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1.  Introduction

This addendum contains material reformatted from the web pages that are the intended final prod-
uct of this project. The web pages contain an extensive network of links embedding them not only
in the framework of this project, but in the framework of other related projects and reference
material. The links are not available in this published document.

The text in this document is generally taken verbatim from the web pages with certain minor
changes to enhance readability in paper medium. The figures are taken directly from the pages,
but rendered in greyscale. The equations have been redone to conform to FrameMaker sensibili-
ties. The reference and bibliography material has been moved to the end of the base document.

There are three descriptive web pages included in this document:

1. Autonomous Authentication. This is the root page describing the project. In the status and
briefings tree, it has two siblings describing related projects which are not included here.
There are a number of related status reports and briefings not included here.

2. Autokey Protocol. This page describes the Autokey security model, protocol and an overview
of the protocol algorithms.

3. Identity Schemes. This page describes three cryptographic challenge-response identity
schemes implemented for the Autokey protocol. These have specialized uses, such as in
national time distribution services, timestamping services and hardened security compart-
ments.

The NTP Version 4 software distribution contains an extensive set of document pages, two of
which are included as appendices:

1. Authentication Options. This page documents the various options and modes available to the
NTP daemon. There are a number of other documentation pages which discuss minor related
issues such as broadcast/multicast dependencies, ephemeral associations, etc., but these pages
are not included here.
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2. ntp-keygen Program. This page documents the program used to generate encryption keys, sig-
nature keys, certificates and identity keys.

2.  Autonomous Authentication

The missions considered in this project include autonomous networks that might be deployed
from a reconnaissance vehicle over a battlefield or from a space probe over a planetary surface.
Once deployed, the network must operate autonomously using an ad-hoc wireless infrastructure
as servers are deployed or destroyed or the network is damaged or compromised and then
repaired. In the traditional fog of war scenario, servers may be able to communicate directly only
with nearby neighbors and in particular may be able to assess trust only intermittently and not
always directly from a trusted source.

The goal of this project is to develop and test security protocols which resist accidental or mali-
cious attacks on the servers deployed in the network. They must determine that received messages
are authentic; that is, were actually sent by the intended source and not manufactured or modified
by an intruder. In addition, they must verify the authenticity of any message using only public
information and without requiring external management intervention.

The network is protected by a set of cryptographic values, some of which are instantiated before
deployment and some of which are generated when needed after deployment. Probably the most
important value is the group key which must be instantiated in each server before deployment. A
server proves to another server that it is a legitimate group member if it can prove it knows this
value. In addition to the group key, every sensor has a host key used to sign messages and certifi-
cates and one or more certificates signed by the host key. While the group key must persist for the
lifetime of the group, or at least for the lifetime of the mission, the host key and certificates can be
refreshed from time to time.

In our model a subset of servers is endowed by some means as trusted, either directly by com-
mand or indirectly by election in case the network becomes fragmented. The remaining servers
must authenticate from the trusted servers, directly or indirectly, using only cryptographic values
already instantiated. In other words, servers can rely on no help other than already available from
other servers via the security protocol.

2.1  Brief Description of Work and Results

Our approach involves a cryptographically sound and efficient methodology for use in sensor net-
works, as well as other ubiquitous, distributed services deployed in the Internet. As demonstrated
in the reports and briefings produced by this project, there is a place for Public-Key Infrastructure
(PKI) schemes, but none of these schemes alone satisfies the requirements of a real-time network
security model. The Photuris and ISAKMP schemes proposed by the IETF require per-association
state variables, which contradicts the principles of the remote procedure call (RPC) paradigm in
which servers keep no state for a possibly large population of clients. An evaluation of the PKI
model and algorithms as implemented in the OpenSSL cryptographic library leads to the conclu-
sion that any scheme requiring every real-time message to carry a PKI digital signature could be
vulnerable to a clogging attack.
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We have used the Network Time Protocol (NTP) software and the widely distributed NTP syn-
chronization subnet in the Internet as a testbed for distributed protocol development and testing.
Not only does the deployment, configuration and management of the NTP subnet have features in
common with other distributed applications, but a synchronization service itself must be an intrin-
sic feature of the network infrastructure.

While NTP Version 3 contains provisions to authenticate individual servers using symmetric key
cryptography, it contains no means for secure keys distribution. Public key cryptography provides
for public key certificates that bind the server identification credentials to the associated keys.
Using PKI key agreements and digital signatures with large client populations can cause signifi-
cant performance degradations, especially in time critical applications such as NTP [11]. In addi-
tion, there are problems unique to NTP in the interaction between the authentication and
synchronization functions, since reliable key management requires reliable lifetime control and
good timekeeping, while secure timekeeping requires reliable key management.

A revised security model and authentication scheme called Autokey was proposed in earlier
reports and papers cited at the end of this page. It has been evolved and refined over time now in
its third generation after the original described in the technical report and Version 1 described in
previous Internet Drafts. The protocol has been simplified and made more rugged and stable in
the event of network or server disruptions. An outline of the security model is given below; addi-
tional details of the model and how the protocol operates is on the Autokey Protocol page

The Autokey security model is based on multiple overlapping security compartments or groups.
Each group is assigned a group key by a trusted authority and is then deployed to all group mem-
bers by secure means. Autokey uses conventional IPSEC certificate trails to provide secure server
authentication, but this does not provide protection against masquerade, unless the server identity
is verified by other means. Autokey includes a suite of identity verification schemes based in part
on zero-knowledge proofs. There are five schemes now implemented to prove identity: (1) private
certificates (PC), (2) trusted certificates (TC), (3) a modified Schnorr algorithm (IFF aka Identify
Friendly or Foe), (4) a modified Guillou-Quisquater algorithm (GQ), and (5) a modified Mu-
Varadharajan algorithm (MV). These are described on the Identity Schemes page.

The cryptographic data used by Autokey are generated by a utility program designed for this pur-
pose. This program, called ntp-keygen in the NTP software distribution, generates several files.
The lifetimes of all cryptographic values are carefully managed and frequently refreshed. Ordi-
narily, key lists are refreshed about once per hour and other public and private values are
refreshed about once per day. The protocol design is specially tailored to make a smooth transition
when these values are refreshed and to avoid vulnerabilities due to clogging and replay attacks.

2.2  Leapseconds Table

The National Institute of Science and Technology (NIST) archives an ASCII file containing the
epoch for all historic and pending occasions of leap second insertion since 1972. While not
strictly a security function, the Autokey scheme provides means to securely retrieve the leapsec-
onds table from a server or peer. At present, the only function provided is to fetch the leapseconds
table via the network; the daemon itself makes no use of the values. The latest version of the
nanokernel software for SunOS, Alpha, FreeBSD and Linux cited below retrieves the latest TAI
offset via NTP and provides this on request to client applications.
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2.3  Present Status

Autokey version 2 has been implemented in a wide range of machine architectures and operating
systems. It has been tested under actual and simulated attack and recovery scenarios. The current
public software distribution for NTPv4 includes Autokey and also a prototype version of the
Manycast autonomous configuration scheme described on the companion Autonomous Configu-
ration page. The distribution is available for download at www.ntp.org.

All five identity schemes described above have been implemented and tested. At present, the
means to activate which one is used in practice lies in the parameters and keys selected during the
key generation process. There remains some testing to explore modes of interoperating when dif-
ferent schemes are used by different clients and servers in the same NTP subnet.

2.4  Future Plans

The Autokey technology research and development process is basically mature, although refine-
ments may be expected as the proof of concept phase continues with prototype testing in the Inter-
net. We believe the technology is ready to exploit in other critical environments such as real
sensor networks and critical mission command and control systems. However, what needs to be
done first is to advance the standards track process.

The Internet draft on the Autokey protocol specification has been under major revision. The latest
draft has been submitted to the IETF as a RFC for review. Upon approval, it will be circulated for
comment and proposed as draft standard.

