1. Introduction

This report discusses the analysis and design of computer clocks. A computer clock is an ensemble
of hardware and software components used to provide an accurate, stable and reliable time-of-day
function to the operating system and its clients. In order that multiple distributed computers sharing

a network can synchronize their operations with each other, it is necessary that some means be
provided to exchange time information and synchronize their clocks. If these computers are to agree
with Universal Coordinated Time (UTC), a means must be provided to synchronize the network
time to UTC as disseminated by various means [NIS90].

The computer clocks of present operating systems such as Unix and Fuzzball are normally
synchronized to within a few tens of milliseconds in the Internet of today [MIL90]. However, as
workstations and networks become faster, there is every expectation that future applications will
require timekeeping to the submillisecond regime. This requires in essence a complete reexamina-
tion of all elements of the timekeeping apparatus, including the clock design and its synchronization
mechanism. This report examines in detail the various design issues necessary to achieve that goal.

In order to synchronize computer clocks, a time-synchronization protocol and appropriate operat-
ing-system support are required. In this report the Network Time Protocol (NTP) developed for the
Internet is used as an example, but others, such as the Digital Time Synchronization Service (DTSS)
could be used as well. Section 3 gives an overview of NTP. The interested reader is directed to
[DEC89] for a description of DTSS.

A local clockis used in each computer in order to maintain the time. It includes an oscillator, clock
counter and software support to provide the tim@mesformat tdhe operating system and client
processes. It must include provisions to adjust the time and, in some systems, the frequency of the
oscillator in response to corrections computed by the time-synchronization protocol. Section 4
describes hardware and software models based on two different operating systems and presents an
analysis of their operating characteristics and performance envelopes.

Section 5 contains an detailed analysis of the generic local-clock model, which is described as a
disciplined oscillator. This analysis is based on the theory of phase-locked loops and allows
predictions of stability, convergence time and accuracy based on various parameters of the design.
The analysis considers the dynamic management of various intrinsic parameters in order to achieve
the best accuracy andlsiléy with various oscillator types and statistical network delays.

It may happen that the accuracy and reliability of the timekeeping system as a whole can be improved
when each computer exchanges timekeeping information with two opeereln these cases the
information from multiple peers can be combined to produceceuracy better than any one of

them. Techniques to accomplish this are described in Section 6. Section 7 contains an extensive
analysis of errors and develops absolute artésttal error bounds originating in the local clock

and network, while Section 8 is a summary of this report.

2. Terms and Notation

In this report the terméme, timescale, oscillator, tolerance, clock, epoch, timestamp, calemdhr
dateare used in a technical sense. Strictly speakingijrttesof an event is an abstraction which
determines the ordering of events in some given frame of referetiwescale An oscillator is a
generator capable of precise frequency (relative to the given timesthle)aspecifiedolerance
usually expressed in parts-per-million (ppmlAckis an oscillator together with a counter which



records the number of cycles since being initialized with a given value at a given time. The value
of the counter at any given tims called itsepochand recorded as thienestampr(t) of that epoch.
In general, epoches are not continuous and depend on the precision of the counter.

A calendaris a mapping from epoches in some timescale to the yeatatdesused in everyday

life. Since multiple calendars are in use today and sometimes disagree on the dating of the same
epoches in the past, the metrology of past and present epoches is an art practiced by historians.
However, the ultimate timescale for our world is based on cosmic oscillators, such as Medun,

and other galactic orbiters. Since the frequencies of these oscillatoeiatively unstable and not

known exactly, the ultimate reference standard oscillator has been chosen by international agree-
ment as a synthesis of many observations of an atomic transition of exquisite stabilitgqlibady

R(t) of each heavenly and Ealbbund oscillator defines a distinctive éstalenot necessarily

always continuous, relative to that of the standard oscillator.

The International Standard (SI) definitiontohe intervalis in terms of the standard second: “the
duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium-133 atom.l kepresent the standard unit of

time interval so defined and its reciprogat u™ be the standard unit of frequency. Etendard

epoch denoted by, is defined as the reading of a counter that runs at frequemcl/began counting

at some agreed initial epotd) which defines thetandardor absolutetimescale For the purposes

of this report, the standard epoch, as well as the time indicated by a clock will be considered
continuous. In practice, time is discrete and determined relative to a clock constructed from an
atomic oscillator and system of counter/dividers, which defines estale associated with that
particular oscillator. Standard time and frequency are then determined from an ensemble of such
timescales and algorithms designed to combine them to produce a composite timescale approximat-
ing the standard timescale.

In this report thestability of a clock is how well it can maintain a constant frequencyadheracy

is how well its time compares with national standards angréwsionis to what degree time can

be resolved in a particular timekeeping system. These terms will be given precise definitions when
necessary. Théme offsetof clock i relative to clockj is the time difference between them

Tij (t) = Ti(t) — Tj(t), while thefrequency offsaif clocki relative to clock is the frequency difference
between thenRjj(t) = Ri(t) — Rj(t). Note thatTij = —Tji, Rj = —-Rji andTiji = Rj = 0. In this report
reference to simply “offset” means time offset, unless indicated otherwiseaeldgility of a
timekeeping system is the fraction of the time it can be kept connected to the network and operating
correctly relative to stated accuracy and#ity tolerances.

In order to synchronize clocks, there must be some way to directly or indirectly compare them in
time and frequency. In network architectures such as DECnet and Internet local clocks are
synchronized to designatéche serverswhich are timekeeping systems belonging ¢grachroni-

zation subnetin which eaclserver measures the offsets between its local clockhendocks of

the peers in the subnet. In this reporsyachronize frequengyeans to adjust the subnet clocks to

run at the same frequency synchronize timeneans to set them to agree at a particular epoch with
respect to Coordinated Universal Time (UTC), as provided by national standardssymchtonize
clocksmeans to synchronize them in both frequency and time.
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3. Network Time Protocol

The Network Time Protocol (NTP) is used by Internet time serverthandpeers to synchronize
clocks, as well as automatically organize and maintain the time synchronization subnet itself. It is
evolved from the Time Protocol [POS83] and the ICMP Timestamp Message [DAR81Db], but is
specifically designed for high accuracy Jsliéy andreliability, even when used over typical Internet
paths involving multiple gateways and unreliable networks. This section contains an overview of
the architecture and algorithms used in NTP. A formal description and error analysis of the protocol
is contained in [MIL92]. A detailed description of the NTP architecture and protocols is contained
in [MIL91a], while a summary of operational experience and performance is contained in [MIL90]
and a detailed discussion on timescales is contained in [MIL91b].

