
1. Introduction

How do hosts and gateways in a large, dispersed networking community know what time it is? How
accurate are their clocks? In a recent survey involving 94,260 hosts and gateways of the Internet
system [MIL89b], 20,758 provided local time using three time-transfer protocols. About half of the
replies had errors greater than two minutes, while ten percent had errors greater than four hours. A
few had errors over two weeks. Most local clocks are set by eyeball-and-wristwatch to within a
minute or two and rarely checked after that. Many of these are maintained by some sort of
battery-backed clock/calender device using a room-temperature crystal oscillator that may drift as
much as a second per day and can go for weeks between manual corrections. For many applications,
especially distributed internet applications, much greater accuracy and reliability is required.

Accurate, reliable time is necessary for financial and legal transactions, stocks and bonds trading,
transportation reservation, dispatch and control, and many other applications involving widely
distributed resources. These applications often require multiple, concurrent, real-time access to
databases distributed over an internet of many networks. Internet time synchronization is necessary
for reliable caching, archiving and transaction sequencing. Even the management functions of the
internet and its component networks need accurate time in order to manage control activation,
monitoring coordination and significant event timestamping. Coordinated network time is ex-
tremely useful when searching for elusive bugs and transients in day-to-day operations.

This paper presents an overview of the architecture, protocol and algorithms of the Network Time
Protocol (NTP) used in the Internet system to synchronize clocks and coordinate time distribution.
The Internet consists of over 100,000 hosts on about 800 packet-switching networks interconnected
by a similar number of gateways. In this paper the capitalized Internet refers to this particular system,
while the uncapitalized internet refers to any generic system of multiple networks interconnected
by gateways. While the backbone networks and gateways are carefully engineered for good service,
operating speeds and service reliability vary considerably throughout the Internet. This places severe
demands on NTP, which must deliver accurate and reliable time in spite of component failures,
service disruptions and possibly mis-engineered implementations.

In the remainder of this introductory Section 1, issues in the requirements, approaches and
comparisons with previous work are discussed. The architecture of the NTP synchronization subnet,
including the primary time references and distribution mechanisms, is described in Section 2. An
overview of the NTP protocol is given in Section 3 and further intricacies in a formal specification
and implementation guide published elsewhere [MIL89a]. Section 4 describes the algorithms used
to improve the accuracy of delay and offset measurements made over statistically noisy internet
paths and to select the best clock from among a set of mutually suspicious clocks. Section 5 describes
a local clock design based on a first-order, adaptive-parameter phase-lock loop and capable of
accuracies to the order of a millisecond, even after extended periods when all synchronization paths
to primary reference sources have been lost. The international NTP synchronization subnet of time
servers and clients now operating on the Internet is described and its performance assessed in Section
6. Further details on measured performance in the Internet can be found in [MIL89b]. Section 7
discusses further development and issues for future research.

RFC 1129 Network Time Synchronization October 1989

Mills Page 1

1.1. Performance Requirements

In this paper to synchronize frequency means to adjust the clocks in the network to run at the same
frequency, while to synchronize time means to set the clocks so that all agree upon a particular
epoch with respect to Coordinated Universal Time (UTC), as provided by national standards, and
to synchronize clocks means to synchronize them in both frequency and time. A clock synchroni-
zation subnet operates by measuring clock offsets between the various time servers in the subnet
and so is vulnerable to statistical delay variations on the various transmission paths. In the Internet
the paths involved can have wide variations in delay and reliability. The routing algorithms can
select landline or satellite paths, public network or dedicated links or even suspend service without
prior notice.

It should be noted that stable frequency synchronization in large subnets requires finely tuned
tracking loops and multiple phase comparisons over relatively long periods of time, while reliable
time synchronization requires carefully engineered selection algorithms and the use of redundant
resources and diverse transmission paths. For instance, while only a few comparisons are usually
adequate to determine local time in the Internet to within a few tens of milliseconds, dozens of
measurements over many days are required to reliably resolve oscillator drift and stabilize frequency
to a few milliseconds per day [MIL89b].

Thus, the performance requirements of an internet-based time synchronization system are particu-
larly demanding. A basic set of requirements must include the following:

1. The primary time reference source(s) must be synchronized to national standards by wire, radio
or portable clock. The system of time servers and clients must deliver continuous local time
based on UTC, even when leap seconds are inserted in the UTC timescale.

2. The time servers must provide accurate and precise time, even with relatively large stochastic
delays on the transmission paths. This requires careful design of the data smoothing and
deglitching algorithms, as well as an extremely stable local clock oscillator and synchronization
mechanism.

3. The synchronization subnet must be reliable and survivable, even under unstable conditions and
where connectivity may be lost for periods up to days. This requires redundant time servers and
diverse transmission paths, as well as a dynamically reconfigurable subnet architecture.

4. The synchronization protocol must operate continuously and provide update information at rates
sufficient to compensate for the expected wander of the room-temperature crystal oscillators
used in ordinary computer systems. It must operate efficiently with large numbers of time servers
and clients in continuous-polled and procedure-call modes and in multicast and point-to-point
configurations.

5. The system must operate in existing internets including a spectrum of machines ranging from
personal workstations to supercomputers, but make minimal demands on the operating system
and supporting services. Time-server software and especially client software must be easily
installed and configured.

RFC 1129 Network Time Synchronization October 1989

Mills Page 2

1.2. Discussion of Approaches

There are many ways that hosts distributed throughout a large geographic area can synchronize
clocks to UTC. In North America the U.S. and Canada operate broadcast radio services with a UTC
timecode modulation which can be decoded by suitable receivers [NBS79]. One approach to time
synchronization is to provide timecode receivers at every site where required. However, these
receivers are specialized, moderately expensive and subject to occasional gross errors due to
propagation and equipment failures.

The U.S. National Institute of Standards and Technology (NIST) (formerly National Bureau of
Standards), recently announced a computer time service available to the general public by means
of a standard telephone modem [NBS88]. The service is intended for use by personal workstations
to set clock-calenders, for example, but would not be suitable for a large population of clients calling
on a frequent, regular basis without further redistribution.

In principle, it is possible to use special network facilities designed for time synchronization, such
as a dedicated FM or TV subcarrier or timecode rebroadcast by a cable system. For many years
AT&T has synchronized digital switching equipment to the Basic Synchronization Reference
Frequency (BSRF), which consists of a master oscillator synchronized to UTC and a network of
dedicated 2048-kHz links embedded in the transmission plant. AT&T and other carriers are planning
to use the Global Positioning System and the LORAN-C radionavigation system to synchronize
switches in various areas of the country to UTC. However, neither of these methods would be
economically viable for widespread deployment in a large, diverse internet system.

Various mechanisms have been used in the Internet protocol suite to record and transmit the time
at which an event takes place, including the Daytime protocol [POS83a], Time protocol [POS83b],
ICMP Timestamp message [DAR81a] and IP Timestamp option [SU81]. In the Hellospeak routing
protocol [MIL83b] one or more processes synchronize to an external reference source, such as a
timecode receiver or time daemon, and the corrections are distributed via routing updates and a
minimum-delay spanning tree rooted on these processes. The Unix 4.3bsd time daemon timed
[GUS85a] uses an elected master host [GUS85b] to measure offsets of a number of slave hosts and
send periodic corrections to them.

Experimental results on measured times and delays in the Internet are discussed in [COL88],
[MIL83a] and [MIL85b]. Other synchronization algorithms are discussed in [GUS84], [HAL84],
[LAM78], [LAM85], [LUN84], [MAR85], [MIL85a], [MIL85b], [MIL89a], [RIC88], [SCH86],
[SRI87] and [TRI86] and protocols based on them in [MIL81], [MIL85c], [MIL89a] and [TRI86].
NTP uses techniques evolved from them and both linear systems and Byzantine agreement
methodologies. Linear methods for digital telephone network synchronization are summarized in
[LIN80], while Byzantine methods for clock synchronization are summarized in [LAM85].

In an internet system involving many networks and gateways a useful approach is to equip a few
strategically located time-server hosts (or gateways) with timecode receivers and coordinate time
distribution using a suitable internet protocol. However, the success of this approach requires very
accurate and reliable mechanisms to process and distribute the time information, since timecode

RFC 1129 Network Time Synchronization October 1989

Mills Page 3

receivers, time servers and the internet itself cannot be considered wholly reliable. While reliable
clock synchronization has been studied using agreement algorithms [LAM85], [SRI87], in practice
it is not possible to distinguish the truechimer clocks, which maintain timekeeping accuracy to a
previously published (and trusted) standard, from the falseticker clocks, which do not, on other than
a statistical basis. In addition, the algorithms and protocols discussed in the literature do not
necessarily produce the most accurate time on a statistical basis and may produce unacceptable
network overheads and instabilities in a large, diverse internet system.

The above approach was used in the design of the NTP synchronization mechanisms, which were
evolved as the result of numerous experiments, analyses and stepwise refinements over an eight-year
period. It became evident that accurate and reliable internet time synchronization can be achieved
only through a integrated approach to system design including the primary reference sources, time
servers, synchronization subnet, protocols and synchronization mechanisms which are at the heart
of this paper. From the analytical point of view the distributed system of NTP time servers operates
as a set of mutually coupled, phase-locked oscillators with phase comparisons exchanged by means
of update messages and a local clock at each time server functioning as a disciplined oscillator. The
principal features of this design, described in more detail later in this paper, can be summarized as
follows:

1. The synchronization subnet consists of a self-organizing, hierarchical network of time servers
configured on the basis of estimated accuracy and reliability.

2. The synchronization protocol operates in connectionless mode in order to minimize latencies,
simplify implementations and provide ubiquitous interworking.

3. The synchronization mechanism uses a returnable-time design which tolerates packet loss,
duplication and misordering, together with filtering algorithms based on maximum-likelihood
principles.

4. The local clock design is based on a first-order, adaptive-parameter phase-lock loop with
corrections computed using timestamps exchanged along the arcs of the synchronization subnet.

5. Multiply redundant time servers and multiply diverse transmission paths are used in the
synchronization subnet, as well as engineered algorithms which select the most reliable
synchronization source and path using a weighted voting procedure.

6. System overhead is reduced through the use of dynamic control of polling rates and association
management

2. Time Standards and Distribution

Since 1972 the time and frequency standards of the world have been based on International Atomic
Time (TAI), which is currently maintained using multiple cesium-beam clocks to an accuracy of a
few parts in 1012 [BLA74]. The Bureau International de l’Heure (BIH) uses astronomical observa-
tions provided by the U.S. Naval Observatory and other observatories to determine corrections for
small changes in the mean solar rotation period of the Earth, which results in Coordinated Universal
Time (UTC). UTC is presently decreasing relative to TAI at a fraction of a second per year, so

RFC 1129 Network Time Synchronization October 1989

Mills Page 4

corrections in the form of leap seconds must be inserted from time to time in order to maintain
agreement. The U.S. and many other countries operate standard time and frequency broadcast
stations covering most areas of the world, although only a few utilize a broadcast timecode suitable
for computer use. The U.S. and Canadian timecodes provide UTC time-of-day, day-of-year and
related information, but not either the year or advance notice of leap seconds, which must be
determined from other sources.

