rule is given below along
with the OpenSSL routine used for the encoding in the reference implementation. The object
identifiers for the encryption algorithms and message digest/signature encryption schemes are
specified in [2]. The particular algorithms required for conformance are not specified in this doc-
ument.

G.1 COOKIE request, IFF response, GQ response, MV response

The value field of the COOKIE request message contains a sequence of two integers (n, €)
encoded by thei 2d_RSAPubl i cKey() routinein the OpenSSL distribution. In the request, nisthe
RSA modulusin bits and eis the public exponent.

RSAPubl i cKey ::= SEQUENCE {
n ::= | NTEGER,
e .= I NTEGER

}

The IFF and GQ responses contain a sequence of two integers (r, s) encoded by the
i 2d_DSA_SI @) routinein the OpenSSL distribution. In the responses, r is the challenge response
and sisthe hash of the private value.

DSAPubl i cKey ::= SEQUENCE {
r ::= | NTEGER,
s ::= | NTEGER

}

The MV response contains a sequence of three integers (p, g, g) encoded by the
i 2d_DSApar ans() routine in the OpenSSL library. In the response, p is the hash of the encrypted
challenge value and (g, g) isthe client portion of the decryption key.

DSApar anmet ers ::= SEQUENCE ({
p ::= | NTEGER,
g ::= I NTEGER
g ::= INTEGER

}

G.2 CERT response, SIGN request and response

The value field contains a X509v3 certificate encoded by thei 2d_X509() routinein the OpenSSL
distribution. The encoding follows the rules stated in [4], including the use of X509v3 extension
fields.

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
si gnat ur eAl gorithm Al gorithm dentifier,
si gnat ur eVal ue BI T STRI NG

}
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The si gnat ur eAl gori t hmis the object identifier of the message digest/signature encryption
scheme used to sign the certificate. The si gnat ur eval ue is computed by the certificate issuer
using this algorithm and the issuer private key.

TBSCertificate ::= SEQUENCE ({

version EXPLICIT v3(2),

seri al Number CertificateSerial Nunber,

si ghature Al gorithm dentifier,

i ssuer Narre,

validity Validity,

subj ect Narre,

subj ect Publ i cKeyl nf o Subj ect Publ i cKeyl nf o,

ext ensi ons EXPLI CI T Ext ensi ons OPTI ONAL
}

The seri al Nunber is an integer guaranteed to be unique for the generating host. The reference
implementation uses the NTP seconds when the certificate was generated. The si gnat ur e is the
object identifier of the message digest/signature encryption scheme used to sign the certificate. It
must be identical to the si gnat ur eAl gorit hm

CertificateSerial Nunber ::= | NTEGER
Validity ::= SEQUENCE ({
not Bef ore UTCTi ne,
not After UTCTi ne
}

The not Bef or e and not Af t er define the period of validity as defined in Appendix E.

Subj ect Publ i cKeyl nfo ::= SEQUENCE {
al gorithm Al gorithm dentifier,
subj ect Publ i cKey BI T STRI NG

}

The Al gorithm dentifier specifies the encryption agorithm for the subject public key. The
subj ect Publ i cKey isthe public key of the subject.

Ext ensi ons ::= SEQUENCE SI ZE (1..MAX) OF Extension

Ext ensi on ::= SEQUENCE {
extnl D OBJECT | DENTI FI ER,
critical BOOLEAN DEFAULT FALSE,
ext nVval ue OCTET STRI NG

}

Name ::= SEQUENCE ({
OBJECT | DENTI FI ER conmonNane
Printabl eString Host Nane

}

For al certificates, the subject Host Nane is the unique DNS name of the host to which the public
key belongs. The reference implementation uses the string returned by the Unix gethostname()
routine (trailing NUL removed). For other than self-signed certificates, the issuer Host Nane isthe
unique DNS name of the host signing the certificate.
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