NTP and its implementations have evolved and proliferated in the Internet over the last decade, with
NTP Version 2 adopted as an Internet Standard (Recommended) [MIL89] and NTP Version 3
adopted as a Proposed Standard [MIL92]. NTP is built on the Internet Protocol (IP) [DAR81a] and
User Datagram Protocol (UDP) [POS80], which provide a connectionless transport mechanism;
however, it is readily adaptable to otheotorcol suites. The protocol can operate in several modes
appropriate to different scenarios involving private workstations, pséticers and variousibnet
configurations. A lightweight association-management capability, including dynamic véiécha

and variable poll-interval mechanisms, is used to manage state information and reduce resource
requirements. Optional features includessage w@thentication based on crypto-checksums and
provisions for remote control and monitoring.

In NTP one or more primary servers synchronize directly to external reference sources such as radio
clocks. Secondary time serverssfironize to the primary servers and others in the synchronization
subnet. A typical subnet is shown in Figure 1a, in which the nodes represent subnet servers, with
normal level or stratum numbers determined by the hop count from the root (stratum one), and the
heavy lines the active synchronization paths and direction of timing information flow. The light
lines represent backup synchronization paths where timing information is exchanged, but not
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necessarily used tosghronize the local clocks. Figure 1b shows the same subnet, but with the line
markedx out of service. The subnet has reconfigured itself automatically to use backup paths, with
the result that one of the servers has dropped from stratum 2 to stratum 3. In practice each NTP
server synchronizes with several other servers in order to survive outages and Byzantine failures
using methods similar to those described in [SHI87].

Figure 2 shows the overall organization of the NTP time-server model, which has much in common
with the phase-lock methods summarized in [RAM90]. Timestamps exchanged between the server
and possibly many other subnet peers are used to determine individual roundtrip delays and clock
offsets, as well as provide reliable error bounds. As shown in the figure, the computed delays and
offsets for each peer are processed by the clock-filter algorithm to reduce incidental timing noise.
As described in [MIL92], this algorithm selects from among the last several samples the one with
minimumdelay and presents the associated offset as the output.

Figure 3 shows how NTP timestamps are numbered and exchanged betweéngreiss Let
T1, T2, T3, T4 be the values of the four most recent timestamps as shown iémolitwoss of
generdity, assumers > To. Let

a=T2-T1 and b=T3-T4.

If the subnet delays from A to B and from B to A are similar, the deknd offse® of B relative
to A at timeT; are close to

a+b
5

d=a-b and 6=

The errors in these quantities, botisteynatic and random, will be discussed later in this report.

Each NTP message includes the latest three timest®nps andT3, while the fourth timestamp

T4 is determined upon arrival of the message. Thus, both pe@dB can independently calculate
delay and offset using a single bidirectional message stream. This is a syntoatimapusly
sampled, time-transfer scheme similar to those used in some digital telephone networks [LIN8O].
Among its advantages are that reliable message delivery is not required (see [MILL92] for an
extended discussion of these issues).

The clock-selection algorithm determines from among all peers a suitable subset of peers capable
of providing the most accurate and trustworthy time using principles similar to those described in
[VAS88]. This is done using a cascade of two subalgorithms, one based on interval intersections to
cast out faulty peers [MAR85] and the other based on maximuwetihliod principles to improve
accuracy [MIL91a]. The resulting offsets of this subset are first combined on a weighted-average
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Figure 4. Hardware Clock Models

basis using an algorithm such as described later in this report and then processed by a phase-lock
loop (PLL). In the PLL the combined effects of the filtering, selection and combipi@gtions

are to produce a phase-correction term, which is processed by the loop filter to control the
voltage-controlled oscillator (VCO) frequency. The VCO furnishes the phase (timing) reference to
produce the timestamps used in all timing calculations.

4. Computer Clock Models

A computer clock includes some kind of reference oscillator stabilized by a quartz crystal or some
other means, such as the power grid. The oscillator frequency is usually divided by a prescaler to a
convenient frequency, such as 1 MHz or 100 Hz. This is followed by a clock counter, implemented

in hardware, software or some combination of the two, which can be read by the processor. For
systems intended to be synchronized to an external source of standard time, there must be some
means to correct the time and frequency by occasional vernier adjustments produced by the
timekeeping protocol. Special care is necessary in all timekeeping system designs to insure that the
clock indications are always monotonic increasing; that is, system time never “runs backwards.”
This is called thenonotonic requirement

The simplest computer clock consists of a hardware latch which is set by prescaler overflow. This
causes a processor interruptiok. The latch is reset when acknowledged by the processor, which
then increments the value of a software clock counter. The clock time is adjusted by adding
corrections to the counter as necessary. The clock frequency is adjusted by changing the value of
the increment, in order to make the counter run faster or slower. The precision of this simple clock
model, which is a software emulation of fhfease accumulation methagscribed in [WIL90], is

limited to the value of the increment, usually about 10 ms.

This software clock model requires a processor interrupt on every tick, which can cause significant
overhead if the increment is much smaller than 1 ms with the newer RISC processors. Thus, in order



to achieve timekeeping precisions less than 1 ms, some kind of hardware assist is usually required.
A straightforward design consists of a voltagerolled oscillator (VCO), in which the frequency

is controlled by a buffered, digital/analog converter (DAC). Such a design constructely enti
hardware logic components is shown in Figure 4a. The clock is read by first pulsing the read signal,
which latches the current value of the clock counter, then adding its contents and a 64-bit clock-offset
software variable to produce the timestamp. The clock time is set by loading the clock-offset
variable, while the clock frequency is adjusted by loading the DAC latch. In principle, this clock
model can be adapted to any precision by changing the width ofetbeager or clock counter or
changing the VCO frequency. However, it does not seem useful to reduce precision much below
the minimum interrupt k@ncy, which is in the low tens of microseconds for a modern RISC
processor.