A synchronization subnet is a connected network of primary and secondary time servers, clients
and interconnecting transmission paths. A primary time server is directly synchronized to a primary
reference source, usually a timecode receiver. A secondary time server derives synchronization,
possibly via other secondary servers, from a primary server over network paths possibly shared with
other services. Under normal circumstances it is intended that the synchronization subnet of primary
and secondary servers assumes a hierarchical master-slave configuration with the primary servers
at the root and secondary servers of decreasing accuracy at successive levels toward the leaves.

Following conventions established by the telephone industry, the accuracy of each time server is
defined by a number called the stratum, with the root level (primary servers) assigned as one and
each succeeding level towards the leaves (secondary servers) assigned as one greater than the
preceding level. Using existing stations, available timecode receivers with propagation-delay
corrections and allowing for sample accumulations up to a week or more, accuracies in the order
of a millisecond can be achieved at the network interface of a primary server [MIL89b]. As the
stratum increases from one, the accuracies achievable will degrade depending on the network paths
and local clock stabilities. In order to avoid the tedious calculations [BRA80] necessary to estimate
errors in each specific configuration, it is useful to assume the measurement errors accumulate
approximately in proportion to the total roundtrip path delay to the root of the synchronization
subnet, which is called the synchronizing distance.

Again drawing from the experience of the telephone industry, which learned such lessons at
considerable cost, the synchronization subnet should be organized to produce the highest accuracy,
but must never be allowed to form a loop, regardless of synchronizing distance. An additional factor
is that each increment in stratum involves a potentially unreliable time server which introduces
additional measurement errors. The selection algorithm used in NTP uses a variant of the Bellman-
Ford distributed routing algorithm [BER87] to compute the minimum-weight spanning trees rooted
on the primary servers. With the foregoing factors in mind, the distance metric used by the algorithm
was chosen using the stratum number as the high-order bits and synchronizing distance as the
low-order bits.

3. Network Time Protocol

The Network Time Protocol (NTP) is used to construct and maintain a set of time servers and
transmission paths as a synchronization subnet. The protocol was first described in [MIL85c],
extensively revised in successive versions and recently established as a formal Internet Standard
protocol [MIL89a]. NTP is built on the Internet Protocol (IP) [DAR81b] and User Datagram
Protocol (UDP) [POS80], which provide a connectionless transport mechanism; however, it is
readily adaptable to other protocol suites. It is evolved from the Time Protocol [POS83b] and the

RFC 1129 Network Time Synchronization October 1989

Mills Page 5

ICMP Timestamp Message [DAR81a], but is specifically designed to maintain accuracy and
reliability, even when used over typical Internet paths involving multiple gateways and unreliable
nets.

There is no provision for peer discovery, acquisition, or authentication in NTP itself, although some
implementations include these features. Data integrity is provided by the IP and UDP checksums.
No circuit-management, duplicate-detection or retransmission facilities are provided or necessary.
The protocol can operate in several modes appropriate to different scenarios involving private
workstations, public service machines and various network configurations. A lightweight associa-
tion-management capability, including dynamic reachability and variable polling-rate mechanisms,
is used to manage state information and reduce resource requirements. Optional features include
message authentication based on crypto-checksums and provisions for remote control and monitor-
ing. Since only a single NTP message format is used, the protocol is easily implemented and can
be used in a variety of operating-system and networking environments.

The following subsections contain an overview of the data formats, entities, state variables and
procedures used in NTP. Further details are contained in the formal specification. The specification
is based on the implementation model illustrated below, but it is not intended that this model be the
only one upon which a specification can be based. In particular, the specification is intended to
illustrate and clarify the intrinsic operations of NTP and serve as a foundation for a more rigorous,
comprehensive and verifiable specification.

In what may be the most common client/server modes a client sends an NTP message to one or
more time servers, which process the replies as received. A server interchanges addresses, over-
writes certain fields in the message, recalculates the checksum and returns the message immediately.
Information included in the NTP message allows the client to determine the server time with respect
to local time and adjust the local clock accordingly. In addition, the message includes information
to calculate the expected timekeeping accuracy and reliability, so that inferior data can be discarded
and only the best from possibly several servers can be selected. While the client/server modes may
suffice for use on LANs involving a public time server and perhaps many private workstation clients,

Update
Procedure

Receive
Process

Local Clock
Process

Transmit
Process

Network

Figure 1. Implementation Model

RFC 1129 Network Time Synchronization October 1989

Mills Page 6

the full generality of NTP requires distributed participation of a number of client/servers or peers
arranged in a dynamically reconfigurable, hierarchically distributed configuration. It also requires
sophisticated algorithms for association management, data manipulation and local clock control as
described below.

3.1. Implementation Model

Figure 1 shows an implementation model for a time-server host including three processes sharing
a partitioned data base, with a partition dedicated to each peer, and interconnected by a message-
passing system. The transmit process, driven by independent timers for each peer, collects infor-
mation in the data base and sends NTP messages to the peers. Each message contains the local
timestamp when the message is sent, together with previously received timestamps and other
information necessary to determine the hierarchy and manage the association. The message
transmission rate is determined by the accuracy required of the local clock, as well as the estimated
accuracies of its peers.

The receive process receives NTP messages and perhaps messages in other protocols, as well as
information from directly connected timecode receivers. When a message is received the offset
between the peer clock and the local clock is computed and incorporated into the data base along
with other information useful for error estimation and peer selection. A filtering algorithm described
in Section 4 improves the estimates by discarding inferior data.

The update procedure is initiated upon receipt of a message and at other times. It processes the offset
data from each peer and selects the best one using the selection algorithm of Section 4. This may
involve many observations of a few peers or a few observations of many peers, depending on the
accuracies required.

The local-clock process operates upon the offset data produced by the update algorithm and adjusts
the phase and frequency of the local clock using the mechanism described in Section 5. This may
result in either a step change or a gradual slew adjustment of the local clock to reduce the offset to
zero. The local clock provides a stable source of time information to other users of the system and
for subsequent reference by NTP itself.

3.1.1. Modes of Operation

An NTP association is formed when two peers exchange messages and one or both of them create
and maintain an instantiation of the protocol machine. The machine can operate in one of five modes:
symmetric active, symmetric passive, client, server and broadcast. When an association is formed
one or both peers must be operating in an active mode (symmetric active, client or broadcast), in
which the active peer sends messages to the other peer regardless of the mode, reachability state or
stratum of the other peer. If due to crash restart or defective programming both peers are found to
be operating in a passive mode (symmetric passive or server), each peer ignores the messages of
the other, so that eventually each will find the other unreachable and demobilize the association. In
symmetric passive and server modes the identity of the other peer need not be known in advance,
since an association with persistent state variables is created only when an NTP message arrives.

RFC 1129 Network Time Synchronization October 1989

Mills Page 7

Furthermore, the state storage can be reused when the peer becomes unreachable or begins operating
at a higher stratum and thus ineligible as a synchronization source.

The symmetric modes are intended for distributed scenarios where either peer can potentially
become the reference source for the other. By operating in these modes a host announces its
willingness to synchronize to and be synchronized by the peer. Symmetric active mode is designed
for use by hosts operating near the leaves (high stratum levels) of the synchronization subnet, while
symmetric passive mode is designed for use by hosts operating near the root (low stratum levels)
and with a relatively large number of peers on an intermittent basis. Reliable time service can usually
be maintained with two peers at the next lower stratum level and one peer at the same stratum level,
so the rate of ongoing polls is usually not significant, even when connectivity is lost and error
messages are being returned from the network for every poll.

Broadcast mode is intended for operation with high speed LANs and numerous workstations where
the highest accuracies are not required. In the typical scenario one or more LAN time-server hosts
send periodic NTP messages to the LAN broadcast address. The LAN workstations then determine
the time on the basis of a preconfigured latency in the order of a few milliseconds. By operating in
this mode the host announces its willingness to provide synchronization to the peers, but not to
accept NTP messages from them.

The client and server modes are intended for operation with file servers and workstations requiring
the highest accuracies or where broadcast mode is unavailable or inappropriate. A host operating
in client mode sends periodic NTP messages to one or more servers. By operating in this mode the
host announces its willingness to be synchronized by, but not to provide synchronization to the peer.
A host operating in server mode simply interchanges the source and destination addresses/ports,
fills in the requested timestamps and returns the message to the client. Hosts operating in server
mode need retain no state information between client requests, while clients are free to manage the
intervals between messages to suit local conditions. By operating in this mode the host announces
its willingness to provide synchronization to, but not to be synchronized by the peer.

3.1.2. Data Formats

All mathematical operations assumed in the protocol are two’s-complement arithmetic with integer
or fixed-point operands. Since NTP timestamps are cherished data and, in fact, represent the main
product of the protocol, a special format has been established. An NTP timestamp is a 64-bit
unsigned fixed-point number, with the integer part in the first 32 bits and the fraction part in the last
32 bits and interpreted in standard seconds relative to UTC. When UTC began at zero hours on 1
January 1972 the NTP clock was set to 2,272,060,800.0, representing the number of standard
seconds since this time on 1 January 1900 (assuming no prior leap seconds).

This format allows convenient multiple-precision arithmetic and conversion to other formats used
by various protocols of the Internet suite. The precision of this representation is about 232
picoseconds, which should be adequate for even the most exotic requirements. Note that since some
time in 1968 the most significant bit of the 64-bit field has been set and that the field will overflow
some time in 2036. Should NTP be in use in 2036, some external means will be necessary to qualify

RFC 1129 Network Time Synchronization October 1989

Mills Page 8

time relative to 1900 and subsequent 136-year cycles. Timestamped data requiring such qualifica-
tion will be so precious that appropriate means should be readily available.

Timestamps are determined by copying the current value of the local clock to a timestamp variable
when some significant event occurs, such as the arrival of a message. In some cases a particular
variable may not be available, such as when the host is rebooted or the protocol first starts up. In
these cases the 64-bit field is set to zero, indicating the value is invalid or undefined. There will
exist an 232-picosecond interval, henceforth ignored, every 136 years when the 64-bit field will
naturally become zero and thus be considered invalid.

3.1.3. State Variables

Following is a summary description of the important variables and parameters used by the protocol.
In appropriate modes a set of state variables is maintained for the host itself along with separate
copies for each peer with an active association. Further information on these variables is given later
in this paper. A complete description is given in [MIL89a].

