
1

Scalable, High Speed, Internet Time Synchronization

Advanced Research Projects Agency
Contract DABT 63-95-C-0046

Quarterly Progress Report
1 September 1995 - 30 November 1995

David L. Mills
Electrical Engineering Department

University of Delaware

1. Introduction

The work reported during this interval consists of a status report on the development of a generic
autonomous configuration facility suitable for distributed, ubiquitous protocols such as the Net-
work Time Protocol (NTP) and others of that nature. Also included are formal specification to
support new protocol modes as described in the contract proposal. The primary function of these
revisions is to support a new mode of operation called NTP Distributed Mode. It is designed for
use in dense forests of time-synchronized peers were the highest degree of redundancy is
required, while minimizing the number of synchronizing messages required. With N peers in the
NTP subnet, the number of messages scales as N2 for unicast modes, but reduces to N for multi-
cast modes, including the new mode.

One of the motivations for the development of distributed mode is as a vehicle for investigation of
NTP related artifacts, such as asymmetric routes, security schemes and Byzantine faults. This
note speaks only to the design and implementation of the distributed mode itself; later notes will
speak to the applications that this mode is designed to support.

A set of technical memoranda has been produced describing technology suitable for calibrating
the performance of computers and packet-switching networks. These memoranda have been
installed in the web page collection for Prof. David L. Mills. (http://www.udel.edu/~mills). These
are

Mills, D.L. Time and Time Interval Measurement with Application to Computer and Network
Performance Evaluation. Electrical Engineering Technical Memorandum, January 1996, 17 pp.
ftp://louie.udel.edu/pub/people/mills/memos/memo96a.ps

This memorandum surveys and analyzes new and existing paradigms for synchronizing test
instruments deployed in a distributed configuration for measuring performance of telecom-
munications systems, such as ATM switches, SDH transmission equipment and ancillary
supporting devices. These instruments often take the form of a general purpose PC or work-
station equipped with special purpose interfaces suitable for nonintrusive monitoring of tele-
communication equipment operations. However, the same methodology developed for these
systems should be usable in more general applications where time and/or frequency synchro-
nization is necessary between components of a distributed system.

Mills, D.L. A Kernel Model for Precision Timekeeping. Electrical Engineering Technical Memo-
randum, January 1996, 28 pp. ftp://louie.udel.edu/pub/people/mills/memos/memo96b.ps

2

This memorandum is an update of a previous memorandum and RFC on precision time mod-
ifications the Unix kernels. The update includes material learned from integrating these mod-
ifications in DEC and Sun kernels for symmetric multiprocessor systems.

Mills, D.L. A Kernel Programming Interface for Precision Time Signals. Electrical Engineering
Technical Memorandum, January 1996, 3 pp. ftp://louie.udel.edu/pub/people/mills/memos/
memo96c.ps

This memorandum proposes a programming interface for the generic Unix kernel which pro-
vides support for external timing signals, such as the pulse-per-second signal generated by
some radio clocks and cesium oscillators.

2. Autonomous Configuration

This section describes the basic problems in automatically configuring a very large network of cli-
ents and servers. Given such a network interconnected by communication links, a typical network
design problem is to construct minimum spanning trees (MST) or shortest-path spanning trees
(SPT) rooted at designated vertices in the network. Such problems are often found in the design of
network routing algorithms and efficient algorithms have been developed to deal with them.
Another common network design problem involves the topological configuration of terminal con-
centrator networks, i.e., where to put the concentrators in a large network of terminals and appli-
cation processors in order to minimize communication costs.

Other examples include designing networks of minimum cost or capacity while meeting specific
performance requirements, such as delay. In most cases, the design process involves determining
the topology of the communication subnet, i.e., the location of the nodes, the topology of the links
and the capacity of each link. The cost function typically involves a) minimizing the average
delay for the dissemination of data in the network, b) ensuring the integrity of network service in
the event of node and link failures, or c) minimizing the total capital investment and operating
costs while meeting criteria a) and b) above.