If it is not possible to vary the oscillator frequency, which might be the case if the oscillator is an
external frequency standard, a design such as shown in Figure 5b may be used. This approach is
similar to theperiodic phase modificatiomethod described in [WIL90Q]. It includes an oscillator
operating at a fixed frequen&yand a prescalerhich divides the oscillator frequency to the working
frequency of the clock. The prescaler includes a state machine to advance or retard the phase of the
oscillator by one cycle. A programmable divider (PD) is loaded with a adunel produces a pulse

. f o
train at a frequency". For each pulse the state machine inserts (stufidgletes (swallows) one
aueney

oscillator cycle.

The pulse train produced by the prescaler is controlled over a given range by the wluie of
programmed with a high value or zero, relatively few pulses are stuffed or swallowed per second
and the frequency counted is near the center of its range; while, if programmed with a low value,
relatively many pulses are stuffed or swallowed and the frequenicyed is near the upper or lower
limits. Assuming some degree of freedom in the choice of oscillator frequency and preticaler ra
this design can compensate for a wide range of oscillator tolerances.

In all the above designs it is necessary to limit the amount of adjustment incorporated in any step
in order to avoid violating the monotonic requirement. With the software clock model this is assured
as long as the increment is always positive. If not, the adjustment myséebd svemultiple tick
intervals. This strategy amounts to a deliberate frequency offset sustained for an interval equal to
the total number of ticks required and, in fact, is a feature of the clock models discussed below.

In the hardware clock models the same considerations apply; however, in these designs the tick
interval amounts to a single pulse at thespaleoutput. In order to avoid decreasing the indicated

time when a negative time correction occurs, it is necessary to avoid modifying the clock-offset
variable in processor memory and to confine all adjustments to the VCO or prescaler. Thus, all time
adjustments must heerformed by means of programmed frequertjysiments in much the same

way as with the software clock model described above.

It is interesting to conjecture on the design of a processor assist that could provide all of the above
functions in a compact, general-purpose hardware interface. In a design similar to that described in
[WIL91], the interface might consist of a multifunction timer chip such as the AMI3A, which

includes five 16-bit counters, each with programmable load and hold registers, plus an onboard
crystal oscillator, prescaler and interface circuitry. Four ofL&bit counters would be used for a
64-bit hardware clock counter and the fifth for the programmable divider. Wittdthioa of a



programmable-array logic device and architecture-specific host interface, this compact design could
provide all the functions necessary for a comprehensive timekeeping system.

In any clock implementation which requiresiitiple accesses to read all the clock bits, a protocol

is necessary to avoid inconsistent data which could result when one word overflows while another
is being read. The usual protocol is to read all the words, then read them all again and compare all
except the low-order words. If any word from the first read disagrees with the second, then read all
the words again. While this is a simple and effective method, much more efficient and elegant
methods are available [LAM90].

4.1. The Fuzzball Clock Model

The Fuzzball is an operating system for the PDPfilyeof computers [MIL88]. It supports the
Internet protocol suite and includes a number of hardware and software algargéiulkfor
precision timekeeping in the wide-area Internet. The Fuzzball was instrumental in the design and
testing of the Network Time Protocol and tieéated algorithms described in this report.

The Fuzzball clock model uses a combination of hardware and software to provide precision timing
with a minimum of procesor overhead. The model includes an oscillat@sgaler and hardware

clock counter; however, the oscillator frequency remains constant and the hardware counter
produces only a fiion of the total number of bitequired by the full clock counter. In the model
implementation the hardware counter counts in milliseconds and the software counter is represented
in integer milliseconds and fraction, although only the integer portion is available to client
applications. A hardware-counter overflow causes the processor to increment the software counter
at the bit corresponding to the frequency 1009xghereN is the width in bits of the hardware
counter. The processor reads the clock by first generating a read pulse, which latches the hardware
counter, and then adding its contents, suitably aligned, to the software counter. In order to insure
atomicity, interrupts are disabled while the counter is latched. If a counter overflow is raised after
its contents have been latched, the software counter is incremented and the hardware counter read
again.

The Fuzzball clock can be corrected in time by adding a (signed) adjustment to the software clock
counter. In practice, this is done only when the actual time is substantially different from the clock
time, such as when the system is first started, and may violate the monotonic requirement. Vernier
time adjustments which occur in normal system operation are performed at intervals of 4 s, called
theadjustmentintervabnd are limited in magnitude£600 us to avoid affecting the visible portion

of the counter by more than one tick. This interval provides a maximum frequency adjustment range
of +125 ppm. The adjustment opportunities @eated using the interval-timercthty, which is a

feature of most operating systems and independent of teeofitlay clock.

This design is similar to thieidden offsetmethod described in [WIL90]; however, that method
avoids violating the monotonic requirement by using special hardware which is nmogm
available in real-time clock interfaces. With the fuzzball design it is necessary to provide a variable
used to remember the last clock reading. At the next clock reading the value returned is the maximum
of the previous and current clock readings. In fault-tolerant computer architectureepoaged
finite-state machines [SCH90] it is necessary that every distinct event be assigned a unique
timestamp. In the Fuzzball model this is assured as long as the minimum interval between successive
clock readings is greater than 1 ms (one tick). If not, it is necessary to artificially increment each
succeeding reading in the same tick, which of course decreases the accuracy relative to network



time. However, under the assumption that the average rate of timestamp requests is will@&low
per second, the probability of more than one request in the same tick is small and the accuracy
degradation is slight.

In some applications involving the Fuzzball model, an external pulse-per-second (pps) signal is
available from areference source such as a cesium clock or Global Positioning System (GPS) timing
receiver. Such a signal generally provides much higher accuracy than the serial character string
produced by a radio clock and is typically in the low nanoseconds. The pps signal can be processed
by an interface which produces a hardware interrupt coincident with the arrival of the pps pulse.
The processor then determines the current time and computes the resthille ins. Assuming

the seconds numbering of the clock counter has been determined by a reliable source, such as an
ordinary radio clock or even NTP itself, the final offset within the second can be determined from
the residue.

The above technique has an inherent error equal to the latency of the interrupt system, which in
modern RISC processors is in the low tens of microseconds. In the fuzzball this is avoided by
latching the hardware clock counter directly by the pps pulse and then reading the counter in the
same way as usual. The additional circuitry required to prioritize the pps signal and latch the counter
is a feature of some clock interfaces available for the PDP11.