3.  Autokey Protocol

The Autokey protocol is based on the public key infrastructure (PKI) algorithms of the OpenSSL
library, which includes an assortment of message digest, digital signature and encryption
schemes. As in NTPv3, NTPv4 supports symmetric key cryptography using keyed MD5 message
digests to detect message modification and sequence numbers (actually timestamps) to avoid
replay. In addition, NTPv4 supports timestamped digital signatures and X.509 certificates to ver-
ify the source as per common industry practices. It also supports several optional identity schemes
based on cryptographic challenge-response algorithms.

What makes Autokey special is the way in which these algorithms are used to deflect intruder
attacks while maintaining the integrity and accuracy of the time synchronization function. The
detailed design is complicated by the need to provisionally authenticate under conditions when
reliable time values have not yet been acquired. Only when the server identities have been con-
firmed, signatures verified and accurate time values obtained does the Autokey protocol declare
success.

The NTP message format has been augmented to include one or more extension fields between
the original NTP header and the message authenticator code (MAC). The Autokey protocol
exchanges cryptographic values in a manner designed to resist clogging and replay attacks. It uses
timestamped digital signatures to sign a session key and then a pseudo-random sequence to bind
each session key to the preceding one and eventually to the signature. In this way the expensive
signature computations are greatly reduced and removed from the critical code path for construct-
ing accurate time values.
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Each session key is hashed from the IPv4 or IPv6 source and destination addresses and key iden-
tifier, which are public values, and a cookie which can be a public value or hashed from a private
value depending on the mode. The pseudo-random sequence is generated by repeated hashes of
these values and saved in a key list. The server uses the key list in reverse order, so as a practical
matter the next session key cannot be predicted from the previous one, but the client can verify it
using the same hash as the server.

There are three Autokey protocol variants or dances in NTP, one for client/server mode, another
for broadcast/multicast mode and a third for symmetric active/passive mode. The Association
Management program documentation page provides additional details. For instance, in client/
server mode the server keeps no state for each client, but uses a fast algorithm and a private value
to regenerate the cookie upon arrival of a client message. A client sends its designated public key
to the server, which generates the cookie and sends it to the client encrypted with this key. The cli-
ent decrypts the cookie using its private key and generates the key list. Session keys from this list
are used to generate message authentication codes (MAC) which are checked by the server for the
request and by the client for the response. Operational details of this and the remaining modes are
given in the Internet Draft cited at the end of this page.

3.1  Certificate Trails

A timestamped digital signature scheme provides secure server authentication, but it does not pro-
vide protection against masquerade, unless the server identity is verified by other means. The PKI
security model assumes each client is able to verify the certificate trail to a trusted certificate
authority (TA) [1][3], where each ascendant server must prove identity to the immediately
descendant client by independent means, such as a credit card number or PIN. While Autokey
supports this model by default, in a hierarchical ad-hoc network, especially with server discovery
schemes like Manycast, proving identity at each rest stop on the trail must be an intrinsic capabil-
ity of Autokey itself.

Our model is that every member of a closed group, such as might be operated by a timestamping
service, be in possession of a secret group key. This could take the form of a private certificate or
one or another identification schemes described in the literature and below. Certificate trails and
identification schemes are at the heart of the NTP security model preventing masquerade and
middleman attacks. The Autokey protocol operates to hike the trails and run the identity schemes.

A NTP secure group consists of a number of hosts dynamically assembled as a forest with roots
the trusted hosts at the lowest stratum of the group. The trusted hosts do not have to be, but often
are, primary (stratum 1) servers. A TA, not necessarily a group host, generates private and public
identity values and deploys selected values to the group members using secure means.
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Figure 1. 

In the above figure the Alice group consists of trusted hosts Alice, which is also the TA, and
Carol. Dependent servers Brenda and Denise have configured Alice and Carol, respectively, as
their time sources. Stratum 3 server Eileen has configured both Brenda and Denise as her time
sources. The certificates are identified by the subject and signed by the issuer. Note that the group
key has previously been generated by Alice and deployed by secure means to all group members.

The steps in hiking the certificate trails and verifying identity are as follows. Note the step number
in the description matches the step number in the figure.

1. At startup each server loads its self-signed certificate from a local file. By convention the low-
est stratum server certificates are marked trusted in a X.509 extension field. As Alice and
Carol have trusted certificates, they need do nothing further to validate the time. It could be
that the trusted hosts depend on servers in other groups; this scenario is discussed
later.Brenda, Denise and Eileen start with the Autokey Parameter Exchange, which estab-
lishes the server name, signature scheme and identity scheme for each configured server. They
continue with the Certificate Exchange, which loads server certificates recursively until a self-
signed trusted certificate is found. Brenda and Denise immediately find self-signed trusted
certificates for Alice, but Eileen will loop because neither Brenda nor Denise have their own
certificates signed by either Alice or Carol.

2. Brenda and Denise continue with the Identity Exchange, which uses one of the identity
schemes described below to verify each has the group key previously deployed by Alice. If
this succeeds, each continues in step 4.

3. Brenda and Denise present their certificates to Alice for signature. If this succeeds, either or
both Brenda and Denise can now provide these signed certificates to Eileen, which may be
looping in step 2. When Eileen receives them, she can now follow the trail in either Brenda or
Denise to the trusted certificates for Alice and Carol. Once this is done, Eileen can execute the
Identity Exchange and Signature Exchange just as Brenda and Denise.

3.2  Secure Groups

The NTP security model is based on multiple overlapping security compartments or groups. The
example above illustrates how groups can be used to construct closed compartments, depending
on how the identity credentials are deployed. The rules can be summarized:

1. Each host holds a private group key generated by a trusted authority (TA).
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2. A host is trusted if it operates at the lowest stratum in the group and has a trusted, self-signed
certificate.

3. A host uses the identity scheme to prove to another host it has the same group key.

4. A client verifies group membership if the server has the same key and has an unbroken certif-
icate trail to a trusted host.

Each compartment is assigned a group key by the TA, which is then deployed to all group mem-
bers by secure means. For various reasons it may be convenient for a server to hold keys for more
than one group. For example, The figure below shows three secure groups Alice, Helen and
Carol.

Figure 2. 

Hosts A, B, C and D belong to the Alice group, hosts R, S to the Helen group and hosts X, Y and
Z to the Carol group. While not strictly necessary, hosts A, B and R are stratum 1 and presumed
trusted, but the TA generating the group keys could be one of them or another not shown.

In most identity schemes there are two kinds of group keys, server and client. The intent of the
design is to provide security separation, so that servers cannot masquerade as TAs and clients can-
not masquerade as servers. Assume for example that Alice and Helen belong to national standards
laboratories and their group keys are used to confirm identity between members of each group.
Carol is a prominent corporation receiving standards products via broadcast satellite and requiring
cryptographic authentication.

Perhaps under contract, host X belonging to the Carol group has rented client keys for both Alice
and Helen and has server keys for Carol. The Autokey protocol operates as previously described
for each group separately while preserving security separation. Host X prove identity in Carol to
clients Y and Z, but cannot prove to anybody that he belongs to either Alice or Helen.

Ordinarily, it would not be desirable to reveal the group key in server keys and forbidden to reveal
it in client keys. This can be avoided using the MV identity scheme described later. It allows the
same broadcast transmission to be authenticated by more than one key, one used internally by the
laboratories (Alice and/or Helen) and the other handed out to clients like Carol. In the MV scheme
these keys can be separately activated upon subscription and deactivated if the subscriber fails to
pay the bill.
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Figure 3. 

The figure above shows operational details where more than one group is involved, in this case
Carol and Alice. As in the previous example, Brenda has configured Alice as her time source and
Denise has configured Carol as her time source. Alice and Carol have server keys; Brenda and
Denise have server and client keys only for their respective groups. Eileen has client keys for both
Alice and Carol. The protocol operates as previously described to verify Alice to Brenda and
Carol to Denise.