Figure 2 shows the NTP packet-header format, which ordinarily follows the IP and UDP headers.
Following is a description of the various fields.

Version Number (VN). Identifies the present NTP version.

Leap Indicator (LI). Warns of an impending leap second to be inserted or deleted in the timescale
at the end of the current day.

Mode, Stratum, Precision. Indicate the current operating mode, stratum and precision.

LI VN Mode Precision

Synchronizing Distance

Poll IntStratum

Synchronizing Dispersion

Reference Timestamp (64 bits)

Reference Timestamp (64 bits)

Originate Timestamp (64 bits)

Receive Timestamp (64 bits)

Authenticator (optional) (96 bits)

Figure 2. NTP Packet Header

RFC 1129 Network Time Synchronization October 1989

Mills Page 9

Poll Interval. Controls the intervals between NTP messages sent by the host to a peer. The sending
host always uses the minimum of its own poll interval and the peer poll interval.

Synchronizing Distance, Synchronizing Dispersion. Indicate the estimated roundtrip delay and
estimated sample dispersion, respectively, to the primary reference source.

Reference Clock Identifier, Reference Timestamp. Identify the reference clock and the time of its
last update, intended primarily for management functions.

Originate Timestamp. The time when the last received NTP message was originated, copied from
its transmit timestamp field upon arrival.

Receive Timestamp. The local time when the latest NTP message was received.

Transmit Timestamp. The local time when the latest NTP message was transmitted.

Authenticator (optional). The key identifier and encrypted checksum of the message contents.

The NTP protocol machine maintains state variables for each of the above quantities and, in addition,
other state variables, including the following:

Addresses and Ports. The 32-bit Internet addresses and 16-bit port numbers of the host and its peers,
which serve to identify the association.

Peer Timer. A counter used to control the intervals between transmitted NTP messages.

Reachability Register. A shift register used to determine the reachability status of the peer.

Filter Register. A shift register where each stage stores a tuple consisting of the measured delay and
offset associated with a single observation.

Delay Estimate, Offset Estimate, Dispersion Estimate. Indicate the current estimated roundtrip
delay, clock offset and dispersion produced by the filter procedure.

Clock Source. A selector identifying the current clock source determined by the selection procedure.

Local Clock. The current local time as derived from the host logical clock.

3.2. Procedures

The significant events of interest in NTP occur upon expiration of a peer timer, one of which is
dedicated to each peer with an active association, and upon arrival of an NTP message from the
various peers. An event can also occur as the result of an operator command or detected system
fault, such as a primary clock failure. This subsection describes the procedures invoked when these
events occur.

The transmit procedure is called when a peer timer decrements to zero and can occur in all modes
except server mode. When this occurs the peer timer is reset and an NTP message is sent including
the addresses, variables and timestamps described above. The value used to reset the timer is called
the polling interval and is adjusted dynamically to reflect network peer path conditions.

RFC 1129 Network Time Synchronization October 1989

Mills Page 10

The receive procedure is called upon arrival of an NTP message, which is then matched with the
peer association indicated by its addresses and ports. If there is no match a new instantiation of the
protocol machine is created and the peer association mobilized. Following a set of sanity checks
the roundtrip delay and clock offset relative to the peer are calculated as follows. Number the times
of sending and receiving NTP messages as shown in Figure 3 and let i be an even integer. Then ti-3,
ti-2, ti-1 and ti are the message arrival and departure timestamps in the order shown and the roundtrip
delay di and clock offset ci of the peer relative to the host are computed as follows:

di = (ti – ti-3) – (ti-1 – ti-2),
ci = [(ti-2 – ti-3) + (ti-1 – ti)]/2.

This method amounts to a continuously sampled, returnable-time system, which is used in some
digital telephone networks. Among the advantages are that the order and timing of the messages
are unimportant and that reliable delivery is not required.

The offset ci is then checked for validity relative to the estimated maximum skew and stated
precision of the host and peer clocks. The filter procedure is called with ci and di as arguments to
produce the estimated delay, offset and dispersion for the peer involved. The minimum-filter
algorithm described in Section 4 is used to improve these estimates depending upon the statistical
properties of the outbound and inbound transmission paths.

The update procedure is called when a new delay/offset estimate becomes available. A weighted
voting procedure described in Section 4 determines the best peer, which may result in a new clock
source. If the clock source is the peer involved, the estimated offset is used to update the local clock
as described in Section 5. If the local clock is reset, rather than gradually slewed to its final value,
the clear procedure is called repeatedly for every active peer to purge the clock filter, reset the polling
interval and reselect the clock source, if necessary. A new selection will occur when the filters fill
up again and the dispersions settle down.

3.3. Robustn ess Issues

It has been the experience of the Internet community that something somewhere in the system is
always broken at any given time. This caveat applies to timecode receivers, time servers and
synchronization paths, any of which can misbehave to produce a bogus timestamp popularly known
as a timewarp. The very nature of time synchronization requires that it be extremely robust against
timewarps and capable of operation even when major breakdowns or attempted breakins occur. This

t2

t3

t6

t7

t1

t4

t5

t8

PeerHost

Figure 3. Calculating Delay and Offset

RFC 1129 Network Time Synchronization October 1989

Mills Page 11

subsection describes some of the measures taken to deal with these problems, including reachability
determination, authentication, sequence checking and polling rates.

As shown previously, reliable time synchronization does not require reliable message delivery;
however, in order to minimize resource requirements, resist using very old data and manage the
number of associations required, a simple reachability protocol is used. Each time an NTP message
is sent an eight-bit reachability register is shifted one position to the left and the low-order position
set to zero. If an NTP message is received before the next message is sent, the low-order bit is set
to one. The peer is considered reachable if the register is nonzero, which will always be the case if
at least one message is received during eight consecutive transmit intervals. In the passive modes
if a peer becomes unreachable, the association is demobilized and its resources reclaimed for
subsequent associations. This shift-register mechanism has also been found most effective in other
Internet protocols designed to survive unstable network service.

While not a required feature of NTP itself, some implementations have included an access-control
feature that prevents unauthorized access and controls which peers are allowed to update the local
clock. This is done with tables of mask-and-match entries which allow only servers with Internet
addresses in certain ranges to become peers and to update the local clock. In principle, this feature
is not necessarily desirable, since the basic NTP design involving a large degree of diversity is
intended to cast out falsetickers whether they are authenticated or not. Nevertheless, the additional
authentication feature may help to deflect multiple-peer destructive jamming.

During the course of normal operation various peers may on occasion restart the NTP program itself,
either due to loss of reachability, reboot or other trauma, which results in loss of state information.
Special sanity checks are built into the receive procedure to avoid disruption in such cases. One
check requires the transmit timestamp of a received message to be different than the transmit
timestamp of the last message received. If they are the same, the message is a duplicate and must
have been circulating in the network for some time after the last message was received, thus
containing relatively inferior data. Another check requires the originate timestamp of a received
message to be identical to the transmit timestamp of the last message transmitted. If they do not
match, the message is either out of order, from a previous association or bogus. Additional checks
protect against using very old time information and from associations not completely synchronized.

Where security considerations require the highest level of protection against message modification,
replay and other overt attacks, the NTP specification includes optional cryptographic authentication
procedures. The procedures are used to insure an unbroken chain of authenticated peers along the
synchronization subnet to the primary servers. An authenticator, consisting of a key identifier and
encrypted checksum, is computed using the DES encryption algorithm and DES cipher block-chain-
ing method. Present implementations have incorporated special provisions to avoid degradation in
timekeeping accuracy due to the delays caused by the encryption computations.

Careful consideration was given during design to factors affecting network overheads. Many of the
present Internet primary time servers operate with 100 peers or more and some operate with many
more than that. Therefore, it is important that the longest polling intervals consistent with the
required accuracy and reliability be used. When reachability is first confirmed and when a peer is

RFC 1129 Network Time Synchronization October 1989

Mills Page 12

currently selected for synchronization it is necessary to use a relatively short polling interval in the
order of a minute. In those cases where the association has stabilized, the dispersions are low and
the peer is not selected for synchronization, the polling interval can be increased substantially. In
the present design the polling interval is increased gradually from about one minute to about 17
minutes as long as the dispersion is below an experimentally determined threshold; otherwise, it is
decreased gradually to the initial value. These values may change as the result of further experience.

4. Sample Processing and Selection Operations

At the very heart of the NTP design are the algorithms used to improve the accuracy of the estimated
offsets and delays between the host and its various peers, as well as those used to select a particular
peer for synchronization. The complexity of these algorithms depends on the statistical properties
of the transmission path and the accuracies required. In the case of LANs operating at megabit
speeds and above the path delays are usually smaller than the required accuracies, so the raw offsets
delivered by the receive procedure can often be used directly to adjust the local clock. However, in
the case of paths involving many network hops via regional and backbone networks such as
NSFNET, the path delays and delay variances can be much larger than acceptable without further
processing.

Since Internet paths often involve multiple hops over networks of widely varying characteristics, it
is not possible to design one set of algorithms optimized for a particular path. Therefore, the
development of algorithms appropriate for ubiquitous Internet application has involved a process
of stepwise refinement, beginning with the designs suggested in [MIL85a], refined as the results of
experiments described in [MIL85b] and [MIL89b] and evolved over several years of operation
under widely varying conditions of path qualities and reliabilities. In following subsections the
issues, approaches and designs of these algorithms are discussed.

4.1. Data Filtering

A number of algorithms for deglitching and filtering time-offset data have been described pre-
viously, such as in [MIL85a], [HAL84] and [KOP87]. These fall in two classes: majority-subset
algorithms, which attempt to separate good subsets from bad by comparing statistics such as mean
and variance, and clustering algorithms, which attempt to improve the estimate by repeatedly casting
out outlyers. The former class was suggested as a technique to select the best (i.e., the most reliable)
clocks from a population, while the latter class was suggested as a technique to improve the offset
estimate for a single clock given a series of observations.

After further development and experimentation using typical Internet paths, a better algorithm was
found for casting out outlyers from a continuous stream of offset observations spaced at intervals
in the order of minutes. The algorithm can be described as a variant of a median filter, in which a
window consisting of the last n sample offsets is continuously updated and the median sample
selected as the estimate. However, in the modified algorithm the outlyer (sample furthest from the
median) is then discarded and the entire process repeated until only a single sample offset is left,
which is then produced as the offset estimate. This algorithm was found to be more resistant to

RFC 1129 Network Time Synchronization October 1989

Mills Page 13

glitches and to provide a more accurate estimate than the unmodified one. It was used in the Fuzzball
and Unix implementations for about two years until the end of 1987.