4.2. The Unix Clock Model

The Unix 4.3bsd clock model is based on two system salismeofdayndadjtime together with

two intrinsic variablegick andtickadj The settimeofdaycall unceremoniously resets the kernel
clock to the value given, while tlaaljtime call slews the kernel clock to a new value numerically
equal to the sum of the present time of day and the (signed) argument giveadjtitinecall. In

order to understand the behavior of the Unix clock as incorporated into precision timing systems,
it is helpful to explore the operations adjtime in more detail.

The Unix clock model assumes an interrupt produced by an onboard frequency source in the 100-Hz
range, such as the oscillator and prescaler described previously. Each interrupt causes an increment
calledtick to be added to a software clock counter. The value of the increment is chosen so that the
counter, plus an initial offset established by se&imeofdaycall, is equal to the time of day in
microseconds.

The Unix clock can actually run at three different rates, one at the intrinsic oscillator frequency

tiik’ another at a slightly higher frequency and a third at a slightly lower frequeetyngShe

tickadj
tick

zero,+R and-Rrespectively. Normally the zero offset is used; batdjfimeis called, the argument

amortization rateR = for convenience, these three rates correspond to frequency offsets of

0 given is used to calculate an inter¥al= g, called theamortization intervalin ticks), during

which either thetR or —R rate is used, depending on the sig.of he effect is to slew the clock
to a new value at a small, constant rate, rather than incorporate the adjustment all at once, which
could violate the monotonic requirement.

In most Unix systems the valuestafk andtickadj are expressed as integer microseconds. With
common values ofick = 10,000us andtickadj= 4 us, the amortization rate 400 ppm. The
effective clock frequency can be adjusted by changing the vatig&,dhus adjusting the frequency



Figure 5. Clock Adjustment Process

in steps of approximately 100 ppm. The amortization rate can be adjusted by changing the value of
tickadj The ways in which these quantities affect the accuracy and stability of the local clock are
discussed in the next section.

4.3. A Precision Clock Model

In the basic Unix model the precision of the local clock is no better than the vaicie asually

about 10 ms; while, in the Fuzzball model the precision is no better than 1 ms. As mentioned
previously, it is highly desirable that distinct events be assigned unique timestamps. This is
facilitated if the precision of the local clock is of the order of the clock-reading routine execution
time, or some few microseconds in a modern RISC workstation. In order to achieve this level of
precision, it is necessary to use a high-frequency hardware clock, such as the microsecond clock
which is a feature of some Unix platforms.

In order to provide time accurate to much less than 1 ms using message update intervals appropriate
for a wide area network, it is necessary to calibrate the intrinsic oscillator frequency error and
compensate for it using periodic adjustments. This is accomplished by ealjtirge at regular
adjustment intervalsin newer RISC systems equipped with microsecond clocks, it is possible to
obtain accuracies to the orderl@fOus. Using phase-lock techniques as described in the following
section, it is possible to sustain this accuracy with update intervals extending to well over ten
minutes. The following ana#ys can be used to establish the parameters of the model.

Figure 5 shows the offsBtas a function of timefor the Unix clock model. The oscillator has an
assumed tolerance afh ppm, a fixed amortization ra#R ppm and an adjustment interval In

the diagram the heavy lines show the offsets for two cases, battedawith the effective frequency
offset. If no corrections are applied, the time offset grows at an assumed maximum positive rate
¢ as shown by the lin&C in the diagram. The pathCE shows the offset for the case where the
clock is steered at zero nominal rate and theABE for the case where it is steered at an assumed
maximum negative ratap. For the first case the amortization intetaéxtends fronC toD, when

the clock resumes its intrinsic rate; while, in the second case it extendB tmi

If 8 is the true offset required at the end of the amortization interval, then
0=0¢(c - At) + At(d - R) .

If € is the maximum absolute error allowed, the amortization int&twalust satisfy the inequality
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R-¢

In order to steer the clock to a nominal rate of Z&roQ. The above expressions yield the inequality

At <

€
R-¢°

In order to steer the clock to a nominal rate-¢f 6 = —¢o. According to the above, this requires
R = 2¢ in order that the adjustments complete before the end of the adjustment interval.

O'<B
0

For example, let the maximum absolute erroe beLl00ps, oscillator tolerancé = 200 ppm and
amortization rateR = 400 ppm. Substituting in the above expressions results in the inequality
o < 1 s. While considerably less than the Fuzzball value, an adjustment interval of 1 s is not likely
to burden a modern processor.

As a practical matter, and especially with Sun Microsystems SPARCstations, the frequency error
can be up to several hundred ppm. SPARCstations have two clocks, a microsecond clock used for
ordinary system time and a low resolution calendar clock used to maintain the date. The microsecond
clock is periodically compared with the calendar clock and, if off by more than one tick, is adjusted
as described previously. In addition, each clock reading is guaranteed to be monotonic increasing
using methods similar to the Fuzzball.

While it is possible to compensate for large frequency errors using the above model with appropriate
parameters, the adjustment interval would become quite small. A better approach is to adjust the
value oftick to reduce the frequency error first. For instance, reducing the vatiek by one
increases the clock frequency by approximately 100 ppm. In this way the frequency error can be
adjusted to well within the200 ppm bracket assumed in the above analysis.

5. Mathematical Model of the Generic Local Clock

The local clock is the source of all timing information used by the operating system and its clients,
as well as the timestamps used by the time-synchronization protocol. In fault-resistdnttedtri
systems, the goal of the timekeeping system is to minimize the error of all timestamps relative to
the minimum transission delay over the network path between any two nodes. As shown later,
this is not possible under the assumption that the contributing oscillators areuenéegtabilized.
However, it is possible if they are designed as illustrated in this section.

In a previous section a precision clock model is developed which can maintain a given maximum
error by introducing corrections at given adjustment intervals. In the model illustrated the resulting
time offsets appear as triangles with a peak oftl)®ut requires an adjustment interval not greater
than 1 s. In wide area networks thedisynchronization protocol can deliver measurement updates
only at intervals much greater than this, depending on protocol design and the accuracy required.
Therefore, it is necessary to provide some kind of “flywheel” having a relatively long time constant
in the order of many minutes or even hours.