The interesting case is Eileen, who may verify identity either via Brenda or Denise or both. To do
that she uses the client keys of both Alice and Carol. But, Eileen doesn’t know which of the two
keys to use until hiking the certificate trail to find the trusted certificate of either Alice or Carol
and then loading the associated local key. This scenario can of course become even more complex
as the number of servers and depth of the tree increase. The bottom line is that every host must
have the client keys for all the lowest-stratum trusted hosts it is ever likely to find.

3.3   Identity Schemes

While the identity scheme described in RFC-2875 is based on a ubiquitous Diffie-Hellman infra-
structure, it is expensive to generate and use when compared to others described here. There are
five schemes now implemented in Autokey to prove identity: (1) private certificates (PC), (2)
trusted certificates (TC), (3) a modified Schnorr algorithm (IFF aka Identify Friendly or Foe), (4)
a modified Guillou-Quisquater algorithm (GQ), and (5) a modified Mu-Varadharajan algorithm
(MV). Following is a summary description of each; details are given on the Identity Schemes
page.

Figure 4. 

The PC scheme shown above involves the use of a private certificate as group key. A certificate is
designated private by a X509 Version 3 extension field when generated by utility routines in the
NTP software distribution. The certificate is distributed to all other group members by secure
means and is never revealed inside or outside the group. A client is marked trusted in the Parame-
ter Exchange and authentic when the first signature is verified. This scheme is cryptographically
strong as long as the private certificate is protected; however, it can be very awkward to refresh
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the keys or certificate, since new values must be securely distributed to a possibly large popula-
tion and activated simultaneously.

Figure 5. 

All other schemes involve a conventional certificate trail as shown above. As described in RFC-
2510, each certificate is signed by an issuer one step closer to the trusted host, which has a self-
signed trusted certificate, A certificate is designated trusted by a X509 Version 3 extension field
when generated by utility routines in the NTP software distribution. A host obtains the certificates
of all other hosts along the trail leading to a trusted host by the Autokey protocol, then requests
the immediately ascendant host to sign its certificate. Subsequently, these certificates are provided
to descendent hosts by the Autokey protocol. In this scheme keys and certificates can be refreshed
at any time, but a masquerade vulnerability remains unless a request to sign a client certificate is
validated by some means such as reverse-DNS. If no specific identity scheme is specified in the
Identification Exchange, this is the default TC scheme.

The three remaining schemes IFF, GQ and MV involve a cryptographically strong challenge-
response exchange where an intruder cannot learn the group key, even after repeated observations
of multiple exchanges. In addition, the IFF and GQ are properly described as zero-knowledge
proofs, because the client can verify the server has the group key without the client knowing its
value.

Figure 6. 

These schemes start when the client sends a nonce to the server, which then rolls its own nonce,
performs a mathematical operation and sends the results along with a message digest to the client.
The client performs another mathematical operation and verifies the results match the message
digest. The IFF scheme shown above is used when the certificate is generated by a third party,
such as a commercial service and in general has the same refreshment and distribution problems
as PC. However, this scheme has the advantage that the group key is not known to the clients.

Figure 7. 
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On the other hand, when certificates are generated by routines in the NTP distribution, the GQ
scheme shown above may be a better choice. In this scheme the server further obscures the secret
group key using a public/private key pair which can be refreshed at any time. The public member
is conveyed in the certificate by a X509 Version 3 extension field which changes for each regener-
ation of key pair and certificate.

Figure 8. 

The MV scheme shown above is perhaps the most interesting and flexible of the three challenge/
response schemes. It can be used when a small number of servers provide synchronization to a
large client population where there might be considerable risk of compromise between and among
the servers and clients. The TA generates an intricate cryptosystem involving public and private
encryption keys, together with a number of activation keys and associated private client decryp-
tion keys. The activation keys are used by the TA to activate and revoke individual client decryp-
tion keys without changing the decryption keys themselves.

The TA provides the server with a private encryption key and public decryption key. The server
adjusts the keys by a nonce for each plaintext encryption, so they appear different on each use.
The encrypted ciphertext and adjusted public decryption key are provided in the client message.
The client computes the decryption key from its private decryption key and the public decryption
key in the message.

3.4  Key Management

The cryptographic data used by Autokey are generated by the ntp-keygen utility program
included in the NTP software distribution. This program generates several files, containing MD5
symmetric keys, RSA and DSA public keys, identity group keys and self signed X.509 Version 3
certificates. The certificate format and contents conform to RFC-3280, although with some liberty
in the interpretation of extension fields. During generation, a private/public key pair is chosen
along with a compatible message digest algorithm. During operation, a client can obtain this and
any other certificate held by the server. The client can also request a server acting as a certificate
authority to sign and return a certificate.

The lifetimes of all cryptographic values are carefully managed and frequently refreshed. While
public keys and certificates have lifetimes that expire only when manually revoked, random ses-
sion keys have a lifetime specified at the time of generation. Ordinarily, key lists are regenerated
about once per hour and other public and private values are refreshed about once per day. Appro-
priate scripts running from a Unix cron job about once per month can automatically refresh pub-
lic/private key pairs and certificates without operator intervention. The protocol design is
specially tailored to make a smooth transition when these values are refreshed and to avoid vul-
nerabilities due to clogging and replay attacks.
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4.  Identity Schemes

This page describes three challenge-response identity schemes based on Schnorr (IFF), Guillou-
Quisquater (GQ) and Mu-Varadharajan (MV) cryptosystems. Each scheme involves generating
parameters specific to the scheme, together with a secret group key and other public and private
values used by the scheme. In order to simplify implementation, each scheme uses existing struc-
tures in the OpenSSL library, including those for RSA and DSA cryptography. As these structures
are sometimes used in ways far different than their original purpose, they are called cuckoo struc-
tures in the descriptions that follow.

Figure 9. 

All three schemes operate a challenge-response protocol where client Alice asks server Bob to
prove identity relative to a secret group key b provided by a trusted authority (TA). As shown in
the figure above, client Alice rolls random nonce r and sends to server Bob. Bob rolls random
nonce k, performs some mathematical function and returns the value along with the hash of some
private value to Alice. Alice performs another mathematical function and verifies the result
matches the hash in Bob’s message.

Each scheme is intended for specific use. There are two kinds of keys, server and client. Servers
can be clients of other servers, but clients cannot be servers for dependent clients. In general, the
goals of the schemes are that clients cannot masquerade as servers and servers cannot masquerade
as TAs, but they differ somewhat on how to achieve these goals. To the extent that identity can be
verified without revealing the group key, the schemes are properly described as zero-knowledge
proofs.

The IFF scheme is intended for servers operated by national laboratories. The servers use a pri-
vate group key and provide the client key on request. The servers share the same group key, but it
is not necessary that they protect each other from masquerade. The clients do not know the group
key, so cannot masquerade as legitimate servers. The GQ scheme is intended for exceptionally
hostile scenarios where it is necessary to change the client key at relatively frequent intervals. The
servers and clients share the group key, but the exchange is further obscured by the client key,
which is on the server certificate. The client key can be changed frequently while retaining the
same parameters and group key.

The MV scheme is intended for the most challenging scenarios where it is necessary to protect
against both TA and server masquerade. The private values used by the TA to generate the crypto-
system are not available to the servers and the private values used by the servers to encrypt data
are not available to the clients. Thus, a client cannot masquerade as a server and a server cannot
masquerade as the TA. However, a client can verify a server has the correct group key even
though neither the client nor server know the group key, nor can either manufacture a client key
acceptable to any other client. A further feature of this scheme is that the TA can collaborate with
the servers to revoke client keys.
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4.1  Schnorr (IFF) Cryptosystem

The Schnorr (IFF) identity scheme can be used when certificates are generated by utilities other
than the ntp-keygen program in the NTP software distribution. Certificates can be generated by
the OpenSSL library or an external public certificate authority, but conveying an arbitrary public
value in a certificate extension field might not be possible. The TA generates IFF parameters and
keys and distributes them by secure means to all servers, then removes the group key and redis-
tributes these data to dependent clients. Without the group key a client cannot masquerade as a
legitimate server.