Recent experiments have demonstrated an even better algorithm which provides higher accuracy
together with a lower computational burden. The key to the new algorithm became evident through
an examination of scatter diagrams plotting clock offset versus roundtrip delay. Recall that the
roundtrip delay di and clock offset ci are computed from the four most recently observed timestamps.
Without making any assumptions about the delay distributions due to queueing delays for traffic in
either direction along the path, but assuming the intrinsic frequency offsets of the host and peer
clocks are relatively small, let d0 and c0 represent the delay and offset when no other traffic is present
on the path and so represents the true values. The problem is to accurately estimate d0 and c0 from
a sample population of di and ci collected over a relatively long period.

Figure 4 shows a typical scatter diagram in which the points (di,ci) are concentrated near the apex
of a wedge defined by lines extending from the apex with slopes +0.5 and -0.5, corresponding to
the locus of points as the delay in one direction increases while the delay in the other direction does
not. From these data it is obvious that good estimators for (d0,c0) would be points near the apex.

Upon reflection, the reason for the particular distribution of points in the scatter diagram can be
explained as follows. Packet-switching nets are most often operated well below the knee of the
throughput-delay curve, which means the busy periods are relatively short and infrequent. In
addition, the routing algorithm most often operates to minimize the number of packet-switch hops
and thus the number of queues. Thus, not only is the probability that an arriving NTP packet finds
a busy queue in one direction relatively low, but the probability of packets from a single exchange
finding busy queues in both directions is even lower.