The models discussed in the previous section include provisions to adjust the clock in both time and
frequency. However, a significant improvement in accuracy abditstas possible by modelling

the local clock and its adjustment mechanismsdisciplined oscillator In a disciplined oscillator

the frequency is stalized by a feedback loop with a relatively long time constant, sogfjaéncy

is “learned” over some minutes or hours of integration. Besides improving accuracy, a disciplined
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Variable Description
vd phase detector output
Vs clock filter output
Ve loop filter output
Or reference phase
0o VCO phase
We PLL crossover frequency
(4 PLL corner frequency
Table 1. Phase-Lock Loop Variables
Parameter Value Description
a 20 VCO gain
o 20 adjustment interval
T 1 PLL time constant
T 29 clock-filter delay
Kt 2%4 frequency weight
Kg 210 phase weight
Kh 213 compliance weight
Ks 2t compliance maximum
Kt 2t compliance multiplier
Kp 26 poll-interval multiplier

Table 2. Phase-Lock Loop Parameters

oscillator can stabilize the frequency to a degree consonant with the intrinsic stability of the clock
oscillator, which is usually much less than its tolerance. This allows the update interval to be
increased substantially without loss of accuracy.

A disciplined oscillator can be implemented as the phase-lock loop (PLL) shown in Figure 2. The
PLL provides the means to adjust the local-clock time and frequency in response to corrections
delivered by the time-synchronization protocol. Its behavior can be described using an extensive
body of mathematics developed for the purpose, such as given in [SMI86] and elabdtased in
section. In addition, a design example is given for implementation guidance in operating-systems
environments such as Unix and Fuzzball. Table 1 summarizes the quantitieslptdazded as
variables in the model. By conventionjs used for internal loop variable®,for phasew for
frequency and for time. Table 2 summarizes those quantities ordynfixed as constants in the

model. Note that these are all expressed as a power of two, so that multiplies and divides can be
accomplished by shifts.

As shown in Figure 6, the varialfie represents the phase of the reference signaédatie phase

of the voltage-controlled oscillator (VCO). The phase detector (PD) produces a vgltagee-
senting the phase differen@e- 6o. The clock filter, if ued, unctions as a tapped delay line, with
the outputs taken at the tap selected by the clock-filter algorithm. The loop filter, represented by
the equations given below, produces a VCO correction voliggehich controls the oscillator
frequency and thus the phake

11
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Figure 6. Phase-Lock Loop (PLL) Model

The open-loop transfer functi@s) is constructed by breaking the loop at paioh Figure 6 and
computing the ratio of the output ph&sés) to the reference phaB8gs). This function is the product
of the individual transfer functions for the phase detector, clock filter, loop filter and VCO. With
appropriate scaling the phase detector delivers a voltgiye- 6r(t) V/rad, so its transfer function

d 6o(t)

is simplyFq(s) = 1. The VCO delivers a frequency change = at - ave(t), wherea is the

VCO gain in rad/V-s an@o(t) = a_[vc(t) dt. Its transfer function is the Laplace transform of the

integral,Fo(s) = %. The clock filter contributes a statistical delay due to the clock-filter algorithm;

but, for present purposes, this delay will be assumed a cofistaatits transfer function is the
Laplace transform of the delafs(s) = e 'S The open-loop gain is the product of these four transfer
functions

B0(s)
6:1(9)

G(S) = g g = FUIFLIFSFo(s) = € TF(S) .

In many cases the effects of the clock-filter délagan be neglected, so treat °= 1. Then, the
above equation can be written

G(9 = TF(9. @

The PLL behavior is then completely determined by the loopayaind transfer functioR(s). In

the simplest case whefés) is a constant, the loop will exhibit the classic behavior of a single-time-
constant (STC) system; however, in order to rediucieental timing jitter, it is usually desirable

to include a low-pass characteristidHi(s). In this case the loop becometype-1 PLL Since such

loops do not provide a way to reduce the residual time error to zero, an additional integration stage
can be introduced, in which case the loop beconmgpeall PLL The mathematical analysis is
different for each type of PLL, as shown in the following sections.

In either type of PLL the closed-loop gain is determined from classic feedback analysis

_ G (2)

H(s) = 1+G(s)

Assuming the output is takenwf the closed-loop input/output transfer function is the ratio of the
forward gain to the open-loop gain
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vs(s) _ Fa(s)e”'® (3)
Br(s) 1+G(s) °

The acquisition and tracking behavior of a PLL are determined by the loop gain and time constants
established by the loop filter. Tl@pture rangeof a PLL is the maximum frequency range over

which the PLL will achieve phase-lock, having previously been not in locktratieng rangeis

the maximum frequency range over which the PLL will remain locked, once phase-lock has been
achieved. The capture and tracking ranges of a PLL must be at least as large as the VCO tolerance.
In the design discussed here, the capture range is equal to the tracking range and both are greater
than the oscillator tolerance since, as shown previously, the adjustmeRtisajecater than the
tolerancep by a factor of two.

Ho(S) =

5.1. Type-l Phase-Lock Loop
A type-l PLL is characterized by a single low-pass filter with transfer function

s [d
F(S):%-"‘wD ,
0 LO

wherew is the corner frequency. Substitutingdquations (1) and (2) and rearrangyiglds the
closed-loop gain

-1

2
H(s):g‘?uwﬂ@ ,

wherewn and( are related to the loop gainand corner frequenay:

2 _ 1Dh)LE]T/2
wn=0aw. and {(=-[1F_0 .
200 g

For a first-order filter functiomoL. = T wheret is the time constant of integration. For a critically

damped (Butterworth) systetnshould be equal to_Jéz, which implies that the producti2 = 1.
This means that, as the time constant of integration is increased, the loop gain must be decreased
proportionally in order to maintain the same dynamic characteristics.

Atype-lI PLL can be imlemented as a sampled-data system using an exponential-average algorithm
for the loop filter. Letvs be the current sample from the clock filter &gcﬂae the current average.
Then the new average is

wheret = ch Is the time constant. The control voltage is then

N
Ve = avs(s) .

Up until this point the effects of the clock-filter delay have been neglected. To be effective, the
clock filter should contain a number of offset updates, with eight assumed a working number. Then,
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for a nominal update interval of one minute, the loop d&lasy/about eight minutes. In order to
preserve stability, the time constanshould be long compared to the loop delay, with one hour

assumed a working number, or abost21%s. For a critically damped system, this requires the

loop gain to be very smadl = 213 However, in a type-lI PLL the residual time-offset error is
proportional to the oscillator frequency error ancersely proportional to tHeop gain. Therefore,

at long averaging times and large frequency errors the offset error can become substantive. When
time constants in the order of an hour or more are required, a better choicgasllaRiL, as
described in the next section.