The IFF values hide in a DSA cuckoo structure which uses the same parameters. The values are
used by an identity scheme based on DSA cryptography and described in [12] and [13] p. 285.
The p is a 512-bit prime, g a generator of the multiplicative group Zp* and q a 160-bit prime that

divides  and is a qth root of 1 mod p; that is,  mod p. The TA rolls a private random

group key b (0 < b < q), then computes public client key v = gq − b mod p. The TA distributes (p,
q, g, b) to all servers using secure means and (p, q, g, v) to all clients not necessarily using secure
means.

Figure 10. 

The TA generates a DSA parameter structure for use as IFF parameters. The IFF parameters are
identical to the DSA parameters, so the OpenSSL library DSA parameter generation routine can
be used directly. The DSA parameter structure is written to a file as a DSA private key encoded in
PEM. Unused structure members are set to one.

Figure 11. 
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3. Alice computes  and verifies hash(z) equals hash(x).

4.2   Guillou-Quisquater (GQ) Cryptosystem

The Guillou-Quisquater (GQ) identity scheme is useful when certificates are generated by the
ntp-keygen utility in the NTP distribution. The utility inserts the client key in an X.509 extension
field when the certificate is generated. The client key is used when computing the response to a
challenge. The TA generates the GQ parameters and keys and distributes them by secure means to
all group members.

The GQ values hide in a RSA cuckoo structure which uses the same parameters. The values are
used in an identity scheme based on RSA cryptography and described in [2] and [13] p. 300 (with
errors). The 512-bit public modulus , where p and q are secret large primes. The TA rolls
random group key b (0 < b < n) and distributes (n, b) to all group members using secure means.
The private server key and public client key are constructed later.

Figure 12. 

When generating new certificates, the server rolls new random private server key u (0 < u < n)

and public client key its inverse obscured by the group key . These values
replace the private and public keys normally generated by the RSA scheme. In addition, the pub-
lic client key is conveyed in a X.509 certificate extension. The updated GQ structure is written as
a RSA private key encoded in PEM. Unused structure members are set to one.

Figure 13. 

 Alice challenges Bob to confirm identity using the following exchange.

1. Alice rolls random r (0 < r < n) and sends to Bob.

2. Bob rolls random k (0 < k < n) and computes  and , then sends
(y, hash(x)) to Alice.
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3. Alice computes  and verifies hash(z) equals hash(x).

4.3   Mu-Varadharajan (MV) Cryptosystem

The Mu-Varadharajan (MV) scheme was originally intended to encrypt broadcast transmissions
to receivers which do not transmit. There is one encryption key for the broadcaster and a separate
decryption key for each receiver. It operates something like a pay-per-view satellite broadcasting
system where the session key is encrypted by the broadcaster and the decryption keys are held in
a tamper proof set-top box. We don’t use it this way, but read on.

In the MV scheme the TA constructs an intricate cryptosystem involving a number of activation
keys known only to the TA. The TA decides which keys to activate and provides to the servers a
private encryption key E and public decryption keys  and  which depend on the activated keys.
The servers have no additional information and, in particular, cannot masquerade as a TA. In addi-
tion, the TA provides to each client j individual private decryption keys  and , which do not

need to be changed if the TA activates or deactivates this key. The clients have no further informa-
tion and, in particular, cannot masquerade as a server or TA.

The MV values hide in a DSA cuckoo structure which uses the same parameters, but generated in
a different way. The values are used in an encryption scheme similar to El Gamal cryptography

and a polynomial formed from the expansion of product terms , as described in

[10]. The paper has significant errors and serious omissions.

Figure 14. 

The TA writes the server parameters, private encryption key and public decryption keys for all
servers as a DSA private key encoded in PEM.
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 The TA writes the client parameters and private decryption keys for each client as a DSA private
key encoded in PEM. It is used only by the designated recipient(s) who pay a suitably outrageous
fee for its use. Unused structure members are set to one.

Figure 16. 

 The devil is in the details. Let q be the product of n distinct primes  (j = 1...n), where each ,

also called an activation key, has m significant bits. Let prime , so that q and each 

divide  and p has  significant bits. Let g be a generator of the multiplicative

group Zp*; that is, gcd(g, ) = 1 and . We do modular arithmetic over Zq and

then project into Zp* as powers of g. Sometimes we have to compute an inverse  of random b
in Zq, but for that purpose we require gcd(b, q) = 1. We expect M to be in the 500-bit range and n
relatively small, like 30. The TA uses a nasty probabilistic algorithm to generate the cryptosys-
tem.
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should be adequately hard, as this is the same problem considered hard in RSA. Question: is it
as hard to find n small prime factors totalling M bits as it is to find two large prime factors
totalling M bits? Remember, the bad guy doesn’t know n.

3. Associate with each  an element sj such that . One way to find an sj is the

quotient . The student should prove the remainder is always zero.

4. Compute the generator g of Zp using a random roll such that  and

. If not, roll again.

Once the cryptosystem parameters have been determined, the TA sets up a specific instance of the
scheme as follows.
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1. Roll n random roots xj  for a polynomial of order n. While it may not be strictly

necessary, Make sure each root has no factors in common with q.

2. Expand the n product terms  to form n + 1 coefficients ai mod q  in

powers of x using a fast method contributed by C. Boncelet.

3. Generate  for all i and the generator g. Verify 

for all i, j. Note the  exponent is computed mod q, but the gi is computed mod p. Also

note the expression given in the paper cited is incorrect.

4. Make master encryption key . Keep it around for awhile, since it

is expensive to compute.

5. Roll private random group key b (0 < b < q), where gcd(b, q) = 1 to guarantee the inverse

exists, then compute . If b is changed, all keys must be recomputed.

6. Make private client keys  and  for all j. Note

that the keys for the jth client involve only sj, but not  or s. The TA sends (p, , ) to the

jth client(s) using secure means.

7. The activation key is initially q by construction. The TA revokes client j by dividing q by .

The quotient becomes the activation key s. Note we always have to revoke one key; other-

wise, the plaintext and cryptotext would be identical. The TA computes E = As,

,  and sends (p, E, , ) to the servers using secure means.

Alice challenges Bob to confirm identity using the following exchange.

1. Alice rolls random r (0 < r < q) and sends to Bob.

2. Bob rolls random k (0 < k < q) and computes the session encryption key  and

public decryption key  and . He encrypts  and sends

(hash(x), , ) to Alice.

3. Alice computes the session decryption key , recovers the encryption key

, encrypts , then verifies that hash(z) = hash(x).
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6.  Appendix A. Program Manual Page: Authentication Support

Authentication support allows the NTP client to verify that the server is in fact known and trusted
and not an intruder intending accidentally or on purpose to masquerade as that server. The NTPv3
specification RFC-1305 defines a scheme which provides cryptographic authentication of
received NTP packets. Originally, this was done using the Data Encryption Standard (DES) algo-
rithm operating in Cipher Block Chaining (CBC) mode, commonly called DES-CBC. Subse-
quently, this was replaced by the RSA Message Digest 5 (MD5) algorithm using a private key,
commonly called keyed-MD5. Either algorithm computes a message digest, or one-way hash,
which can be used to verify the server has the correct private key and key identifier.

NTPv4 retains the NTPv3 scheme, properly described as symmetric key cryptography and, in
addition, provides a new Autokey scheme based on public key cryptography. Public key cryptog-
raphy is generally considered more secure than symmetric key cryptography, since the security is
based on a private value which is generated by each server and never revealed. With Autokey all
key distribution and management functions involve only public values, which considerably sim-
plifies key distribution and storage. Public key management is based on X.509 certificates, which
can be provided by commercial services or produced by utility programs in the OpenSSL soft-
ware library or the NTPv4 distribution.