· ·
·

·

· ·

··
·

·
·

· ··
···

···· ··
·

· ····
·

·
· ·

·

·

·
···

·

·· ··
·

·

·· ··
·

·· · ···
·

··
··

·
·

·
··· · ··

· ···
·

·
·

··

·

·
·

· ·
·· ·

·

·· ·· ·· ·· ··
····

·· ·· ··
·

· ··
·

··
·

·
· ·····

··

·

· · ···

·

·· ·
·

·

·

·

·

·
·

·

·

·

· ··· ··
·

·
··

·· ··

·

·
·

· ··
·· ···
·· · ··· ··
· ·

·

· ·

·

· · ··
·

····
··· ·· · ··

·

····
·

·· ··
·

· ·· ·
· ·· ·

··· ··
·

·· ·· ···· ··
·· ·· ·

·

·· ·· ··· ·· ···· ·· ·· ···· · ·
·

·· ·· ······ ·
··

··· ·· ·
·

··
·

· ··
·

··· · ·· ··
·

···· ······
·

··· ··· ··
·

·· · · ·
·· · ··· · · ··· ··· · ··· ···· ··· ·

·
·· ·

·
····· · ···· ·· ······· ·· ·· ···· ·· ·· ···

·
·· ·····

·
· ···· ···

·

·· ·

·

· ····
·

·
· ····· ····· · ······ ·

·· ·· ·
·

···· ·
·

· ······· ·· ·· ···· ·
·····

·

·

··· ··

·

··· ···· ···· ·
· ·
··· · ·· ·

·
···

·

·· · ··· ·· ·· ····· ··· ·· · ····· ········· ·· ··· ·· ·· ·
·

· ······ ···· ··
·

· ··
·

· · ·· ·
· ·· ····

·
·

·· ·
······ ···· ··

·

·
· ····· ···· ···· ··· ·· ·

·

·
·

·
··· ···· · ·

·
····· ·· · ··· ··· ·· ···· ··

·· ·
·

··· · ·
·

·
··· ·· ·

·
·· ·· · ·

·· ·······

·

·· ·· · ·· ··
··

··············· ·· ··

·
······· ·· · · ····

·
·· ··

·
··

·

·

·

···· ······ ·· ·· ··· ··
·

·· ··· ·
· ·· ·· ··· ··· ··· ··· ·· ·· · ·· ·
···

·
·· ·

· ·

·· ···
·

·· ····· · ···· ··

·

· ······ · ·····
·

· ·· · · ······· ··
·

···

·

··· ··
·

··
·

·

·

·

···· ··
·

··
· ·· ··· ·· ·

·
··· ··· ···· ·

··· ····· ·· ·

·

·

·

··
·

·
··

··
··· ··· ··· ··· · ·

·

···

·

·· · ···
·

· ··
·

·
·

·
·

· ··· ·
· ··

··· ·
·

····· ·· ··

·

·
·

· · ·
· ·· ····· · ·· ···· ···

·

···
·

· ··· ·

·
· ·
·

····
·

· ·· · ·· ·· ····
·

·
·

·

·

·
·

·

·
·

···
·· ···

·

·

·

···
·

· ······
·

·
·

·
···

·· ·· · · ·
·

·
· ·

·
· ·· ··· ·· ··· ····

···

·
·

··· ·· ·
·

····

·

··
·

····· ··
·· ·· ··· ··· ··

·
· · ·

···· ···

·
·

··· ··· ·
·

·

·
·

·
·· ··· ··· ·· ···· ·

·
· ·· · ··

·

·· ·

·

·
·

· ·

·

·· ·
·

··· ··
· ·
··
· ··· ·

·
· ···

·
· ·

·· ··· ···· ·
·

·· ····· ··
··

·
··· ·· · ··· · ···

·
· ·· ·

·

·

·
·· ··

·
·

·· ·
·

··
· ··

·· ·
·

·
·

·· ···
·····

···
·
·

·
·· ····

·
···· ·· ·· ·· ·· ··· ·· ··· ·· ·

··
·

· ···
·

·

······
·

· ··
·· ·
··· ··· · ·

·

·
···
·

· · ··

·
· ·· ······

·· ·· ··
··

·
·

·

·
·

·

··

·
·

·

·

· ·
·· ···· ··· ·· ··

·
·

··
·

····· ··· ·
·

····
··

· ·
·

·
·

·· ···
·

· ·
· ···

·

·
· ·· ·· ·· ·· ··· ·· ··· ·
·

·
· · · ·

· ···
·
·

· ·
·

· ·· ·· ·· · ··
·

·
···· ····

·

·· · · ·
··

·

··· ······ ··
····· ·

···· ·· ·· ···· · ··
·

· ··· ·· ·

·

·
·

···· · ·· ·
··

·
· ·· ·······

·
·

·
· ·· ·· ·· ··· ···· ···

····· ··· ··· ·
· ···· ·· ·
·· · ·

·
·

· ·· · · ···· ·· ·· ···· · ·
·

·· ··
· ·

·· ·· ··

·

· ··
·· ·
······· · ·

·
·· ··· ··

·
·

··
·

·
·

·

····
·

·
····

·· ··
·· · ··· · ····

·
·· · ·· ··· ····· · ·

·
·

····
·

·· · ·
·

· ·
·· ··

·

·
·

·· ···
·

·· ·· ····· ·· ·· ····
·

··· ·· ·· ·
···

·
····· · ·

·
····

·
· ·· ·
··· ···· ···· ·· ·· ··· ···· ·

·
·· ··· · ·· ····· ····

··
···

·
· · ··
·· ··· ···· ···· ··· ···

·
········ · ··· ·

·
·

·
· ·· ····

·
······ ·· ·

·
····

··

·
··· · ···· ··· ·· · ··· ·· ···

·· · ·

·
·

·
·

···
······ ·· ·

·

· ·
· ·
·

·· ·· ·
·

····· ·· ·· · ··· ···· ··· ·
·

·
····· ···· ·

·
···· · · ·
·· ··

· · ·· ·· · · ···

·
·

·
·

· ·· ·· ·· ···
·

· ·
·· ·

·· ·
·

·
·

·· · ·· ·
·

· ·· ·· ·· ···· ···· ·· ·· ·
··

·
·

··
··· ·· ··

·· ·
··
··

·
·

·

·
·

·
·

·
·
·

··
·· ·· ··

·
· ·

·

· · · ·· ··
·

··· · ·· ··
···

·
·

·· ··· ··
· ·

· ·

·
· ·

··
·
···

·
· ·

·
·

· · ···· ·

·
· ·
··· ····

··
· ···· ·

·· ·· ·· · ·
·

·
·

··· ·
·

· ·· ·· ·
·

· ·· ···· ·· ·· ·· ··· ·· ·
·

·
··

·

· ··· ··· ·· ·
·· ····· ·

·
·

·· ··· ··

·

·· ·· ··

·

··
·

· ·· ··
·· · ··

·

· ·

·

·

· ·· ······
·

· ·· ··

·
·

·
·· ···· ·

·
··

·
·· ··

· ·

·

· ·· ·
·

·

··
· ····· ·

··
· ··

·

········ ·· ····
··
· ·

·

·

·
·

· ·
··

····
·

·
·· ···· ·····

·
·

·
· ·· ·

·
···· · ·· ··· ·· ·

······· ·· ·· ··
······ · ·

·
··
·· ·· ·
·

··
·

· ·· ·
·

· ·· · ·

·

·
·

·
··

·
···

···· ···· ·

·
·

· ·
·

·

·

·
·

·
·

· · ··
·

·· ··
·

··
··

··· ··· · ·
·

·· · · ···· ·· ·
·
·

· ·· ·

·
· ·· ··· ·· ····· ··· ·· ··

·
·

·· ·· ···
· ·

·
·

····
··

·

····· ··· · ··· ··· ·· ·· ···

·

·
·

·· ·
·
··

·
· ·

·
·

·· ··
·

·· · ·
·

·· ··· ·
·

·

·
·

·· ·· ··· ···· ·· ··· ··· ·· ·
·

··· ·· ··· ··· ·· ······ · ·· ··
·

·
·

·
· · ···

· ···· ···· ······ ·
···

···· · ·
· ··

·· ··· ·· ·
·

· ·
· ······· ·

··· ·· ···· ····· · · · ·· ···· ····
·

·

··
·

·· ·· ···
···· ·· ··
·

···
·

··· ··· ··· ··· ··

·

···· ·· · ··· ·· · ··· ··
·

· ····· ··· ··· · · ·
··· ·

·

·
··· ·· ·· ·· ··

·
·· ··· ·

·
··

·· ··· · ·· ········· ··· ··

·

·
··

·
· ·

·

·
··

·
· ········ · ··· ···

··

·
· ·······

····
·

·· ·
·

····· ·
·
·

·

· ···· ·· · ··
·

····
·

·· ··· ··
·

·· ·· ··· ·· ·· ··· ·· ·· ·· ··· · ··
·
·· · ··
·

····· ·
·

······· ··· ·· ····· · ···
·

··· ·· ···
·

·
· ······· ·· ·· ···· · ·

··

·

···· ··
·· ··· ·····

·
· ·· ··· · ·

·
····

··
· ··· ·

·
·· ····

·····
·· ··· ·

·
· · · ·
···· ··· ·

·
·

··· ··· · ··· ·· ·· ·
···· ··

····
·

· · ··
·

· ····· ········
···· ·· ·· · ··· ···
·

·· ···· ····· ······ ··· ·· ·· ·· ··· ···· ·· · ····
·

·
·

·
· ·· ·

·
···········

·

··
·

·

···· ·
··· · ···

···· ·

·
· ·· ·

·
··· ···

·

· ·· · ·
·· ·· · ··
· ··

·· ··· ·

·

···
·

· ··· ·
·· ··· · ··· ··· ·

·

· ··· ·· ·· ·
··· ··

·
·

· ·
··· ·· ··

·

·
·

·· ··
·

·

·
··

·

· ···
·

· · ··
·

·

·

···

·

·
·

·· ·
·

· · ··
·

·
·

· ·
·

·· ·· ··· ··

·

· ···· ·

·
·· ·

·
·· · ·· ·· ··

·
· ·

·
·· · ·· ·

· ···
··· ··

·
·

·
· ····

·
· ·

· ·
·

·
··· ·

·
·

·· · ·

·

· ·· ··
·· ··
·

·· · ··· ·· ·
··

·
·

·

·
·

·

·····
····

·· ·· ·· · ··· ·· ·· · ·
·

·
·

·

· ·
·

·

·
·

·

·

·

· ·

·
· ··

·
·

··· ·· ·· ·· ··
·
·
··

·
· ·

·
·· ···

··

·

·· ··
·

· ·
·

·· ···· ·· ·
·

·

·

·
·

· ·· ·
·· · ··

·

· · ···
··
·

· ·
·

···
·

· ·· · ·
·

···

·

···

·

·· ·
···· ·

·

·
· ··

·

··

·

·
· ·· · ·· ··

·

··
·· · ··

·

·

· ·

·

·
·

·
·· ··· ··

·
·

·
·· ·· ··

·

·
· ···

·
·

·· · ···· · ··

·

·· ·
·

·

·

·

·· · ··
·

·

·

··
·

·
···· ··

·
· ·
···· ·

·

·
· ·· · ······ · · ······ · ·

·
·· ··

·
·

·
··

·
· ·· ··· ·· ··· ·

·
·· ·· ··· ·
·

· ·
·

··
·

·

·

·· ··
······· ··

·

·· ·
·

·

·· ···

·

·· ··

·

··· ···
·

· ··
····

·
·· ··

· ·
· ·

·
· ·· ·

···

·
·

·

··· ·
······ ··

·

·
·

·
·

·

·

·
·

· ·
·

·

·

·

· ···
·

·

·

· ·

·

· ·
·

· ·· ··· · ···
·

·

···
· ·

· ·· ·· ·

·

· ·
·

·· · ·· ·· ·· ···
··
·

·

··

·· ·· ·
··· ·· ····· ··· ·· ····· ··· ·

·· ··· ·
··· ···· ······· ··· ·· ·

·

·····
·

·

·

·· · ·· ··
·

·
·

·
·

· · ·
·· ···

··
·

·· · · ·
·

·
···

·
·

·

·
·· ·
· ·

·
· · · ·
···

·
····· · ··

····
·

· ·· ··

·
·

· ····· ·

·

· ·· · ·· · ······ ····· ·· · ·

·

··
·

·· ·· ·
·

·

··· ·····

·

·
··

·

·

· ····

·
··

· ··· · · ··
· · ··

·
· ·· ·····

·· ·
· ·

· ·· ·· ··
·· ·

·

·
· ·

·

·· ·· · ·
· ·· ·· ·· ·

·

··
·

····· ··· ····· ··· ·

·

·
·

·
· · ·· ···· ····· ·· ·· ···· ·· · ··

·
·

·
·· · ·· ·

·

· ·

·

···· ·· ···

·

·
·····

······ ···· ··· ···
·

·· ·
··· · ·· ·

·
·

·

··· · ·· · ·

·
· ······ ·

···
·· ······· ··
···· ··

·

····· ··
·

· ·· ·
·

· ······· ·· ·· ···
·

···
·

···
·· · ··

·

· ·· · ·
·

·
··

·

··
·

·

·
·

··

·

· ··
··

· ·· ········
·

···

·
· ·

···
···· ··
·

······ · ·

·

·· ·· ·
·

·· ···· ·· ·
·

·

·

· ···· ··
·

·· · ··· · ·
· ·

····
·· · ····

·
·

·
·

· ···· ·· ····
·

··
·

··

··
·

· ··· ·

·

··

·

···

·

··
·

· ··
·

·
·

·· ··

·
··· · ·

·
·

·

· ·· ·

·

··
·

·····
·

·

·
·

· ·· ···
·

·
·
·

·
·· ··

·

·
· ·

·
·

·

· ·

·

··

·

·
···

·

·· ··· ···· ·· ·
·

· ··

·

· ·· ···

·

·
·

· ·
·

···
·

·· · ··· ·· ·· ·· ·
··

·
·

·
·

·

· ·
··

·
· · ··

·
·· ·

·· ·
·

· ·
·

·
· ···

·

·
·

·
·

·
· ··· ·
·

·

·

·
·

· ·· ·· ···
·

·

·
·

···· ····
··

·
··· ·· · ··· ··· ····· · ·· ·· ····· ·· ·

·
·· ·· ·· · ·

·

·

·

·
··

·

·

·
·

·
··

· ··
·

··
·· ·· ·· ·

·
···· · ··· · ·

·
· ·· ·

·
···

·
··

·
··

··· ·· ···
·

·

·

··

·

· ····
·

· ·····
·

·
··· ·· ········· ··· ··

·
·

·
· ··

·
·

·
·

·

··
·

·

·

· · ·
·· ···· ·

·

·

····· ·· ·· · ····
··· ·

·
···

·
· ··· ·

···

·

· · · ·
·

· · ·
··· · ·

·· · ·

··

·
·

· · ·· ······ ·· ··· ·· ·
· ·

· ··
·

·
··· ···

·
·

·

·
·· ·· · ·

· · ·
· ·

· ·· ·
·

··
··· ··

··
·

·· · ·
··

··
· · ·· ····· ··· · ··· · ·· ··
· ·

·
·· · ···

·

··

·

··· ·· ····
·

··· ··· ·· ·
· ·
·

·
··

·

·

·

·
·

··

·

··
·

·
·

·
·· ·· ······ ··· · ··· ·· ·· ··· ··

··
·

··
··· ·· ·

·

·
··

·

·

·

·
·· ··

·
··

·

·
· ··· ··· ·

·

· ·
·

·
·

· ··

·

·
·

·

·
··

·
···

· ··

·
·

· ·
····

· ·
· ·· ·
·

·

·

·

· ··
·

·
·· ··

·
·

·
··

·
· ·

····· ·· ··· · · ··
·· ·· ·· ·

·
·

·
·
·

··· · ··
·

·
··

·
·
··

·
· ·

·
·

·
·

·

· · ··· ·
·

· ·

·

·
·

·· ····
·

· ·· ··
·

·
·· ·· ·· ·· ······

·· ···

·

·· · ··

·

·

·

··· ·· ··· ······ ·
··

· ····
·

·
··

·

··

·

· ·
····· ··

·
·

·· ··· ··
·

·

·· ··· ···

·

···· ···· ··· ·
·

· · ··· ·

·

· ···
·

··· ·
··

·
· ·

·
··· · ·

·

· ·· ··
·

·
·

··
· ·

· ·· ··
·· ···

··
·

··
·· ··

·· ··· ·· ·
·

·

··· · · ·
····

·
·

·

·

··

·

·· ··
·

·
·

· · ·

·
···· ·· ·· ·· ··· · ···

·

·
·

·· ···· ···
·

· ···

·

· ·
···

·
· ·

·

······

·

·· ·· · ·
· ·
· ·

·

··

·

··· ··· ··· ·· ···· · ·
·· ····

·
·

·· ······ · ···· ·· ·· ···

·

·
·

· ·· ··· ·
··

·
·· ·

·· ···· ···· ·····
·

·
·

·
·

···

·

·
··· ······ ·

·
··

·
·

·

··· ·

·

· ··· ··
·
·

··· ·
· ·· · ·

·
·

· ·
·

··· ··· ··· · ·· ·· ····
·

·
·· ··
··· ···

·

····· ··· ··

·

··· ···
·

·· ·····

·

··· ·········· · ···· ···· ···

·

··
·

·· · ··· ··· ···· · ·· ···· ··
·

··· ··
· ·

· ··· ···

·

·
·

·····
·

· ·· ··

·

···
·

·
·· ·

····· ·· ···

·

·· ··· ···
··· ·
·
··· ····

·
·· ·

·

··· ··· ····
·

···
·

·· ········ · ·· ··

·

··· ·····
·

· ··· ·
· ·
··· ··

··· · ···

·
·· ··· · ··

··· ··· ·
·

··· ······ ·· · ····· ·
·
·

· ·

·

· ···· ···

·

·
·

·· ·· ··
·

·· ··
·

· ··· ··

·

· · ·· ·
·

· ··· ·· ·· · ·· ·· · · ··
· ·· ···

·

···· ·· ··
· ·

· ·· ·
·· ···

·

·
·

·

· ·
· ··

·

·
·

·
·· ·· ·· ·· ·· · ··· ··· · ···

·
···

·

· ·

·

· ·· ····

·
··

·
· ··· ·· ··· ·

·

···· ···

·
··· ···· ···

·

·· ·· ··· ··· ·

·

···· ····· ·
·· · ·· ·

·
·· ·· ·· · ·

·
··· ····· ·

·
·

·

· ···· ·
·

· ···· ·

·

·
· ·· · ····

····· ·· · ··

·

· ·
····
·

·

···
·

···· ·· ·

·

· ··
·

·
···· · ···
··

·· ·· ·
·

··
· ·

·

·
·

· · ·

·
··

·

··· ····
·· ··· ·· ·· · ·

·
······· ·· ······ ·· ···

·

·
·

·

·
·

·
·

··
·

·
·· · ··· ·

· ·· ·
··· ···

·
··· ·

·

·
··

·
···· · ··

·
·

· ·

·
··

·
···

····· · ···
·

·
·

·
· ··

·
·

···
·

·

·

·
· · · ·

·

· ·
·

·· ·
··

·
· ·

··

··· ··
·

· ·

·
·

·

·

·

· ··· · ···· ·
·· ·

·
·· ·

····
·

·

· ··

·

· · ·
·· ··· ··· ·· ·

·
·

· ···· ·
·

··

·

·
·

·
·

·

·

··
·

·· ·· ··

·· ··
··

·
·
·

· ··
··

· ·

·
···

·

····· ·· ·· ····
·

·
· ··

·

· · ··· ·
·

·
·

·
···

·