5.2. Type-Il Phase-Lock Loop

The type-1 PLL does not have the capability to pemsate for the intrinsic oscillator frequency
error, which by previous assumption can be as largg@ppm. With a frequency error of this
magnitude, it is necessary to provide frequent updates computed by @syichronization
protocol. For instance, if these adjustments were discontinued for a day, the time error would be
accumulate to over 8 s.

In order to minimize the residual time and frequency errors, yet allow relatively long update intervals
and averaging times, it is necessary to add another stage of integration, which amounts to the addition
of another pole at zero frequency. However, a PLL with two poles at zero frequency is unstable,
since the phase characteristic of the Bode plot approaches 180 degreaespbttiteacharacteristic

passes through unity gain. Insiidy can be avoided through the addition of a zero in the transfer
function, as shown in the following

2

wWc TS
Fe=—01+—),
(9= 1+,)

whereux is the crossover frequenayy is the corner frequency (required for loop stability) and
determines the PLL time constant and thus the bandwidth. While this is a first-order function and
some improvement in phase noise might be gained from a higher-order function, in practice the
improvement is lost due to the effects of the clock-filter delay. Making the followingtatibss,

and rearranging yields

a 01 1 0
G(s)=—F(s)=a + 0
S azg T KitsO

which corresponds to a constant term plus an integrating term scaled by the lom@gditime
constant. This form is convenient for implementation as a sampled-data system, as described later.

With the parameter values given in Table 2, the Bode plot of the open-loop transfer fGgstion
consists of a —12 dB/octave line which intersects the 0-dB baseligea 2 rad/s, together with
~14 We
2 = 2
2 20)2
suggests the PLL will be stable and have a large phase margin together with a low overshoot.

a +6 dB/octave line at the corner frequency= rad/s. The damping factdr=
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Variable Value Description
V1 update interval
p poll interval
f frequency error
g phase error
h compliance

Table 3. Variables Used in the NTP Local-Clock Model

However, if the clock-filter delay is not small compared to the loop delay, which is approximately
equal to the reciprocal of the crossover frequency, the above analysis becomes unreliable and the
loop can become unstable. With the values determined as abswedinarily small enough to be
neglected.

Assuming the output is takenwf the closed-loop transfer function can be obtained from Equation
(3). If only the relative response is needed and the clock-filter delay can leetedgthis can be
written

-1
2 2
1 212 Wc Wc
= = + —q+
Ho(s) 1+G(s) S % (DZTS ng

For some input functiol(s) the output functiom(s)H(s) can be inverted to find the time response.

Using a unit-step inpu{s) = i and the values determined as above, This yields a PLL risetime of

about 52 minutes, a maximum overshoot of about 4.8 percent in about 1.7 hours and a settling time
to within one percent of the initial offset in about 8.7 hours.

5.3. The NTP Local-Clock Model

The type-1l PLL behavior can also be described as a sampled-data system using a set of recurrence
equations. The variables and parameters used in these equations are shown in Tables 2 and 3. Note
the use of powers of two, which facilitates implementation using arithmetic shifts and avoids the
requirement for a multiply/divide capability.

A capsule overview of the design may be helpful in understanding how the model operates. The
local clock is continuously adjusted in small increments at fixed adjustment intervalse
increments are computed from the values of the frequencyf andiphase errgr. These variables

are computed from the timestamps in messages received at nominal update pnteviiads are
variable from about one to over 17 minutes. As part of update processing, the contpisnce
computed and used to adjustFinally, the poll intervalp for transmitted NTP messages is
determined as a fixed multiple of

Updates are numbered from zero, with those in the neighborhooditf tipelate shown in Figure
7. All variables are initialized at= 0 to zero, except the time consta(@) = t, update interval

n(0) = Kp and complianci(0) = Ks (from Table 2). After an interval(i) (i > 0) from the previous

update thath update arrives at timi) including the time offsets(i). Then, after an interval
p(i + 1) thei+1th update arrives at tim@ + 1) including the time offsets(i + 1). When the update
vg(i) is received, the frequency erfGr+ 1) and phase err@(i + 1) are computed:
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t(i - 1) t(i) (i +2)

u() u(i + 1) time

Figure 7. Timing Intervals

HOVS) g el
2 o 9i+D=

Note that these computations depend on the value of the time corfgtamd update interval
p(i) previously computed from thelth update. Then, the time constant for the next interval is
computed from the current value of the compliamge

1(i + 1) = maxKs— | h(i)|, 1] .

f(i + 1) = (i) +
(i)

Next, using the new value of calledt’ to avoid confusion, the poll interval is computed
p(l +1):Kp'[' .
Finally, the complianca(i + 1) is recomputed for use in tielth update:

Kt T'vs(i) = h(i)

h(i + 1) = h(i) + ‘.

The factort’ in the above has the effect of adjusting the bandwidth of the PLL as a function of
compliance. When the compliance has been low over some relatively long peisoidcreased

and the bandwidth is decreased. In this mode small timing fluctuations iiiter tm the subnet

are suppressed and the PLL attains the most accurate frequency estimate. On the other hand, if the
compliance becomes high due to greatly increased jitter or a systematic frequencyt'aset,
decreased and the bandwidth is increased. In this mode the PLL is most adaptive to transients which
can occur due to reboot of the system or a major timing error. In order to maintain optimum stability,
the poll intervalp is varied directly with.

A model suitable for simulation and parameter refinement can be constructed from the above
recurrence relations. It is convenient to set the temporary vasialgé + 1). At each adjustment

: . i+1). . .
intervalo the quantltyKi + f('Kfl) is added to the local-clock time and the qualﬁlﬁys subtracted
g g

froma. For convenience, letbe the greatest integer&éﬂ; that is, the number of adjustments that
occur in theth interval. Thus, at the end of thé interval just before the-1th update, the VCO
control voltage is:

Vel + D =vel) + (L= (L= )T gl + D+ 1+ D).