While the algorithms for symmetric key cryptography are included in the NTPv4 distribution,
public key cryptography requires the OpenSSL software library to be installed before building the
NTP distribution. Directions for doing that are on the Building and Installing the Distribution
page.

Authentication is configured separately for each association using the key or autokey subcom-
mand on the peer, server, broadcast and manycastclient configuration commands as described in
the Configuration Options page. The authentication options described below specify the locations
of the key files, if other than default, which symmetric keys are trusted and the interval between
various operations, if other than default.

Authentication is always enabled, although ineffective if not configured as described below. If a
NTP packet arrives including a message authentication code (MAC), it is accepted only if it
passes all cryptographic checks. The checks require correct key ID, key value and message digest.
If the packet has been modified in any way or replayed by an intruder, it will fail one or more of
these checks and be discarded. Furthermore, the Autokey scheme requires a preliminary protocol
exchange to obtain the server certificate, verify its credentials and initialize the protocol

The auth flag controls whether new associations or remote configuration commands require cryp-
tographic authentication. This flag can be set or reset by the enable and disable commands and
also by remote configuration commands sent by a ntpdc program running on another machine. If
this flag is enabled, which is the default case, new broadcast/manycast client and symmetric pas-
sive associations and remote configuration commands must be cryptographically authenticated
using either symmetric key or public key cryptography. If this flag is disabled, these operations
are effective even if not cryptographic authenticated. It should be understood that operating with
the auth flag disabled invites a significant vulnerability where a rogue hacker can masquerade as a
falseticker and seriously disrupt system timekeeping. It is important to note that this flag has no
purpose other than to allow or disallow a new association in response to new broadcast and sym-
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metric active messages and remote configuration commands and, in particular, the flag has no
effect on the authentication process itself.

An attractive alternative where multicast support is available is manycast mode, in which clients
periodically troll for servers as described in the Automatic NTP Configuration Options page.
Either symmetric key or public key cryptographic authentication can be used in this mode. The
principle advantage of manycast mode is that potential servers need not be configured in advance,
since the client finds them during regular operation, and the configuration files for all clients can
be identical.

The security model and protocol schemes for both symmetric key and public key cryptography
are summarized below; further details are in the briefings, papers and reports at the NTP project
page linked from www.ntp.org.

6.1   Symmetric Key Cryptography

 The original RFC-1305 specification allows any one of possibly 65,534 keys, each distinguished
by a 32-bit key identifier, to authenticate an association. The servers and clients involved must
agree on the key and key identifier to authenticate NTP packets. Keys and related information are
specified in a key file, usually called ntp.keys, which must be distributed and stored using secure
means beyond the scope of the NTP protocol itself. Besides the keys used for ordinary NTP asso-
ciations, additional keys can be used as passwords for the ntpq and ntpdc utility programs.

When ntpd is first started, it reads the key file specified in the keys configuration command and
installs the keys in the key cache. However, individual keys must be activated with the trusted
command before use. This allows, for instance, the installation of possibly several batches of keys
and then activating or deactivating each batch remotely using ntpdc. This also provides a revoca-
tion capability that can be used if a key becomes compromised. The requestkey command selects
the key used as the password for the ntpdc utility, while the controlkey command selects the key
used as the password for the ntpq utility.

6.2   Public Key Cryptography

NTPv4 supports the original NTPv3 symmetric key scheme described in RFC-1305 and in addi-
tion the Autokey protocol, which is based on public key cryptography. The Autokey Version 2
protocol described on the Autokey Protocol page verifies packet integrity using MD5 message
digests and verifies the source with digital signatures and any of several digest/signature schemes.
Optional identity schemes described on the Identity Schemes page and based on cryptographic
challenge/response algorithms are also available. Using all of these schemes provides strong secu-
rity against replay with or without modification, spoofing, masquerade and most forms of clog-
ging attacks.

The cryptographic means necessary for all Autokey operations is provided by the OpenSSL soft-
ware library. This library is available from http://www.openssl.org and can be installed using the
procedures outlined in the Building and Installing the Distribution page. Once installed, the con-
figure and build process automatically detects the library and links the library routines required.

The Autokey protocol has several modes of operation corresponding to the various NTP modes
supported. Most modes use a special cookie which can be computed independently by the client
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and server, but encrypted in transmission. All modes use in addition a variant of the S-KEY
scheme, in which a pseudo-random key list is generated and used in reverse order. These schemes
are described along with an executive summary, current status, briefing slides and reading list on
the Autonomous Authentication page.

The specific cryptographic environment used by Autokey servers and clients is determined by a
set of files and soft links generated by the ntp-keygen program. This includes a required host key
file, required certificate file and optional sign key file, leapsecond file and identity scheme files.
The digest/signature scheme is specified in the X.509 certificate along with the matching sign
key. There are several schemes available in the OpenSSL software library, each identified by a
specific string such as md5WithRSAEncryption, which stands for the MD5 message digest with
RSA encryption scheme. The current NTP distribution supports all the schemes in the OpenSSL
library, including those based on RSA and DSA digital signatures.

NTP secure groups can be used to define cryptographic compartments and security hierarchies. It
is important that every host in the group be able to construct a certificate trail to one or more
trusted hosts in the same group. Each group host runs the Autokey protocol to obtain the certifi-
cates for all hosts along the trail to one or more trusted hosts. This requires the configuration file
in all hosts to be engineered so that, even under anticipated failure conditions, the
NTP&nbsp;subnet will form such that every group host can find a trail to at least one trusted host.

6.3   Operation

A specific combination of authentication scheme (none, symmetric key, public key) and identity
scheme is called a cryptotype, although not all combinations are compatible. There may be man-
agement configurations where the clients, servers and peers may not all support the same crypto-
types. A secure NTPv4 subnet can be configured in many ways while keeping in mind the
principles explained above and in this section. Note however that some cryptotype combinations
may successfully interoperate with each other, but may not represent good security practice.

The cryptotype of an association is determined at the time of mobilization, either at configuration
time or some time later when a message of appropriate cryptotype arrives. When mobilized by a
server or peer configuration command and no key or autokey subcommands are present, the asso-
ciation is not authenticated; if the key subcommand is present, the association is authenticated
using the symmetric key ID specified; if the autokey subcommand is present, the association is
authenticated using Autokey.

When multiple identity schemes are supported in the Autokey protocol, the first message
exchange determines which one is used. The client request message contains bits corresponding
to which schemes it has available. The server response message contains bits corresponding to
which schemes it has available. Both server and client match the received bits with their own and
select a common scheme.

Following the principle that time is a public value, a server responds to any client packet that
matches its cryptotype capabilities. Thus, a server receiving an unauthenticated packet will
respond with an unauthenticated packet, while the same server receiving a packet of a cryptotype
it supports will respond with packets of that cryptotype. However, unconfigured broadcast or
manycast client associations or symmetric passive associations will not be mobilized unless the
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server supports a cryptotype compatible with the first packet received. By default, unauthenti-
cated associations will not be mobilized unless overridden in a decidedly dangerous way.

Some examples may help to reduce confusion. Client Alice has no specific cryptotype selected.
Server Bob has both a symmetric key file and minimal Autokey files. Alice’s unauthenticated
messages arrive at Bob, who replies with unauthenticated messages. Cathy has a copy of Bob’s
symmetric key file and has selected key ID 4 in messages to Bob. Bob verifies the message with
his key ID 4. If it’s the same key and the message is verified, Bob sends Cathy a reply authenti-
cated with that key. If verification fails, Bob sends Cathy a thing called a crypto-NAK, which tells
her something broke. She can see the evidence using the ntpq program.

Denise has rolled her own host key and certificate. She also uses one of the identity schemes as
Bob. She sends the first Autokey message to Bob and they both dance the protocol authentication
and identity steps. If all comes out okay, Denise and Bob continue as described above.