· · ···

··

·

· ·· ·
· ··

·

· ·
·

·· ···
·

·

···
··

· ·
·

··

·· ·

·
· ·

·
·

·····
·

··
·

··
·

· ·
·

·
·· ···

·
··

·

· ··· ·····

·

·
·

·

· ··· ··· ·
·

·
·

·
··

·

·

· ··· ·
··· ··· ·· ···· ··· ··· ·· ·

·
· ·

·
··· ·

··
·

·
···· ··· ·· ··

·

··

·

·· ··· · ·
··· ·· ··
· ·

··
·

··
·

·· ·· ···
·

···

·
·

·

·
··

·
·

·
·

·
·

·

··

··· ··· · ·······
·

··· ·· ···· · · ···
····· ········ · ······ ··

·
·· · ·· ·· ····· ·· ·

·
· ·

····
·

··· ····

·

······ ······ ···
·

···· ·· ·· · ··· ·· ··· ··· ··· ······ ·· ·· · ·
···· ·

··
·· ···

·
·

··
·

· ·· ·
· ·

·
····· ·· ·· ·· ·

···· ···· ··· ·
·

··· ·

·
··· ··· ····

·
··· ··· ····

·

·····
·

·
·

· ·· ·
·

··· ·· · ···· ····· ·· ···
·

·· ···· ··

·

·
·

·· ···· ·· ··· ··

·

·· ·· ···· ·· ·· ····· ·· ····
·

·· ··· ···
· ·

··· ···
·

·· ··· · ·
····· ·

·

· · ··· ··

·

· ··
·

···
·

· ··
·

· ·· · ·

·

·· ·
·

·· ······· ····· ··
·

···· ··· · ·· ··· ·

·
· ·· ···· ····

·
·
··· · ···· ···· · ·

·

·

·· · ·
·· ··· ·· ··· ·

· ·

·

· ···· ··· ··· ···
·

· ····· ··· ···· · ····· ·
·· ···

·

··

·

··· · ··
·

·
· ·· · ··· ···· ··· ·· ·· ·· · ·

·
··

· ·· ··
··· ·· · ····· ·

· · ·
· ··· ·· ·

···
·

·· ···· ···· ··

·

· ·· ·
·

···· ··
··· ·

·
·

·····

·
···· ·· ·· ·····

·

··· ···· ····· · ·
···· ·· ·

·
····· ·····

·
·· ···· ·· · ···

··· ··· ·· ·
·

·
···· ·· ·· ·· ·

·

·

··
·

··
·

· ····
·

· ····· ··· ··· ··· ·· ·
· ···

·
····

·
· ·

·
· · ··· ·· ··

·
· ··· ·· ·· ··

····· ·· ·· ·· ·· ···· ·
··

··
·

·· ···
···

·
···

·
·····

·

·· ···· ···· ·

·

·
···· ····

·

··· ·

·
····· ··· ·· ·· ···

·

··· ··
·

··

·

Delay (sec)

O
ff

se
t

(s
ec

)

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Figure 4. Offset vs Delay

RFC 1129 Network Time Synchronization October 1989

Mills Page 14

From the above discussion one would expect that, at low utilizations and hop counts, the points
should be concentrated about the apex of the wedge and begin to extend rightward along the extrema
lines as the utilizations and hop counts increase. As the utilizations and hop counts continue to
increase, the points should begin to fill in the wedge as it expands even further rightward. This
behavior is in fact what is observed on typical Internet paths involving ARPANET, NSFNET and
regional nets.

These observations cast doubt on the median-filter approach as a good way to cast out offset outlyers
and suggests another approach which might be called a minimum filter. From the scatter diagrams
it is obvious that the best offset samples occur at the lower delays. Therefore, an appropriate
technique would be simply to select from the n most recent samples the sample with lowest delay
and use its associated offset as the estimate. Several experiments were designed to test this technique
using measurements between selected hosts equipped with timecode receivers, so that delays and
offsets could be determined independent of the measurement procedure itself. The experiments were
performed over several paths involving ARPANET, NSFNET and local nets and using both median
and minimum filters of varying lengths. The results show consistently lower errors for the minimum
filter when compared with the median filter of similar length. Perhaps the most dramatic result of
the minimum filter is the greatly reduced maximum error at the upper end of the throughput range
[MIL89b]. Based on these data the minimum filter was selected as the preferred algorithm. Since
its performance did not seem to much improve for values of n above eight, this value was chosen
for use in the reference implementation.

In the reference implementation the clock filter procedure is executed upon arrival of an NTP
message or other event that results in new delay/offset sample pairs. New sample pairs are shifted
into an eight-stage shift register from the left end, causing old entries to shift off the right end. Then
those entries in the register with nonzero delay are inserted on a temporary list and sorted in order
of increasing delay. In case of ties an arbitrary choice is made. The delay and offset estimates are
chosen as the corresponding values of the first entry on the list.

For subsequent processing and use in the clock selection algorithm it is useful to have an estimate
of sample dispersion. A good dispersion estimate which weights samples near the apex of the wedge
most heavily and is easily computable is simply the weighted sum of the offsets in the temporary
list. Assume the shift register has n > 1 entries and the list contains m (0 ≤ m ≤ n) valid samples in
order of increasing delay. If Xi (0 ≤ i < n) is the offset of the ith sample, then

si = |Xi − X0|
si = Dmax

if i < m and |Xi − X0| < Dmax
otherwise

 .

The dispersion estimate S is then

S = ∑

i = 0

n − 1

si v
 i ,

RFC 1129 Network Time Synchronization October 1989

Mills Page 15

where v ≤ 1 is a weighting factor and Dmax is an experimentally determined threshold adjusted to
match typical offset distributions. The reference implementation use the values 0.5 for v and 65.535
for Dmax. The dispersion estimate is intended for use as a quality indicator, with increasing values
associated with decreasing quality and given less weight in the clock selection algorithm. The sum
of the total path dispersions to the root of the synchronization subnet is called the synchronizing
dispersion.

In the hope that offset accuracy could be improved through the use of more than just the
minimum-delay filter sample, experiments were made involving various types of averages weighted
both by zero, first and second-order dispersion. The results using eleven peer paths measured over
four weeks demonstrate little improvement over the simple method, which is now used in the
reference implementation.

4.2. Peer Selection

The single most important contributing factor in maintaining high reliability with NTP is the peer
selection mechanism. When new offset estimates are produced for a peer or are revised as the result
of timeout, this mechanism is used to determine which peer should be selected as the clock source.
A good deal of research has gone into mechanisms to synchronize clocks in a community where
some clocks cannot be trusted. Determining whether a particular clock is a truechimer or falseticker
is an interesting abstract problem which can be attacked using methods such as described in
[LAM78], [LAM85], [MAR85] and [SCH86].

In methods described in the literature a convergence function operates upon the offsets between the
clocks in a system to increase the reliability by reducing or eliminating errors caused by falsetickers.
There are two classes of convergence functions, those involving interactive convergence algorithms
and those involving interactive consistency algorithms. Interactive convergence algorithms use
statistical clustering techniques such as the fault-tolerant average algorithm of [HAL84], the CNV
algorithm of [LUN84], the majority-subset algorithm of [MIL85a], the non-Byzantine algorithm of
[RIC88], the egocentric algorithm of [SCH86] and the algorithm described below in this paper.

Interactive consistency algorithms are designed to detect faulty clock processes which might
indicate grossly inconsistent offsets in successive readings or to different readers. These algorithms
use an agreement protocol involving successive rounds of readings, possibly relayed and possibly
augmented by digital signatures. Examples include the fireworks algorithm of [HAL84] and the
optimum algorithm of [SRI87]. However, these algorithms require an excessive burden of messages,
especially when large numbers of clocks are involved, and are designed to detect faults that have
rarely been found in the Internet experience. For these reasons they are not considered further in
this paper.

The basic principles guiding the design of the NTP clock selection procedure are based on maximum
likelihood techniques and the experimental observation that the highest reliability is usually
associated with the lowest stratum and synchronizing dispersion, while the highest accuracy is
usually associated with the lowest stratum and synchronizing distance. A key design assumption is
that truechimers are relatively numerous and represented by random variables narrowly distributed

RFC 1129 Network Time Synchronization October 1989

Mills Page 16

about UTC in the measurement space, while falsetickers are relatively rare and represented by
random variables widely distributed throughout the measurement space.

The NTP clock selection procedure begins by constructing a list of candidate peers sorted first by
stratum and then by synchronizing dispersion via the peer to the root of the synchronization subnet.
To be included on the candidate list the peer must pass certain sanity checks. One check requires
that the clock selection for the peer must not be the host itself; otherwise, a synchronization loop
would be formed. Another check requires that the dispersion be bounded by a value which insures
that the filter registers are at least half full, which avoids using data from low quality associations
or obviously broken implementations. If no candidates pass the sanity checks, the existing clock
selection, if any, is cancelled and the local clock free-runs at its intrinsic frequency. The list is then
pruned from the end to be no longer than a maximum size, currently set to five. Starting from the
beginning, the list is truncated at the first entry where the number of different strata in the list exceeds
a maximum, currently set to two. This particular procedure and choice of parameters has been found
to produce reliable synchronization candidates over a wide range of system environments while
minimizing the "pulling" effect of high-stratum, high-dispersion peers, especially when large
numbers of peers are involved.

The final procedure is designed to detect falsetickers or other conditions which might result in gross
errors. The pruned candidate list is resorted in the order first by stratum and then by synchronizing
distance via the peer to the root of the synchronization subnet. Let m > 0 be the number of peers
remaining in the list and let Xi be the offset of the ith peer. For each i (0 ≤ i < m) define the clock
dispersion qi relative to peer i:

qi = ∑

j = 0

m− 1

|Xi − Xj|w
 j,

where w ≤ 1 is a weighting factor experimentally adjusted for the desired characteristic (see below).
Then cast out the entry with maximum qi or, in case of ties, the maximum i, and repeat the procedure.
When only a single peer remains on the list it becomes the clock source.

Offset Dispersion Result

0,0,0 0,0,0 0,0,-
0,0,1 9,9,28 0,0,-
0,1,0 12,25,12 0,-,0
0,1,1 21,16,16 -,1,1
1,0,0 21,16,16 -,0,0
1,0,1 12,25,12 1,-,1
1,1,0 9,9,28 1,1,-
1,1,1 0,0,0 1,1,-

Table 1. Outlyer Selection Procedure

RFC 1129 Network Time Synchronization October 1989

Mills Page 17

This procedure is designed to favor those peers near the head of the candidate list, which are at the
lowest stratum and lowest delay and presumably can provide the most accurate time. With proper
selection of weighting factor w, outlyers will be trimmed from the tail of the list, unless a few of
them disagree significantly with respect to the remaining entries, in which case they are discarded
first.