Detailed simulation of the NTP PLL with the values specified in Tables 2 and 3 and the clock filter
described in the NTP specification results in the following characteristics: For a 100-ms time change
the loop reaches zero error in 39 minutes, overshoots 7 ms at 54 minutes and settles to less than 1
ms in about six hours. For a 50-ppm frequency change the loop reaches 1 ppm in about 16 hours
and 0.1 ppm in about 26 hours. When the magnitude of correction exceeds a few milliseconds or a
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few ppm for more than a few updates, the compliance begins to increase, which caloggs the

time constant and update interval to decrease. When the magnitude of correction falls below about
0.1 ppm for a few hours, the compliance begins to decrease, which causes the loop time constant
and update interval to increase. The effect is to provide a broad capture range exceeding 8 s per day
together with the capability to resolve oscillator frequency well below 1 ms per day. These
characteristics are appropriate for typical crystal-controlled oscillators with or without temperature
compensation or oven control.

5.4. Bandwidth Management

A key feature of the gye-1l PLL design is its cajpality to compensate for the intrinsic frequency

error of the local oscillator. This requires mitial period of adaptation in der to refine the
frequency estimate. Thgparameter determines the PLL time constant and thus the loop bandwidth,
which is invesely poportional tot. It also determines the poll interval, which is a fixed multiple

of 1. When operated with relatively large bandwidth (smal), as in the analysis above, the PLL
adapts quickly to changes in the input reference signal, but has poor long term stability. Thus, it is
possible to accumulate substantial errors if the system is deprived of its reference signal for an
extended period. When operated witlelatively small bandwidth (largg, the PLL adapts slowly

to changes in the input reference signas#ming the frequency estimate has stabilized, itis possible
for the PLL to coast for an extended period withot¢mal corrections anditkiout accumulating
significant error.

There are several tradeoffs in providing an adaptive-bandwidtibitapd_ong averaging times

(low bandwidth) reduces timing jitter, improves frequencpita and allows infrequent update
messages. However, the low bandihiPLL converges very slowly to changes in the operating
environment. Short averaging times (high bandwidth) speeds convergence time, but requires
frequent update messages. An often overlooked advantage of the adaptive-banddedil the
freedom from intricate configuration management to match the PLL parameters to the particular
ambient oscillator stality and stdistical network delay variations. The methods described in the
previous sections do this automatically.

With the adaptie-bandwidth approach it is necessary to compute each vaiubasied on the
measured values of offset, delay and dispersion, as produced by the time-synchronization protocol
itself. The traditional way of doing this in precision timekeeping systems based on cesium clocks
is to relater to the Allan variance, which is defined as the mean of the first-order differences of
sequential samples measured during a specified interialthe NTP local-clock model this is

called compliancé and is approximated on a continuous basis by exponentially averaging the
first-order differences of the offset samples using an empirically determined averaging constant.
Using somewhat ad-hoc mapping functions determined from simulation and experience, the
compliance is manipulated to produce the loop time constamd poll intervap.

Bandwidth management is done usingdhendt parameters shown in Table 2. Tda@arameter

is determined by the tolerance of the local oscillator and the maximum jitter requirements of the
timekeeping system. This parameter is usually an architecture constant and fixed during system
operation. In the implementation model described previously, the reciprocal alled the
adjustment intervab, determines the time between adjustments of the local clock, and thus the
value ofa. The value ot can be determined using the methods of Section 4.3.

17



The local-clock model as described is appropriate for a convergence interval of about one hour. In
some applications much more rapid convergence times are required. In such cases thea value of
can be materially reduced; however, in order to maintain stability, the adjustment iateruat

be small compared to the update intepnah the design above where the convergence time is about
one hour, withu = 64 s, a value ob = 1 s is conservative. However, if the valuesaé changed,

the parametetsi andK g must be adjusted in order to retain the same transient behavior; in particular,
the samewc andwz. Sincea varies as the reciprocal of if o is changed to something other than

1, asin Table 2, it is necessary to divide b¢tlandKg by o..

6. Clock-Combining Algorithms

A common problem in synchronization subnets is systematic time offsets resulting from asymmetric
transmission paths, where the transmission delay in one direction is substantially different from the
delay in the other. These errors can range from microseconds on high speed ring networks to large
fractions of a second on satellite/landline paths. It has been found experimentally that these errors
can be considerably reduced by combining the apparent offsets of a number of peer servers to
produce a more accurate timescale than any of its contributors. Following is a description of a
method similar to that used by national standards laboratories to determine a syntbstalém

from an ensemble of cesium clocks [ALL74b].combining method applicable to the general problem.

Consider the time offsets of a number of real clocks connected by real networks. A histogram of
offsets relative to the standard timescale will appear as a system of bell-shaped curves, but with
some further away from nominal zero than others. The bells will normally be scattered over the
offset space, more or less close to each other, with some overlapping and someldiioin due

to intrinsic frequency offsets, successive histograms will reveal that the bells precess slowly with
time relative to the standard timescalée problem is to estimate the true offssative to the
standard timescale using information collected routinely between the clocks.

The notation< x> in the following designates the (infinite) time average,afvhich is usually
approximated by an exponential time average, while the nobatltmslgnates an estimator for

and | designates its absolute value. A composite timescale can be determined from a sequence of
offsets measured between thelocks of an ensemble at nominal intervald et Ri(to) be the
frequency andi(t) be the time of thah clock at epocly relative to the standard timescale. Recall

that the time difference or offset between cloakd clock isTij(t) = Ti(t) — Tj(t). Then, an estimator

for Ti computed at epodb for epochip + T is

%i (to+1) = /F\ii (to)t + Ti(to) ,

neglecting second-order terms. Consider a setrafependent offset measurements made between
the clocks at epoctp + 1. The offset of clock relative toclock j at that epoch is

Tij(to+ 1) =Ti(to+ 1) - Tj(to + 1) .

Let wi(t) be a previously determined weight factor associated witkththedock for the nominal
intervalt chosen such that

ZWi(T) =1
i=1
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The basis for new estimates at epacht is then

n

Tj(to+ 1) = Zwi (T)['/h(to +71) + Tji(to + 1)] .
i=1

That is, the apparent time indicated by jtiheclock is a weighted average of the estimated time of
each clock at epodp + T plus the offset measured betweenjtheclock and that clock at epoch
to+T.