It should be clear from the above that Bob can support all the girls at the same time, as long as he
has compatible authentication and identity credentials. Now, Bob can act just like the girls in his
own choice of servers; he can run multiple configured associations with multiple different servers
(or the same server, although that might not be useful). But, wise security policy might preclude
some cryptotype combinations; for instance, running an identity scheme with one server and no
authentication with another might not be wise.

6.4  Key Management

The cryptographic values used by the Autokey protocol are incorporated as a set of files generated
by the ntp-keygen utility program, including symmetric key, host key and public certificate files,
as well as sign key, identity parameters and leapseconds files. Alternatively, host and sign keys
and certificate files can be generated by the OpenSSL utilities and certificates can be imported
from public certificate authorities. Note that symmetric keys are necessary for the ntpq and ntpdc
utility programs. The remaining files are necessary only for the Autokey protocol.

Certificates imported from OpenSSL or public certificate authorities have certian limitations. The
certificate should be in ASN.1 syntax, X.509 Version 3 format and encoded in PEM, which is the
same format used by OpenSSL. The overall length of the certificate encoded in ASN.1 must not
exceed 1024 bytes. The subject distinguished name field (CN) is the fully qualified name of the
host on which it is used; the remaining subject fields are ignored. The certificate extension fields
must not contain either a subject key identifier or a issuer key identifier field; however, an
extended key usage field for a trusted host must contain the value trustRoot;. Other extension
fields are ignored.

6.5  Authentication Commands

autokey [logsec]

Specifies the interval between regenerations of the session key list used with the Autokey proto-
col. Note that the size of the key list for each association depends on this interval and the current
poll interval. The default value is 12 (4096 s or about 1.1 hours). For poll intervals above the spec-
ified interval, a session key list with a single entry will be regenerated for every message sent.
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 controlkey key

Specifies the key identifier to use with the ntpq utility, which uses the standard protocol defined in
RFC-1305. The key argument is the key identifier for a trusted key, where the value can be in the
range 1 to 65,534, inclusive.

crypto [cert file] [leap file] [randfile file] [host file] [sign file] [gq file] [gqpar file] [iffpar file]
[mvpar file] [pw password]

This command requires the OpenSSL library. It activates public key cryptography, selects the
message digest and signature encryption scheme and loads the required private and public values
described above. If one or more files are left unspecified, the default names are used as described
above. Unless the complete path and name of the file are specified, the location of a file is relative
to the keys directory specified in the keysdir command or default /usr/local/etc. Following are the
subcommands: <dl>

cert file

Specifies the location of the required host public certificate file. This overrides the link
ntpkey_cert_hostname in the keys directory.

gqpar file

Specifies the location of the optional GQ parameters file. This overrides the link
ntpkey_gq_hostname in the keys directory.

host file

Specifies the location of the required host key file. This overrides the link ntpkey_key_hostname
in the keys directory.

iffpar file

Specifies the location of the optional IFF parameters file.This overrides the link
ntpkey_iff_hostname in the keys directory.

leap file

Specifies the location of the optional leapsecond file. This overrides the link ntpkey_leap in the
keys directory.

mvpar file

Specifies the location of the optional MV parameters file. This overrides the link
ntpkey_mv_hostname in the keys directory.

pw password

Specifies the password to decrypt files containing private keys and identity parameters. This is
required only if these files have been encrypted.

randfile file
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Specifies the location of the random seed file used by the OpenSSL library. The defaults are
described in the main text above.

sign file

Specifies the location of the optional sign key file. This overrides the link ntpkey_sign_hostname
in the keys directory. If this file is not found, the host key is also the sign key.

keys keyfile

Specifies the complete path and location of the MD5 key file containing the keys and key identifi-
ers used by ntpd, ntpq and ntpdc when operating with symmetric key cryptography. This is the
same operation as the -k command line option.

keysdir path

This command specifies the default directory path for cryptographic keys, parameters and certifi-
cates. The default is /usr/local/etc/.

requestkey key

Specifies the key identifier to use with the ntpdc utility program, which uses a proprietary proto-
col specific to this implementation of ntpd. The key argument is a key identifier for the trusted
key, where the value can be in the range 1 to 65,534, inclusive.

revoke [logsec]

Specifies the interval between re-randomization of certain cryptographic values used by the
Autokey scheme, as a power of 2 in seconds. These values need to be updated frequently in order
to deflect brute-force attacks on the algorithms of the scheme; however, updating some values is a
relatively expensive operation. The default interval is 16 (65,536 s or about 18 hours). For poll
intervals above the specified interval, the values will be updated for every message sent.

trustedkey key [...]

Specifies the key identifiers which are trusted for the purposes of authenticating peers with sym-
metric key cryptography, as well as keys used by the ntpq and ntpdc programs. The authentication
procedures require that both the local and remote servers share the same key and key identifier for
this purpose, although different keys can be used with different servers. The key arguments are
32-bit unsigned integers with values from 1 to 65,534.

6.6  Error Codes</h4>

The following error codes are reported via the NTP control and monitoring protocol trap mecha-
nism.

101 (bad field format or length)
The packet has invalid version, length or format.

102 (bad timestamp)
The packet timestamp is the same or older than the most recent received. This could be due to a
replay or a server clock time step.
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103 (bad filestamp)
The packet filestamp is the same or older than the most recent received. This could be due to a
replay or a key file generation error.

104 (bad or missing public key)
The public key is missing, has incorrect format or is an unsupported type.

105 (unsupported digest type)
The server requires an unsupported digest/signature scheme.

106 (mismatched digest types)
Not used.

107 (bad signature length)
The signature length does not match the current public key.

108 (signature not verified)
The message fails the signature check. It could be bogus or signed by a different private key.

109 (certificate not verified)
The certificate is invalid or signed with the wrong key.

110 (certificate not verified)
The certificate is not yet valid or has expired or the signature could not be verified.

111 (bad or missing cookie)
The cookie is missing, corrupted or bogus.

112 (bad or missing leapseconds table)
The leapseconds table is missing, corrupted or bogus.

113 (bad or missing certificate)
The certificate is missing, corrupted or bogus.

114 (bad or missing identity)
The identity key is missing, corrupt or bogus.

6.7  Files

See the ntp-keygen page.

6.8  Leapseconds Table

The NIST provides a file documenting the epoch for all historic occasions of leap second inser-
tion since 1972. The leapsecond table shows each epoch of insertion along with the offset of Inter-
national Atomic Time (TAI) with respect to Coordinated Universal Time (UTC), as disseminated
by NTP. The table can be obtained directly from NIST national time servers using ftp as the
ASCII file pub/leap-seconds.

While not strictly a security function, the Autokey protocol provides means to securely retrieve
the leapsecond table from a server or peer. Servers load the leapsecond table directly from the file
specified in the crypto command, with default ntpkey_leap, while clients can obtain the table indi-
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rectly from the servers using the Autokey protocol. Once loaded, the table can be provided on
request to other clients and servers.
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7.  Appendix B. Program Manual Page: ntp-keygen Program

7.1  Synopsis

ntp-keygen [ -deGgHIMnPT ] [ -c [RSA-MD2 | RSA-MD5 | RSA-SHA | RSA-SHA1 | RSA-
MDC2 | RSA-RIPEMD160 | DSA-SHA | DSA-SHA1 ] ] [ -i name ] [ -p password ] [ -S [ RSA |
DSA ] ] [ -s name ] [ -v nkeys ] 

7.2  Description

This program generates cryptographic data files used by the NTPv4 authentication and identifica-
tion schemes. It generates MD5 key files used in symmetric key cryptography. In addition, if the
OpenSSL software library has been installed, it generates keys, certificate and identity files used
in public key cryptography. These files are used for cookie encryption, digital signature and chal-
lenge/response identification algorithms compatible with the Internet standard security infrastruc-
ture.