In order to see how this scheme works to cast out outlyers, consider the case of a host and three
peers and assume that one or more of the offsets are clustered about zero and others are clustered
about one. For w = 0.75 as used in the reference implementation and multiplying by 16 for
convenience, the first entry has weight w0 = 16, the second w1 = 12 and the third w2 = 9. Table 1
shows for all combinations of peer offsets the calculated clock dispersion about each of the three
entries, along with the outcome. In the four cases where candidate 0 and candidate 1 disagree, the
outcome is determined by candidate 2. Similar outcomes occur in the case of four candidates. While
these outcomes depend on judicious choice of w, the behavior of the algorithm is substantially the
same for values of w between 0.5 and 1.0.

Experience with this procedure shows it is vulnerable to frequent switching between peers, even if
they have relatively low offsets and dispersions. Since switching can result in increased oscillator
phase noise and increased polling rates, selection of a new peer is suppressed if its offset is less than
the sum of the estimated maximum skew and stated precision of the host and peer clocks.

5. Local Clock Design

The full accuracy and reliability made possible by NTP requires careful design of the local-clock
hardware and software. In the NTP model the local clock is assumed to use a quartz crystal oscillator
without temperature compensation, which is typical of ordinary computing equipment. The funda-
mental system time reference, or logical clock, increments at some standard rate such as 1000 Hz
and can be adjusted to precise time and frequency by means of periodic offset corrections computed
by NTP, another time-synchronization protocol or a timecode receiver. A typical logical-clock
implementation such as the Fuzzball [MIL89a] can maintain time in room-temperature environ-
ments to within a few milliseconds and frequency to within a few milliseconds per day in the absence
of corrections. Substantially better performance can be achieved using precision oven-compensated
quartz oscillators.

Osc

xi +

ci – Clock Filter

Loop Filter
di-1ei

Figure 5. Phase-Lock Loop Model

RFC 1129 Network Time Synchronization October 1989

Mills Page 18

The NTP logical-clock model shown in Figure 5 can be represented as an adaptive-parameter,
first-order, phase-lock loop, which continuously adjusts the clock phase and frequency to compen-
sate for its intrinsic jitter, wander and drift. In the figure, xi represents the reference timestamp and
ci the local timestamp of the ith update. The difference between these timestamps xi − ci is the input
offset, which is processed by the clock filter. The clock filter previously saved the most recent offsets
and selected one of them di-1as the output offset. The loop filter, represented by the equations given
below, produces the oscillator correction ei, which is used to adjust the oscillator period. During
the interval ui until the next correction the, clock is slewed gradually to the given value ei. This is
done in order to smooth the time indications and insure they are monotone increasing.

The behavior of the phase-lock loop can be described by a set of recurrence equations, which depend
upon several variables and constants. The variables used in these equations are (in SI units, unless
specified otherwise):

di clock filter output offset
ui interval until next update
ei oscillator correction
fi frequency error
gi phase error
hi compliance

These variables are set to zero on startup of the protocol. In case the local clock is to be reset, rather
than adjusted gradually as described below, the phase error gi is set to zero, but the other variables
remain undisturbed. Various constants determine the stability and transient response of the loop.
The constants used in the equations, along with suggested values, are:

U 22 adjustment interval
Kf 210 frequency weight
Kg 28 phase weight
Kh 28 compliance weight
S 24 compliance maximum
T 218 compliance factor

Let di (i = 0, 1, ...) be a sequence of updates, with each di+1 occurring ui seconds after di. Let
q = 1 − 1⁄Kg and ni be the greatest integer in ui ⁄U ; that is, the number of adjustments that occur in
the i th interval. As each update is received, the phase error gi, frequency error fi, and compliance
hi are recomputed. Let ai be a quantity called the frequency gain: ai = max(S − T | hi |, 1) . Then,
upon receipt of the di update:

gi+1 = di ,

fi+1 = fi +
di

ai−1 ui−1
 (f0, f1 = 0; i > 0) ,

RFC 1129 Network Time Synchronization October 1989

Mills Page 19

hi+1 = hi +
di − hi

Kh
 (h0 = 0) ,

At each adjustment interval the quantity
gi+1

Kg
 +

fi+1

Kf
 is added to the local clock and the quantity

gi+1

Kg
 subtracted from gi+1. Thus, at the end of the i th interval just before the di+1 update, the

accumulated correction is:

ei+1 =
di

Kg

qni − 1
q − 1

 +
1
Kf

 ∑

j=1

i
njdj

aj−1uj−1
 .

This can be seen to be the characteristic equation of an adaptive-parameter, first-order, phase-lock
loop. Simulation of this loop with the variables and constants specified and the clock filter described
previously results in the following characteristics: For a 100-ms phase change the loop reaches zero
error in 39 minutes, overshoots 7 ms in 54 minutes and settles to less than 1 ms in about six hours.
For a 50-ppm frequency change the loop reaches 1 ppm in about 16 hours and 0.1 ppm in about 26
hours. When the magnitude of correction exceeds a few milliseconds or a few ppm for more than
a few minutes, the compliance begins to increase, which causes the frequency gain to decrease,
eventually to unity, and the loop to loosen. When the magnitude of correction falls below about 0.1
ppm for a few hours, the compliance begins to decrease, which causes the frequency gain to increase,
eventually to 16, and the loop to stiffen. The effect is to provide a broad capture range exceeding
four seconds per day, yet the capability to resolve oscillator drift well below a millisecond per day.
These characteristics are appropriate for typical crystal-controlled oscillators with or without
temperature compensation or oven control.

When the magnitude of a correction exceeds 128 ms, the possibility exists that the logical clock is
so far out of synchronization with the reference source that the best action is an immediate and
wholesale replacement of the Clock Register contents, rather than a graduated slewing as described
above. This particular value was selected by experiment and experience with the current implemen-
tations and operating procedures. In practice, this value is exceeded with a single time-server source
only under conditions of the most extreme congestion or when multiple failures of nodes or links
have occurred. The most common cause is when the time-server source is changed and the difference
between the old and new times is too large due to systematic errors in the primary reference source
or large differential delays an the synchronization paths.

Conversion to and from the common date and time formats used by application programs is
simplified with separate date and time software registers. The time register is designed to roll over
at 24 hours, with its overflows (underflows) incrementing (decrementing) the date register. On the
day prior to the insertion of a leap second the leap-indicator bits are set at the primary servers,
presumably by manual means, and subsequently distributed via NTP throughout the synchronization
subnet. This causes the modulus of the time register, which is the length of the current day, to be

RFC 1129 Network Time Synchronization October 1989

Mills Page 20

increased or decreased by one second as appropriate. On the day following insertion the bits are
turned off at the primary servers.

6. NTP in the Internet System

The use of NTP in the Internet has steadily increased over the last few years. It is estimated that
well over 2000 hosts and gateways presently synchronize their clocks directly to an NTP time server
or indirectly via a LAN time server itself synchronized to an NTP time server. In this section an
overview of the Fuzzball and Unix NTP time servers is presented along with a description of the
NTP synchronization subnet now operating in the Internet.

6.1. Time Servers

The Fuzzball [MIL88] is a software package consisting of a fast, compact operating system, support
for the Internet architecture and an array of application programs for network protocol development,
testing and evaluation. It usually runs on a LSI-11 personal workstation, to which it also lends its
name, and functions as a multi-purpose packet switch, gateway and service host. The Fuzzball is
specially designed for applications requiring accuracies in the order of a millisecond, so it represents
an ideal platform for the development and testing of time-synchronization architectures, protocols
and algorithms, including those described in this paper. NTP and its forebears were developed and
tested on the Fuzzball and the present NTP version is the reference implementation for the
specification. Fuzzballs are presently installed at 18 locations in the U.S. and Europe, most of which
function primarily as time servers for ARPANET, MILNET and NSFNET hosts and gateways. Ten
of these, synchronized to UTC via radio or satellite, are part of the NTP primary synchronization
subnet, while the remainder are part of the NTP secondary synchronization network.

An implementation of NTP as a Unix system daemon called ntpd was built by Michael Petry and
Louis Mamakos of the University of Maryland. It includes all of the algorithms described in this
paper and adjusts the system time using special Unix kernel primitives to control the local clock
phase and frequency. Almost 1000 ntpd hosts were found in a recent survey [MIL89b]; however,
this survey did not cover all Internet hosts. From other reports and personal communication it is
estimated that the total number is well over 2000. Several of these, synchronized to UTC via radio,
are part of the NTP primary synchronization subnet, while the remainder are part of the NTP
secondary synchronization subnet.

An implementation of NTP as a dedicated processor and control program was built by Dennis
Ferguson of the University of Toronto. This device uses a 68000 processor and includes an interface
to a radio timecode receiver for the Canadian standard frequency/time station CHU. Other imple-
mentations are in progress at Hewlett-Packard Laboratories in Bristol, UK, and at the University of
Delaware.

6.2. Synchronization Subnet

The NTP primary synchronization subnet now operating in the Internet consists of 17 primary time
servers located in the U.S, Canada and the U.K. There are ten Fuzzball, five Unix and two other
servers connected to receivers for WWVB, GOES, WWV/H, CHU (Ottawa) and GBR (Rugby)

RFC 1129 Network Time Synchronization October 1989

Mills Page 21

receivers. Of these, six are gatewayed directly to national backbone networks and are intended for
ubiquitous access, while the remainder are connected to regional networks and intended for regional
and local access.

Most of the primary servers continuously exchange NTP messages with most of the other primary
servers, so the primary synchronization subnet is almost completely connected. This provides an
exceptional level of redundancy to protect against component or line failures. For instance, if a
timecode receiver fails, the primary server synchronizes via NTP to the neighbor at the lowest
available stratum and smallest synchronizing distance and continues operation as a secondary server
at the next higher stratum. If a timecode receiver or time server appears to operate correctly but
delivers incorrect time (falseticker), discrepancies become apparent to its NTP peers, which then
deselect the server as the result of the algorithms described in Section 4.

The NTP secondary synchronization subnet presently includes eight Fuzzball and many more other
secondary time servers and clients using some thousands of peer paths on hundreds of networks. A
secondary server operating at stratum n > 1 ordinarily operates with at least three peers, two at
stratum n – 1 and one or more at stratum n. In the most robust configurations a set of servers agree
to provide backup service for each other, so distribute some of their peers over stratum-(n – 1)
servers and others over stratum-n servers in the same set. In a typical example configuration used
at the University of Illinois and the University of Delaware the institution operates three stratum-2
campus servers, each peering with two out of six stratum-1 primary servers and with each other.
The three campus servers in turn provide time for several stratum-3 department servers, each peering
with all three campus servers. Department servers, many of which also function as file servers, then
deliver time to possibly hundreds of stratum-4 workstations in client/server or broadcast modes.