In general, many real-life situations might end up being very broad problems that may be quite
difficult to formulate precisely. However, in many cases, the situation can be considerably simpli-
fied. For example, the problem may be simplified through the use of hierarchical principles. More
frequently, there may be a natural decomposition of the problem - for example, a subnet design
problem may be naturally decoupled from the overall network design problem. This can be found
in cases where the network is already in place and a subnet is to be designed to optimize certain
parameters. It is seldom the case that one ends up with a clean problem that can be solved exactly
in a reasonable time and one typically looks for approximation algorithms through heuristic meth-
ods that combine theory, trial and error and basic common sense.

2.1 The Subnet Design Problem

In this problem, we are given a network of nodes along with the distance (cost) of each link
between two nodes. A relatively small subset of nodes are designated primary servers and the
remaining nodes are either secondary servers or clients. Servers are responsible for passing infor-
mation such as clock offsets, etc., to other servers and clients. Primary servers obtain information
from an external source, whereas secondary servers obtain information from other servers in the

3

network. We would like to design the topology of the subnet such that every node in the network
has access to information from at least m primary severs while minimizing the total cost in the
network. The cost of a path from a client to its designated server is the cost assigned that client.
The total cost is the sum of all path costs. The problem corresponds to building SPTs rooted at
each of the m primary servers, where the cost of any path may be constrained to be not greater
than p and the degree of paths incident at any node may be constrained to be not greater than k.

The rationale behind having every node access to m primary servers is to ensure adequate redun-
dancy, so that the node can tolerate up to server failures and still be able to access the infor-
mation. Ensuring that the cost between each primary server and any of its clients is within p
guarantees that no node will be forced to access information at a cost greater than p. If, for exam-
ple, the cost function were to represent delay, then this would guarantee that all nodes would
receive information within the specified delay interval. The degree constraint k ensures that no
node has greater than children, which may be necessary to manage the processing load on
each server.

Examples of instances where such constraints may be observed in real-life are as follows:

1. Given a network of World Wide Web servers and clients, along with a set of strategically
located caching sites, whose task is to avoid repetitive transfer of real-time data over interna-
tional links, the objective would be to design a suitable distribution mechanism by which the
cache servers and clients organize themselves into a hierarchy to minimize the quantity of
information transfered. An added constraint could be that no server in the hierarchy is respon-
sible for distributing information to more than k clients and never responds in more than p
seconds..

2. Given a set of NTP clients and severs, a certain subset of which may be designated as primary
NTP servers, the objective is build a self-organizing, hierarchical time distribution mechanism
such that the sum of the synchronization distances of all nodes in the network and the primary
server they receive time from is minimized. The constraints in this case are that no node may
be at a distance greater than p seconds from its primary server and no node may be responsible
for distributing information to more than k children. In addition, each node must receive time
from at least m other primary servers in order to maintain redundancy and achieve specified
tolerance to faults at all times.

Given an outline of the problem, an effective model for study can be developed using graph the-
ory. Suppose we are given a directed graph , where V represents the set of vertices or

nodes, and , where i, j are nodes, is the set of edges or links connecting them. Each

directed edge in G is assigned a distance or cost of communicating between them. We
assume that the graph is connected, i.e., there exists a set of edges between any two nodes, and
complete, i.e., there is a path with nonzero cost from each node of a designated subset of nodes,
called the root set, to every other node in G.

The objective is to construct optimum trees or subgraphs subject to the constraints given above.
Formulating this problem as an integer programming problem is not trivial, but can be achieved
along the following lines:

m 1–

k 1–

G V E,()=

E i j,()=

C i j,()

4

Minimize , over all nodes i and root nodes j. where is the sum of all edge

costs between a non-root node i and root node j, i i.e.,

, subject to: (1)

(2)

(3)

(4)

(5)

(6)

A brief explanation of the constraints will help in understanding the problem. Constraint (1)
ensures that every node has at least one incoming edge, i.e., it is part of at least one tree. This con-
straint may be modified to make it , in which case the there would be a forest of m disjoint
trees that a single node would be part of. This would be a much harder constraint to meet, espe-
cially in sparse graphs, and hence it is easier to solve for the case where there is at least one edge
incident into a node. (2) ensures that a single node cannot have a degree greater than k, while (3)
ensures that every node has access to at least m primaries. Constraint (4) is a restriction on the
sum of the weights between each root node and its children. (5) and (6) represent which root
nodes are associated with each node, and which edges are chosen in the graph to form the various
trees.