All files are in PEM-encoded printable ASCII format, so they can be embedded as MIME attach-
ments in mail to other sites and certificate authorities. By default, files are not encrypted. The -p
password option specifies the write password and -q password option the read password for previ-
ously encrypted files. The ntp-keygen program prompts for the password if it reads an encrypted
file and the password is missing or incorrect. If an encrypted file is read successfully and no write
password is specified, the read password is used as the write password by default.

The ntpd configuration command crypto pw password specifies the read password for previously
encrypted files. The daemon expires on the spot if the password is missing or incorrect. For con-
venience, if a file has been previously encrypted, the default read password is the name of the host
running the program. If the previous write password is specified as the host name, these files can
be read by that host with no explicit password.

File names begin with the prefix ntpkey_ and end with the postfix  _hostname.filestamp , where
hostname is the owner name, usually the string returned by the Unix gethostname() routine, and
filestamp is the NTP seconds when the file was generated, in decimal digits. This both guarantees
uniqueness and simplifies maintenance procedures, since all files can be quickly removed by a rm
ntpkey* command or all files generated at a specific time can be removed by a rm * filestamp
command. To further reduce the risk of misconfiguration, the first two lines of a file contain the
file name and generation date and time as comments.

All files are installed by default in the keys directory /usr/local/etc, which is normally in a shared
filesystem in NFS-mounted networks. The actual location of the keys directory and each file can
be overridden by configuration commands, but this is not recommended. Normally, the files for
each host are generated by that host and used only by that host, although exceptions exist as noted
later on this page.

Normally, files containing private values, including the host key, sign key and identification
parameters, are permitted root read/write-only; while others containing public values are permit-
ted world readable. Alternatively, files containing private values can be encrypted and these files
permitted world readable, which simplifies maintenance in shared file systems. Since uniqueness
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is insured by the hostname and file name extensions, the files for a NFS server and dependent cli-
ents can all be installed in the same shared directory.

The recommended practice is to keep the file name extensions when installing a file and to install
a soft link from the generic names specified elsewhere on this page to the generated files. This
allows new file generations to be activated simply by changing the link. If a link is present, ntpd
follows it to the file name to extract the filestamp. If a link is not present, ntpd extracts the files-
tamp from the file itself. This allows clients to verify that the file and generation times are always
current. The ntp-keygen program uses the same timestamp extension for all files generated at one
time, so each generation is distinct and can be readily recognized in monitoring data.

7.3  Running the program

The safest way to run the ntp-keygen program is logged in directly as root. The recommended
procedure is change to the keys directory, usually /ust/local/etc, then run the program. When run
for the first time, or if all ntpkey files have been removed, the program generates a RSA host key
file and matching RSA-MD5 certificate file, which is all that is necessary in many cases. The pro-
gram also generates soft links from the generic names to the respective files. If run again, the pro-
gram uses the same host key file, but generates a new certificate file and link.

The host key is used to encrypt the cookie when required and so must be RSA type. By default,
the host key is also the sign key used to encrypt signatures. When necessary, a different sign key
can be specified and this can be either RSA or DSA type. By default, the message digest type is
MD5, but any combination of sign key type and message digest type supported by the OpenSSL
library can be specified, including those using the MD2, MD5, SHA, SHA1, MDC2 and RIPE160
message digest algorithms. However, the scheme specified in the certificate must be compatible
with the sign key. Certificates using any digest algorithm are compatible with RSA sign keys;
however, only SHA and SHA1 certificates are compatible with DSA sign keys.

Private/public key files and certificates are compatible with other OpenSSL applications and very
likely other libraries as well. Certificates or certificate requests derived from them should be com-
patible with extant industry practice, although some users might find the interpretation of X509v3
extension fields somewhat liberal. However, the identification parameter files, although encoded
as the other files, are probably not compatible with anything other than Autokey.

Running the program as other than root and using the Unix su command to assume root may not
work properly, since by default the OpenSSL library looks for the random seed file .rnd in the
user home directory. However, there should be only one .rnd, most conveniently in the root direc-
tory, so it is convenient to define the $RANDFILE environment variable used by the OpenSSL
library as the path to /.rnd.

Installing the keys as root might not work in NFS-mounted shared file systems, as NFS clients
may not be able to write to the shared keys directory, even as root. In this case, NFS clients can
specify the files in another directory such as /etc using the keysdir command. There is no need for
one client to read the keys and certificates of other clients or servers, as these data are obtained
automatically by the Autokey protocol.

Ordinarily, cryptographic files are generated by the host that uses them, but it is possible for a
trusted agent (TA) to generate these files for other hosts; however, in such cases files should
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always be encrypted. The subject name and trusted name default to the hostname of the host gen-
erating the files, but can be changed by command line options. It is convenient to designate the
owner name and trusted name as the subject and issuer fields, respectively, of the certificate. The
owner name is also used for the host and sign key files, while the trusted name is used for the
identity files.

7.4  Trusted Hosts and Groups

Each cryptographic configuration involves selection of a signature scheme and identification
scheme, called a cryptotype, as explained in the Authentication Options page. The default crypto-
type uses RSA encryption, MD5 message digest and TC identification. First, configure a NTP
subnet including one or more low-stratum trusted hosts from which all other hosts derive synchro-
nization directly or indirectly. Trusted hosts have trusted certificates; all other hosts have non-
trusted certificates. These hosts will automatically and dynamically build authoritative certificate
trails to one or more trusted hosts. A trusted group is the set of all hosts that have, directly or indi-
rectly, a certificate trail ending at a trusted host. The trail is defined by static configuration file
entries or dynamic means described on the Automatic NTP Configuration Options page.

On each trusted host as root, change to the keys directory. To insure a fresh fileset, remove all ntp-
key files. Then run ntp-keygen -T to generate keys and a trusted certificate. On all other hosts do
the same, but leave off the -T flag to generate keys and nontrusted certificates. When complete,
start the NTP daemons beginning at the lowest stratum and working up the tree. It may take some
time for Autokey to instantiate the certificate trails throughout the subnet, but setting up the envi-
ronment is completely automatic.

If it is necessary to use a different sign key or different digest/signature scheme than the default,
run ntp-keygen with the -S  type option, where  type is either RSA or DSA. The most often need
to do this is when a DSA-signed certificate is used. If it is necessary to use a different certificate
scheme than the default, run ntp-keygen with the -c scheme option and selected  scheme as
needed. If ntp-keygen is run again without these options, it generates a new certificate using the
same scheme and sign key.

After setting up the environment it is advisable to update certificates from time to time, if only to
extend the validity interval. Simply run ntp-keygen with the same flags as before to generate new
certificates using existing keys. However, if the host or sign key is changed, ntpd should be
restarted. When ntpd is restarted, it loads any new files and restarts the protocol. Other dependent
hosts will continue as usual until signatures are refreshed, at which time the protocol is restarted.

7.5  Identity Schemes

As mentioned on the Autonomous Authentication page, the default TC identity scheme is vulner-
able to a middleman attack. However, there are more secure identity schemes available, including
PC, IFF, GQ and MV described on the Identification Schemes page. These schemes are based on
a TA, one or more trusted hosts and some number of nontrusted hosts. Trusted hosts prove iden-
tity using values provided by the TA, while the remaining hosts prove identity using values pro-
vided by a trusted host and certificate trails that end on that host. The name of a trusted host is
also the name of its sugroup and also the subject and issuer name on its trusted certificate. The TA
is not necessarily a trusted host in this sense, but often is.
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In some schemes there are separate keys for servers and clients. A server can also be a client of
another server, but a client can never be a server for another client. In general, trusted hosts and
nontrusted hosts that operate as both server and client have parameter files that contain both
server and client keys. Hosts that operate only as clients have key files that contain only client
keys.