Time (NTP days)

O
ff

se
t

(s
ec

)

0 1 2 3 4 5 6 7 8

0.
00

1
0.

01
0.

1
1

10

Figure 6. Raw Offsets

RFC 1129 Network Time Synchronization October 1989

Mills Page 22

6.3. Performance Analysis

As part of normal operation the Fuzzball time servers monitor delay and offset data from each of
their peers. Periodically, these data are collected and analyzed to construct scatter diagrams,
time-series diagrams and distribution functions. Scatter diagrams have proven exquisitely sensitive
indicators of system performance and possible malfunctions. A well performing peer path, such as
shown in Figure 4, exhibits a distinct wedge-shaped opening to the right and with a sharp apex. As
traffic increases on the peer path the wedge fills and extends to the right, showing increased delays

Time (NTP days)

O
ff

se
t

(s
ec

)

0 1 2 3 4 5 6 7 8

0.
00

1
0.

01
0.

1
1

10

Figure 7. Filtered Offsets

Offset (sec)

P
ro

b
 (

%
)

0.001 0.01 0.1 1 10

0.
01

0.
1

1
10

10
0

Figure 8. Error Distribution

RFC 1129 Network Time Synchronization October 1989

Mills Page 23

and delay dispersions. Asymmetrical paths often show distinct asymmetries of delay dispersions
readily detected by eye.

Time-series diagrams are useful for assessing algorithm performance and systematic errors. Figures
6 and 7, constructed from the same data as Figure 4, compare the absolute raw offsets and filtered
offsets, respectively, between two primary time servers over an interval of about a week in UTC
hours. The servers, each synchronized to WWVB to within about a millisecond, are connected by
a path including the ARPANET and an unknown number of LANs and gateways. In typical such
cases the reduction in mean offset measurement error is about tenfold. However, the most dramatic
reduction with the filter is in maximum error, for which distribution functions with log-log axes are
most useful. Figure 8 shows such a function for the above path and the absolute raw offsets (upper
curve) and filtered offsets (lower curve), from which it is apparent that the maximum error after the
filter is less than about 30 ms for all but about one percent of the samples and less than about 50
ms for all samples.

7. Future Directions

The IRIG-H timecode format established in 1970 and used since then by NBS/NIST radio broadcast
services does not include year information, which must be entered manually after reboot at the
primary time servers. While the year information, once entered, rolls over at the new year, it has
sometimes happened that the year was entered incorrectly after reboot, with surprisingly disruptive
effects on file archiving systems. In addition, the current timecode formats do not include advance
notice of leap-second insertion. Clearly, a revised timecode format including these data is needed.
In fact, the recently introduced NBS telephone time service [NBS88] does include both the year
and advance leap-second information.

The current mechanism of time delivery using WWVB, WWV and GOES requires relatively
expensive timecode receivers subject to occasional disruption due to propagation path or transmitter
failure. Radionavigation systems such as LORAN-C and the Global Positioning System (GPS) are
capable of delivering accurate time and frequency information over major portions of the world;
however, these systems do not include an unambiguous timecode modulation and appropriate
receivers are not yet available. An agenda should be pursued to provide a precise timecode as part
of normal service.

As experience accumulates, improvements are being made continuously to the filtering and selection
algorithms described in this paper. For example, a possible way to improve accuracy involves the
combination of selected peer offsets and computing the ensemble offset using techniques suggested
in [BLA74]. Another improvement involves the dynamic activation of selected peer associations
when other peer associations become unreachable. The intent of this suggestion is to further reduce
the polling overheads when a large number of possible peers are available, but only a few are needed
for reliable synchronization.

At present, NTP support is available only for Fuzzball and Unix systems. Support is needed for
other systems, including personal workstations of various manufacture. While NTP has been
evolved within the Internet protocol suite, there is obvious application to the ISO protocol suite, in

RFC 1129 Network Time Synchronization October 1989

Mills Page 24

particular the protocols of the connectionless (CNLS) branch of that suite. Perhaps the most
attractive methodology would be to integrate NTP functions directly into the ES-IS and IS-IS routing
functions and network management systems.

8. References

[BER87] Bertsekas, D., and R. Gallager. Data Networks. Prentice-Hall, Englewood Cliffs, NJ,
1987.

[BLA74] Blair, B.E. (Ed.). Time and Frequency Theory and Fundamentals. National Bureau of
Standards Monograph 140, U.S. Department of Commerce, 1974.

[BRA80] Braun, W.B. Short term frequency effects in networks of coupled oscillators. IEEE Trans.
Communications COM-28, 8 (August 1980), 1269-1275.

[COL88] Cole, R., and C. Foxcroft. An experiment in clock synchronisation. The Computer Journal
31, 6 (1988), 496-502.

[DAR81a] Defense Advanced Research Projects Agency. Internet Control Message Protocol.
DARPA Network Working Group Report RFC-792, U.S.C. Information Sciences Institute,
September 1981.

[DAR81b] Defense Advanced Research Projects Agency. Internet Protocol. DARPA Network
Working Group Report RFC-791, U.S.C. Information Sciences Institute, September 1981.

[GUS84] Gusella, R., and S. Zatti. TEMPO - A network time controller for a distributed Berkeley
UNIX system. IEEE Distributed Processing Technical Committee Newsletter 6, NoSI-2 (June
1984), 7-15. Also in: Proc. Summer 1984 USENIX (Salt Lake City, June 1984).

[GUS85a] Gusella, R., and S. Zatti. The Berkeley UNIX 4.3BSD time synchronization protocol:
protocol specification. Technical Report UCB/CSD 85/250, University of California, Berkeley,
June 1985.

[GUS85b] Gusella, R., and S. Zatti. An election algorithm for a distributed clock synchronization
program. Technical Report UCB/CSD 86/275, University of California, Berkeley, December
1985.

[HAL84] Halpern, J.Y., B. Simons, R. Strong and D. Dolly. Fault-tolerant clock synchronization.
Proc. Third Annual ACM Sympos. on Principles of Distributed Computing (August 1984),
89-102.

[KOP87] Kopetz, H., and W. Ochsenreiter. Clock synchronization in distributed real-time systems.
IEEE Trans. Computers C-36, 8 (August 1987), 933-939.

[LAM78] Lamport, L., Time, clocks and the ordering of events in a distributed system. Comm.
ACM 21, 7 (July 1978), 558-565.

[LAM85] Lamport, L., and P.M. Melliar-Smith. Synchronizing clocks in the presence of faults.
JACM 32, 1 (January 1985), 52-78.

RFC 1129 Network Time Synchronization October 1989

Mills Page 25

[LIN80] Lindsay, W.C., and A.V. Kantak. Network synchronization of random signals. IEEE
Trans. Communications COM-28, 8 (August 1980), 1260-1266.

[LUN84] Lundelius, J., and N.A. Lynch. A new fault-tolerant algorithm for clock synchronization.
Proc. Third Annual ACM Sympos. on Principles of Distributed Computing (August 1984),
75-88.

[MAR85] Marzullo, K., and S. Owicki. Maintaining the time in a distributed system. ACM
Operating Systems Review 19, 3 (July 1985), 44-54.

[MIL81] Mills, D.L. Time Synchronization in DCNET Hosts. DARPA Internet Project Report
IEN-173, COMSAT Laboratories, February 1981.

[MIL83a] Mills, D.L. Internet Delay Experiments. DARPA Network Working Group Report
RFC-889, M/A-COM Linkabit, December 1983.

[MIL83b] Mills, D.L. DCN local-network protocols. DARPA Network Working Group Report
RFC-891, M/A-COM Linkabit, December 1983.

[MIL85a] Mills, D.L. Algorithms for synchronizing network clocks. DARPA Network Working
Group Report RFC-956, M/A-COM Linkabit, September 1985.

[MIL85b] Mills, D.L. Experiments in network clock synchronization. DARPA Network Working
Group Report RFC-957, M/A-COM Linkabit, September 1985.

[MIL85c] Mills, D.L. Network Time Protocol (NTP). DARPA Network Working Group Report
RFC-958, M/A-COM Linkabit, September 1985.

[MIL88] Mills, D.L. The fuzzball. Proc. ACM SIGCOMM 88 Symposium (Palo Alto, CA, August
1988), 115-122.

[MIL89a] Mills, D.L. Network Time Protocol (Version 2) specification and implementation.
DARPA Network Working Group Report RFC-1119, University of Delaware, September 1989.

[MIL89b] Mills, D.L. Measured performance of the Network Time Protocol in the Internet system.
DARPA Network Working Group Report RFC-1128, University of Delaware, October 1989.

[MIT80] Mitra, D. Network synchronization: analysis of a hybrid of master-slave and mutual
synchronization. IEEE Trans. Communications COM-28, 8 (August 1980), 1245-1259.

[NBS79] Time and Frequency Dissemination Services. NBS Special Publication 432, U.S. Depart-
ment of Commerce, 1979.

[NBS88] Automated Computer Time Service (ACTS). NBS Research Material 8101, U.S. Depart-
ment of Commerce, 1988.

[POS80] Postel, J. User Datagram Protocol. DARPA Network Working Group Report RFC-768,
USC Information Sciences Institute, August 1980.

RFC 1129 Network Time Synchronization October 1989

Mills Page 26

[POS83a] Postel, J. Daytime protocol. DARPA Network Working Group Report RFC-867, USC
Information Sciences Institute, May 1983.

[POS83b] Postel, J. Time protocol. DARPA Network Working Group Report RFC-868, USC
Information Sciences Institute, May 1983.

[REF85] Reference Data for Engineers: Radio, Electronics, Computer and Communications
(Seventh Edition). Howard W. Sams, Indianapolis, IN, 1985.

[RIC88] Rickert, N.W. Non Byzantine clock synchronization - a programming experiment. ACM
Operating Systems Review 22, 1 (January 1988), 73-78.

[SCH86] Schneider, F.B. A paradigm for reliable clock synchronization. Department of Computer
Science Technical Report TR 86-735, Cornell University, February 1986.

[SRI87] Srikanth, T.K., and S. Toueg. Optimal clock synchronization. JACM 34, 3 (July 1987),
626-645.

[SU81] Su, Z. A specification of the Internet protocol (IP) timestamp option. DARPA Network
Working Group Report RFC-781. SRI International, May 1981.

[TRI86] Tripathi, S.K., and S.H. Chang. ETempo: a clock synchronization algorithm for hierarchi-
cal LANs - implementation and measurements. Systems Research Center Technical Report
TR-86-48, University of Maryland, 1986.

Security considerations
See Section 3.3.

Author’s address
David L. Mills
Electrical Engineering Department
University of Delaware
Newark, DE 19716
Phone (302) 451-8247
EMail mills@udel.edu

RFC 1129 Network Time Synchronization October 1989

Mills Page 27