2.2 Complexity Issues

It is trivial to see that this problem is a member of the NP-Hard class of problems. A comprehen-
sive theoretical analysis of the problem would provide a good insight into its complexity implica-
tions. Recently, there has been considerable interest in multi-objective optimization problems and
a significant effort is underway to devise good approximation algorithms for this class of prob-
lems. It is prudent at this point to take a step back and see if it is possible to break the problem into
constituent subproblems. It may be that each one of those may be NP-Hard in their own accord,
but it is a useful exercise to be able to break a complex problem into smaller components and ana-
lyze each one individually in order to gain some insight into the nature of the problem.

If the bound on the degree of each node is removed, along with the bound on the maximum dis-
tance of each node to a root node, then the problem reduces to assigning each node to m root
nodes. This is a trivial problem to solve and the optimal solution is obtained by simply ranking all
the root nodes of every node according to nondeceasing cost and choosing the m root nodes that
have the lowest cost. Adding any of the other constraints makes it much harder to solve.

P i j,()Y i j,()∑ P i j,()

P l j,() P l j,() C l j,()X l j,()+[]
l

∑= X j l,() 1≥
l

∑

X i l,() X l i,()
l

∑+∑ k≤

Y i j,()
j

∑ m 1–>

P i j,() p<

Y i j,() 0 1,{ }=

X i l,() 0 1,{ }=

E m=

5

A couple of variations of the above problem have been studied in the literature. The k-center
problem involves fixing the number of root nodes at k, and trying to minimize the maximum dis-
tance from any node to its associated root node. It has been shown that there exists an approxima-
tion algorithm with a performance guarantee of 2 for the k-center problem. The p-dominating set
problem is a dual of the k-center problem, where the objective is to minimize the number of root
nodes, given that no node in the graph can be at a distance greater than p from its associated root
node. This problem is harder to solve and the best known approximation algorithm for this class
of problems has a performance guarantee of .

Let us consider the case where there is only a single root node. One subproblem would be to con-
struct minimum cost trees rooted at this node such that each other node in the tree has degree no
greater than k. No constant-factor approximation algorithms have yet been found for this problem;
however, there is an approximation algorithm for this problem. Another similar problem would be
to construct a k-degree tree from the root nodes such that the maximum cost of the tree is mini-
mized. Again, no constant-factor approximation algorithm has been found for this prob-
lem.

We are currently studying the k-degree minimum cost problem and attempting to come up with a
constant-factor approximation algorithm. One technique that seems to hold good promise here is a
primal-dual approach. This mechanism involves specifying the problem as an integer program-
ming problem and then formulating the dual of the problem. The algorithm then works by succes-
sively satisfying constraints in the primal and dual problems, while approaching the optimal
solution. These algorithms have been shown to run in polynomial time, thus making it feasible for
use in very large networks.

3. NTP Distributed Mode

The following text is designed to be merged at some later time in the NTP Version 3 specification
document RFC1305 as part of the evolution to Version 4 of the protocol. These changes are in
addition to those specified in the previous quarterly report. Additional changes are expected in
order to define the packet formats and processing details unique to this mode.

It is the intent that the above processing rules be added to the existing rules specified in RFC1305,
as amended by those in the previous quarterly report. These rules will in principle result in no
changes in the operation of existing NTP servers and clients and should in general be transparent
to all prior versions of the protocol. The new rules do specify detailed behavior in configurations
that formerly were considered erroneous, but generally resulted in correct clock synchronization.
Of primary utility is the specification of the distributed mode operations, which have no prior def-
inition or usage history. However, the above rules do not specify precisely how such implementa-
tions should be built and how they should respond. This is left for future work.

NTP Distributed Mode is designed to capture timestamps from a subnet of time servers, or peers,
and construct a database from which individual offset and delay measurements can be computed
between any pair of peers in the subnet. In this mode, each peer transmits a multicast message
containing the time the message is sent, together with state variables determined directly and indi-
rectly from multicast messages received from other subnet peers.