The PC scheme supports only one trusted host in the group. On trusted host alice run ntp-keygen -
P -p password to generate the host key file ntpkey_RSAkey_ alice.filestamp and trusted private
certificate file ntpkey_RSA-MD5_cert_ alice.filestamp . Copy both files to all group hosts; they
replace the files which would be generated in other schemes. On each host bob install a soft link
from the generic name ntpkey_host_ bob to the host key file and soft link ntpkey_cert_ bob to the
private certificate file. Note the generic links are on bob , but point to files generated by trusted
host alice . In this scheme it is not possible to refresh either the keys or certificates without copy-
ing them to all other hosts in the group.

For the IFF scheme proceed as in the TC scheme to generate keys and certificates for all group
hosts, then for every trusted host in the group, generate the IFF&nbsp;parameter file. On trusted
host alice run ntp-keygen -T -I -p password to produce her parameter file ntpkey_IFFpar_
alice.filestamp , which includes both server and client keys. Copy this file to all group hosts that
operate as both servers and clients and install a soft link from the generic ntpkey_iff_ alice to this
file. If there are no hosts restricted to operate only as clients, there is nothing further to do. As the
IFF scheme is independent of keys and certificates, these files can be refreshed as needed.

If a rogue client has the parameter file, it could masquerade as a legitimate server and present a
middleman threat. To eliminate this threat, the client keys can be extracted from the parameter file
and distributed to all restricted clients. After generating the parameter file, on alice run ntp-key-
gen -e and pipe the output to a file or mail program. Copy or mail this file to all restricted clients.
On these clients install a soft link from the generic ntpkey_iff_ alice to this file. To further protect
the integrity of the keys, each file can be encrypted with a secret password.

For the GQ scheme proceed as in the TC scheme to generate keys and certificates for all group
hosts, then for every trusted host in the group, generate the IFF parameter file. On trusted host
alice run ntp-keygen -T -G -p password to produce her parameter file ntpkey_GQpar_ alice.files-
tamp , which includes both server and client keys. Copy this file to all group hosts and install a
soft link from the generic ntpkey_gq_ alice to this file. In addition, on each host bob install a soft
link from generic ntpkey_gq_ bob to this file. As the GQ scheme updates the GQ parameters file
and certificate at the same time, keys and certificates can be regenerated as needed.

For the MV scheme, proceed as in the TC scheme to generate keys and certificates for all group
hosts. For illustration assume trish is the TA, alice one of several trusted hosts and bob one of her
clients. On TA trish run ntp-keygen -V&nbsp; n -p password , where n is the number of revokable
keys (typically 5) to produce the parameter file ntpkeys_MVpar_ trish.filestamp and client key
files ntpkeys_MVkey d _ trish.filestamp where  d is the key number (0 &lt;  d &lt; n ). Copy the
parameter file to alice and install a soft link from the generic ntpkey_mv_ alice to this file. Copy
one of the client key files to alice for later distribution to her clients. It doesn’t matter which client
key file goes to alice , since they all work the same way. Alice copies the client key file to all of
her cliens. On client bob install a soft link from generic ntpkey_mvkey_ bob to the client key file.
As the MV scheme is independent of keys and certificates, these files can be refreshed as needed.
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7.6  Command Line Options

-c [ RSA-MD2 | RSA-MD5 | RSA-SHA | RSA-SHA1 | RSA-MDC2 | RSA-RIPEMD160 | DSA-
SHA | DSA-SHA1 ]

Select certificate message digest/signature encryption scheme. Note that RSA schemes must be
used with a RSA sign key and DSA schemes must be used with a DSA sign key. The default with-
out this option is RSA-MD5.

-d

Enable debugging. This option displays the cryptographic data produced in eye-friendly bill-
boards.

-e

Write the IFF&nbsp;client keys to the standard output. This is intended for automatic key distri-
bution by mail.-G

Generate parameters and keys for the GQ identification scheme, obsoleting any that may exist.

-g

Generate keys for the GQ identification scheme using the existing GQ parameters. If the GQ
parameters do not yet exist, create them first.

-H

Generate new host keys, obsoleting any that may exist.

-I

Generate parameters for the IFF identification scheme, obsoleting any that may exist.

-i name 

Set the suject name to name . This is used as the subject field in certificates and in the file name
for host and sign keys.

-M

Generate MD5 keys, obsoleting any that may exist.

-P

Generate a private certificate. By default, the program generates public certificates.

-p password 

Encrypt generated files containing private data with  password and the DES-CBC algorithm.

-q

Set the password for reading files to  password .

-S [ RSA | DSA ]
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 Generate a new sign key of the designated type, obsoleting any that may exist. By default, the
program uses the host key as the sign key.

-s name 

Set the issuer name to name . This is used for the issuer field in certificates and in the file name
for identity files.-T

Generate a trusted certificate. By default, the program generates a non-trusted certificate.

-V nkeys 

Generate parameters and keys for the Mu-Varadharajan (MV) identification scheme.

7.7  Random Seed File

All cryptographically sound key generation schemes must have means to randomize the entropy
seed used to initialize the internal pseudo-random number generator used by the library routines.
The OpenSSL library uses a designated random seed file for this purpose. The file must be avail-
able when starting the NTP daemon and ntp-keygen program. If a site supports OpenSSL or its
companion OpenSSH, it is very likely that means to do this are already available.

It is important to understand that entropy must be evolved for each generation, for otherwise the
random number sequence would be predictable. Various means dependent on external events,
such as keystroke intervals, can be used to do this and some systems have built-in entropy
sources. Suitable means are described in the OpenSSL software documentation, but are outside
the scope of this page.

The entropy seed used by the OpenSSL library is contained in a file, usually called .rnd, which
must be available when starting the NTP daemon or the ntp-keygen program. The NTP daemon
will first look for the file using the path specified by the randfile subcommand of the crypto con-
figuration command. If not specified in this way, or when starting the ntp-keygen program, the
OpenSSL library will look for the file using the path specified by the RANDFILE environment
variable in the user home directory, whether root or some other user. If the RANDFILE environ-
ment variable is not present, the library will look for the .rnd file in the user home directory. If the
file is not available or cannot be written, the daemon exits with a message to the system log and
the program exits with a suitable error message.

7.8  Cryptographic Data Files

All other file formats begin with two lines. The first contains the file name, including the gener-
ated host name and filestamp. The second contains the datestamp in conventional Unix date for-
mat. Lines beginning with # are considered comments and ignored by the  ntp-keygen program
and ntpd daemon. Cryptographic values are encoded first using ASN.1 rules, then encrypted if
necessary, and finally written PEM-encoded printable ASCII format preceded and followed by
MIME content identifier lines.

The format of the symmetric keys file is somewhat different than the other files in the interest of
backward compatibility. Since DES-CBC is deprecated in NTPv4, the only key format of interest
is MD5 alphanumeric strings. Following the header the keys are entered one per line in the format
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 keyno type key

where  keyno is a positive integer in the range 1-65,535,  type is the string MD5 defining the key
format and  key is the key itself, which is a printable ASCII string 16 characters or less in length.
Each character is chosen from the 93 printable characters in the range 0x21 through 0x7f exclud-
ing space and the ’#’ character.

Note that the keys used by the ntpq and ntpdc programs are checked against passwords requested
by the programs and entered by hand, so it is generally appropriate to specify these keys in human
readable ASCII format.

The ntp-keygen program generates a MD5 symmetric keys file ntpkey_MD5key_ hostname.files-
tamp . Since the file contains private shared keys, it should be visible only to root and distributed
by secure means to other subnet hosts. The NTP daemon loads the file ntp.keys, so ntp-keygen
installs a soft link from this name to the generated file. Subsequently, similar soft links must be
installed by manual or automated means on the other subnet hosts. While this file is not used with
the Autokey Version 2 protocol, it is needed to authenticate some remote configuration commands
used by the ntpq and ntpdc utilities.

7.9  Bugs

It can take quite a while to generate some cryptographic values, from one to several minutes with
modern architectures such as UltraSPARC and up to tens of minutes to an hour with older archi-
tectures such as SPARC IPC.