O Nlog()

O Nlog()

6

The term direct timestamps refers to measurements made by a peer relative to its own local clock;
that is, any measurement error must be due to either errors in setting the local clock or operating
system jitter accumulated by the local clock reading routines. The term “indirect timestamps”
refers to measurements made by one peer and subsequently distributed to another peer using the
protocol model described below. Indirect timestamps are bundled with identification information
in the form of tuples and then encapsulated in multicast messages sent to all members of the sub-
net. In order to calculate the error budget accurately with indirect timestamps, it is necessary to
know additional details, such as the precision of the local clock, the synchronization distance, etc.
This information is learned from multicast messages sent by each peer in the subnet.

NTP distributed mode uses direct and indirect information provided by each peer in the subnet,
but a particular NTP message may not contain data for all other peers. The transmit timestamp in
the NTP header provides the time of transmission relative to the sending peer clock, while the
time of reception at every other peer is recorded as the arrival timestamp for purposes of NTP cal-
culations. When a peer receives an NTP multicast message, it searches the list of timestamp tuples
in order to find the one associated with its own previously transmitted message. Since it may not
be possible to include all timestamp tuples in every message transmitted, peers may have to wait
up to several messages in order to find its own timestamps and complete its clock offset and
roundtrip delay calculations. Therefore, the frequency of multicast messages may be higher than
in subnets without this capability, but the frequency will generally be much lower than if distrib-
uted mode was not used.

It is important to realize that offset/delay measurements made between the same pair of peers in
the NTP unicast modes and NTP multicast modes can differ, since the unicast and broadcast span-
ning trees may differ due to shared-tree topologies, etc. For the highest accuracies, NTP unicast
modes (client-server or symmetric) must be used. In these modes each peer uses its direct times-
tamps together with its neighbor’s indirect timestamps to accurately calibrate the clock offset and
roundtrip delay. However, provisions are made in the protocol model to measure the offset dis-
crepancy between the unicast and multicast modes; however, such measurements are made rela-
tively infrequently and may not reflect the state of the network at any particular time. It may in
fact be most desirable to run unicast and multicast protocols at the same time, using unicast proto-
cols to fine-tune the local clock time and frequency and use multicast modes in order to detect and
correct for asymmetrical paths, etc.

This note explores design issues involved in the NTP distributed mode and discusses details of
protocol and packet format.The following considerations are relevant:

1. The message formats should be as close to existing formats as possible without compromising
the accuracy or precision of the representation.

2. Each timestamp tuple should be self contained and not depend on other information in the
same or different messages.

3. Depending on accuracy expectations, it may be necessary to run unicast and distributed modes
simultaneously. In such cases, the unicast timestamps are used to directly synchronize peer
clocks, with distributed mode used to verify consistency, resolve asymmetrical delays and so
forth.

7

4. Messages used to exchange distributed timestamps may contain only a fraction of the avail-
able timestamp tuples. Successive messages may include subsets of the tuples depending on
maximum message size, rate of change of information, and maybe other factors.

5. The precision of calculation for both clock offset and roundtrip delay using distributed mode
should be comparable to the precision using unicast or multicast modes.

While the specific scheme used to authenticate NTP packets may be changed in future to align
with generic IP schemes, the packet formats should not prohibit use of the current NTP authenti-
cation scheme.

4. NTP Timestamps and Data Base

In order to calculate clock offset and roundtrip delay between two peers, the NTP specification
calls for four timestamps, two generated by each peer between which these measurements are to
be made. Each peer can calculate the offset and delay relative to the other by recording two times-
tamps and receiving the other two from the other peer in an NTP message. Subnet peers other than
those directly involved in such measurements can also perform these calculations if the times-
tamps are made available in multicast messages from each peer and with certain additional infor-
mation as described below.

Presume peers A and B are exchanging multicast messages in order to set their clocks and that
peer X overhears these messages. Peer A needs four timestamps in order to calculate the clock
offset and roundtrip delay relative to B:

T1 originate timestamp (request sent at A)
T2 receive timestamp (request received at B)
T3 transmit timestamp (response sent at B)
T4 destination timestamp (response received at A)

Peer A maintains three state variables for every other peer, including B:

S1 latest originate timestamp
S2 latest transmit timestamp
S3 latest destination timestamp

In peer A, S1 remembers the time according to the A clock when the most recent request was sent;
i.e., the originate timestamp, T1. This variable is used only in unicast modes to verify the response
matches the request. S2 remembers the time according to the B clock when the most recent reply
was sent; i.e., the transmit timestamp included in that reply, T3. S3 remembers the time according
to the A clock when the reply was received; i.e., the destination timestamp, T4.

In unicast modes, peer A sends a request to peer B piggybacked with a response from a prior
request from B. Peer B does the same thing in a symmetric manner. The packet variables are:

P1 originate timestamp (request sent at A)
P2 transmit timestamp (prior response/request sent at B)
P3 receive timestamp (prior response/request received at A)

The NTP unicast message sent by A contains the originate timestamp P1 (S1) of the current
request, plus the transmit timestamp P2 (S2) and destination timestamp P3 (S3) of the most recent

8

response received. Upon arrival at B, the P1 field in the message becomes the T3 value for B, the
P2 field becomes the T1 value and the P3 field becomes the T2 value. The T4 value for B is cap-
tured from the local clock at B upon arrival of the message. Following calculation of the clock
offset and roundtrip delay, the T3 timestamp replaces state variable S2 at B and the T4 timestamp
replaces state variable S3. When B sends a response/request message to A, the same things hap-
pen with A and B in the above description interchanged.

Each time a new round of timestamps is updated, the roundtrip delay and clock offset is
calculated:

clock offset , roundtrip delay .

Note that, due to the symmetry of the exchange, both A and B can independently calculate clock
offset and roundtrip delay of their local clock with respect to their peer clock. In practice, each
peer independently sends messages with current state variables to the other peer at designated poll
intervals. It doesn’t matter if messages are lost, since the latest state variables and timestamps are
used for each one. It doesn’t matter if messages are duplicated, since the receiver can detect this
and toss the duplicates out. Finally, note that X, overhearing a single message from A and a single
message from B can also calculate the clock offset and roundtrip delay of either peer relative to
the other.

4.1 Sending Distributed Mode Timestamps

In multicast modes, separate state variables S2 and S3 are maintained for every peer in the subnet.
Periodically, these variables are collected and transmitted by peer X in a multicast message,
which is presumably heard by all members of the subnet. These variables are transmitted as a 20-
octet tuple consisting of the IP group address, followed by the two state variables S2 and S3. The
IP address is the address of the peer Y which sent a message at some prior time S2 and was
received by the peer X at time S3. Ordinarily, the IP address is the address of the peer Y sending
the data from which the timestamps are derived, not necessarily the one X sending the tuple. The
values of the state variables S2 and S3 are derived from the most recent request/reply received
from the peer in the manner described for unicast modes.

There is no need to hold internal state other than S2 and S3 for each peer in the subnet; the S1
variable is not used in multicast modes. Therefore, some means of authentication is necessary in
order to prevent spoofing attacks. Experience has shown this to be necessary in any multicast
mode, including NTP distributed mode. Note that, while S2 and S3 are transmitted for each peer
separately, the transmit timestamp of the multicast message itself is included in the NTP header,
which is transmitted in both unicast and multicast modes.

It is the intent in the protocol design that each timestamp message contain some number, but per-
haps not all, tuples for the entire subnet. The maximum number of tuples that can be included in a
message depends on the MTU for the particular connected network. Determining the MTU is out-
side the scope of this memo; however, a working maximum should be in the neighborhood of 20
for a 512-octet IP datagram. In any case, the length of the NTP message itself can affect the accu-
racy of synchronization, since the time to transmit the message itself is included in the roundtrip

T1 T4–

T2 T1–() T3 T4–()+
2

-- T4 T1–() T3 T2–()–

9

delay. Therefore, whatever procedures are used to pack the messages should insure that the mes-
sages are all the same length.

4.2 Receiving Distributed Mode Timestamps

In order to independently calculate clock offset and roundtrip delay between A and B, peer X
must be able to construct consistent timestamps T1, T2, T3 and T4 for either or both A and B. In
general,~if calculations for A with respect to B are needed, a multicast message from B reveals
one pair of timestamps (T1 and T2), while one from A reveals the other pair (T3 and T4). In order
to do this, it must insure that the data collected at X using a single message from A and a single
message from B are consistent with a single exchange of messages between A and B.

Let (T1, T2) and (T3, T4) be the two pairs of timestamps, the first from peer B, the second from
peer A. There are two major cases distinguished by whether the messages cross in transit across
the network. If they do not cross and the A and B clocks have not been reset and the frequency
error is within bounds yet to be determined, then by construction and . In this
case, there are two subcases:

1. . The request was sent by A, the reply by B. In this case, the offset/
delay data are calculated relative to peer A.

2. . The request was sent by B, the reply by A. In this case, the offset/
delay data are calculated relative to peer B.

If the messages do cross, then by construction and . This case is normally infre-
quent, but could occur if the network delays are significant with respect to the poll intervals.
While it might appear that this case could lead to misleading results, examination of the above
equations for clock offset and roundtrip delay show that correct results are obtained, as long as the
signed intermediate values in the calculations are handled correctly. Since in the 64-bit NTP
timestamp format the high order sign bits are set, this requires some care.

4.3 Implementation Details

Some implementation details follow. First, a database is needed to hold data used by the offset/
delay calculations. The database is indexed by each pair of subnet peers, most conveniently in the
form of a matrix i, j, where i, j range over the peers in the subnet. The ith row is sent by the ith
peer, possibly in several pieces. The jth element of that row is accumulated from messages
received from the jth peer.

Each element of the matrix is a data structure similar to the existing peer data structure; that is, it
contains most of the variables and data structures used in the unicast modes, including the clock
filter, offset and delay estimates, etc., as the original peer data structure. However, the new struc-
ture is not used to send packets, although it should include reachability information. Note that
each peer pair is represented twice in the matrix, once for each direction of propagation. It does
not seem useful to include peer data structures i, i along the main diagonal.

Some of the variables necessary to populate the structure for the jth element in each of the rows is
extracted from NTP messages sent by the jth host itself, including the precision, root delay, and so

T3 T2≥ T4 T1≥

T3 T2–() T4 T1–()<

T4 T1–() T3 T2–()<

T3 T2< T4 T1<

10

forth. In order to minimize the total size of the structure, it may be necessary to maintain a single
copy of these variables together with a system of pointers. In this scheme, a structure would be
built for each peer holding common variables and the row of timestamps i, j included as a vector
in that structure. Note however, that the per-peer variables for the clock filter, etc., must be main-
tained in the vector.

It seems most useful to transmit the tuples described previously in NTP multicast messages with
mode field specifying IP multicast mode. For older version servers which ignore the tuples
included in the message following the conventional NTP header, these would look just like ordi-
nary multicast mode messages, which could be processed or ignored as indicated. An old-style
server could go through the initial calibration phase of the multicast client mode as described in
the last report, since the state machine supports all old modes.

NTP multicast-mode messages with tuples following the NTP header are processed in a special
way. Assume the sending peer is i and receiving peer is j. First, the transmit timestamp P3 in the
NTP message header together with the destination timestamp are used to update the S2 and S3
state variables associated with the i, j structure in the matrix. The other header fields are ignored
for this step. Proceeding in this way, the entire column i, j of direct timestamps for all sender peers
i will be filled in by messages these peers as they arrive. Each time a structure is updated, it is
marked for later processing.

Next, the indirect timestamp tuples are processed. For each one, let k be the origin as recorded by
the ith peer sending the message and received by the jth peer as before. The tuple is then used to
update the S2 and S3 state variables associated with the i, j structure and that structure marked for
later processing. Since a peer doesn’t send indirect timestamps for itself, the entry i, i never occurs
for either direct or indirect timestamps. Proceeding in this way, the entire column i, j is filled in
for all sender peers k as determined by peer i and later reported to peer j.

Ad predetermined intervals, each peer i sends the entire ith column of direct timestamps encapsu-
lated in NTP multicast messages as described previously. Except for small differences due to the
order of message arrival, the matrices in all subnet peers should eventually converge to the same
values. The interesting data are of course these presumed small differences, which can be used to
improve accuracy and reliability in ways to be explored.

The remaining processing does not have to be done at the time of arrival of each message, but
could be delayed for offline processing at slack moments. For each peer i, j whose state variables
have changed, it is necessary to go through the suite of NTP algorithms, including the clock filter,
intersection, clustering and combining algorithms, separately in order to calculate the clock offset,
roundtrip delay and dispersion. A convenient way to do this may be to substitute each tuple of IP
address and state variables for the data that would be included in a NTP message between each
pair of peers and simulate the calculations.

Consider two peers i and j and the set of state variables for i, j and j, i . From these, the source and
destination IP addresses are obtained from i, j and j, i respectively, while one pair of timestamps
T1 and T2 are obtained from j, i and the other pair T3 and T4 are obtained from i, j. Processing
continues as in the unicast mode case. Note that, in the case of the ith row, the computations for
i, j and j, i represent paths between the ith peer and each of the j peers from which multicast mes-
sages have been received, so these are direct measurements.

11

Note that the above scheme does not preserve the originate timestamp check used in the unicast
modes to authenticate the reply. While it would in principle be possible to preserve this datum and
include it in the tuple data, this would considerably increase the storage and transmission over-
heads. Also in principle, the authentication model can be based on other cryptographic data, such
as public and private keys, that would seem naturally appropriate for proliferated multicast proto-
cols such as this.

5. Association Management

In principal, there is no configuration management required in NTP distributed mode. Upon acti-
vation, an NTP peer simply starts broadcasting its current (possibly empty) vector of state vari-
ables. As more peers are activated, each hears the others and builds a dynamic matrix {i,~j} as
described above. Each new peer not heard before causes a new row and column to be created in
the matrix. If a peer hasn’t been heard from for awhile, as determined by the usual reachability
algorithm, its row and column are expunged from the matrix. Probably, the best approach for the
reachability algorithm is to use only the direct information, avoiding the information implied in
the indirect timestamps.

There are some interesting issues to be resolved on how the NTP distributed mode interacts, if at
all, with the older unicast and multicast modes. There is some concern on the accuracy of the dis-
tributed mode, since it relies on the embedded multicast spanning tree (possibly shared) and the
pragmatic observation that this tree is very likely not directly derived from the underlying a uni-
cast spanning tree due to administrative meddling. Accordingly, means should be explored similar
to the older multicast/unicast scheme, in which the protocol executes a preliminary (and possibly
repeated at long intervals) calibration procedure before assuming a listen-only mode. In the dis-
tributed mode, peers both send and receive; so, in principle the only detractions to best attainable
accuracy are routing artifacts created by the multicast spanning tree. The success of this scheme
depends on the jitter and routing churn of the unicast and multicast trees; indeed, one of the appli-
cations the distributed mode enables is the calibration and assessment of routing algorithms that
produce these trees.

6. Packet Formats and Parsing

Inclusion of indirect timestamp tuples following the NTP header does not create format problems,
since the NTP header is fixed length; however, the scheme could conflict with the authentication
scheme long used with NTP. In this scheme, the message authentication code (MAC) is inserted
in the message following all other data in the message and the presence of the MAC is used to sig-
nal that the message is authenticated. No other indicator of authentication is defined in the header.
When used in the DES-CBC mode, the MAC is 96 bits, so cannot be confused with a distributed
mode tuple. However, when used in the MD5 mode, the MAC is 160 bits, which is unfortunately
also the length of a tuple. This creates an ambiguity in the specification, unless a count field is
included immediately following the fixed-length header and before the first tuple. This seems to
be the course of least resistance.

12

7. Plans for Next Quarter

During the next quarter, we expect to begin revision of the NTP protocol specification to conform
to the above rules. We also expect to begin work on necessary security features to support the new
mode and simplify the keying operations required in a widely deployed system. This will be
reported in a subsequent quarterly report. Finally, we expect to begin work on algorithms to auto-
matically configure a subnet based on defined metrics and constraints as described in the contract
proposal.