An intuitive grasp of théehavior of this algorithm can be gained with the aid of a few examples.
For instance, ifwi(t) is unity for theith clock and zero for all others, the apparent time for each of
the other clocks is simply the estimated tzl\’r@o +1). If wi(1) is zero for theth clock, that clock

can never affect any other clock and its apparent time is determined entirely from the other clocks.
If wi(t) = ¥n for alli, the apparent time of tlih clock is equal to the average of the time estimates
computed atp plus the average of the time offsets measured to all other clocks. Finally, in a system
with two clocks andwi(t) = ¥2 for each, and if the estimated time at eptgchrt is fast by 1 s for

one clock and slow by 1 s for the other, the apparent time for both clocks will coincide with the
standard timescale.

In order to establish a basis for the next intery#lis necessary to update the frequency estimate
R.(to+r) and weight factowi(t). The average frequency assumed foritheclock during the
previous intervat is simply the difference between the times at the beginning and end of the interval
divided byt. A good estimator foRi(to + T) has been found to be the exponential average of these
differences, which is given by [ALL74a]

Ti(to + 1) — Ti(to)
T

Ri(to + 1) = Ri(to) + ai[Ri(to) - 1,

whereaq; is an experimentally determined weight factor which depends on the estimated stability
of theith clock. In order to calculate the weight faatg(t), it is necessary to determine the expected
error gi(t) for each clock. An estimate of the magnitude of the unbiased error dhtbkck
accumulated over the nominal intervas [ALL74a]

2
&(T) = |'/h(to +1) - Ti(to + T)| + M ’
< ¢ (T) >/2

where €j(t) and ge(t) are the accumulated error of tit clock and entire clock ensemble,
respectively. The accumulated error of the entire ensemble is
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When all estimators and weight factors have been updated, the origin of the estimation interval is
shifted and the new value ifbecomes the old value wof + 1.

While not entering directly into the above calculations, it is useful to estimate toerioggerror,

since the ensemble clocks can be located some distance from each other and become isolated for
some time due to subnet failures. The frequency-offset erfyrigiequivalent to the fractional
frequencyyi,

Vi = V|

Yi = v

where the frequency; is measured on théh timescale and the frequeneyis measured on the
standard or ensemble timescale. Temporarily dropping the sulb$origarity,consider a sequence

of N independent frequency-offset samplgs(j = 1, 2,..., N) where the interval between samples

is uniform and equal t©. Lett be the nominal interval over which these samples are averaged. The

Allan variancecr)z,(N, T, 1) [ALL74a] is defined as
2 1 T 2 1 ah g%
<O-Y(N’T’ T)>:< N-1 y(J) _N y(J)DEP’
HIN
1 1 OQg

A particularlyuseful formulaibn isN = 2 andT =1:

<o§(N=2,T=1,1)>=00(1) =<

HESE yi)l® |

so that
1 N-1
of(t) = Z(N_l)zl [yG + 1) - y()° .
£

The Allan variance is particularlyseful when comparinthe intrinsic stability of the oscillators

used in different local clocks and timecode receivers. The oscillators are uncoupled from all
synchronization sources and left to flywheel for periods up to a month. At intervals of a minute or
so the oscillator frequency is measured relative to a precision standard, such as a cesium oscillator
or timing receiver. Figure 8 is a plot on log-log scalethefAllan variance for a Spectracom 8170
WWVB timecode receiver measured at the 1-pps output compared to a Global Positioning System
timing receiver. The WWVB receiver uses an uncompensated crystal oscillator disciplined to the
WWVB signal at 60 kHz. The 1-pps output is extracted from the timecode modulation using a
counter with a resolution of 1. The resulting short-term stability, averaged over periods up to
about two hours is constant at about 5 parts in (pb). The effects of the oscillator discipline is
clearly evident in the fall of the curve at larger averaging periods. The flattened portion of the curve
clearly shows the improvement in short-term frequency stabilization provided by the PLL and
low-pass filter.

7. Analysis of Errors

This section contains an in-depth analysis of time and frequency errors due to systematic and random
phenomena. Errors originate in the local clocks and transmission paths in the synchronization subnet
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Figure 8. Allan Variance of WWVB Receiver

and in the service used to disseminate standard time (UTC) to the primary servers. Errors originating
in the local clock are due to the clock-counter resolution and oscillator frequency uncertainty. In
the models considered in this report, the time-synchronization protocol operates to distribute timing
information over a hierarchically structured subnet spanning all participants and rooted at the
primary (stratum-1) time server. Therefore, errors accumulate at each ltheshierarchy due to
local-clock errors and statistical transmission delays. In this report radio ptiopagi@denomena

and receiver inaccuracies at the primary server will be neglected. See [MIL90] for further discussion
on these issues.

It is necessary at the outset to identify two types of error bodidslute error boundestablish

the worst-case errors in al®et where all time servers are operating correctly and synchronized to
UTC. As proved in this sdoh, absolute bounds establish the correctness of a clock reading, since
UTC time is always contained within the interval defined by the absolute bounds and any reading
outside these bounds must be due to a faulty clteltstical error boundsestablish the maximum
expected errors as a function of measured statistical variations. They include systematic quantities
due to the local-clock precision and tolerance, as well as random quantities due to sample variance.
Knowledge of statistical bounds is necessary in order to calibrate the performance in actual operation
and mitigate among the several synchronization sources usually available at each level in the subnet
hierarchy.

The notation< x> in the following designates the (infinite) time average,afvhich is usually
approximated by an exponential time average, while the nobatltmslgnates an estimator for
and x| designates its absolute value. The notatien[u, v] describes the closed interval in which

u is the lower limit andv the upper limit. Thusy = min(w) <v=maxw), and for scalam,
a+w=[a+u,a+v] andaw=[ay, av]. Table 4 shows a summary of other notation used in the
analysis. The lower-case Greek lett®r$ ande are used to designate measurement data for the
local clock relative to a peer server, while the upper-case Greek Bit&randE are used to
designate measurement data for the local clock relative to the prseramsr. Exeptions will be
noted as they arise.
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Variable Description
r reading error
p max reading error
f frequency error
() max frequency error
6,0 clock offset
0, A roundtrip delay
& E error/dispersion
t time
T time interval
T NTP timestamp
s clock divider increment
fc clock oscillator frequency

Table 4. Notation Used in Error Analysis

7.1. Clock Modelling

The standard second (1 s) is defined as “9,192,631,770 periods of the radiation corresponding to
the transition between the two gerfine levels ofthe ground state of the cesium-133 atom”
[ALL74b], which implies a granularity of about 1.1x10s. Other intervals can be determined as
rational multiples of 1 s. Ordinary computer clocks have resolutions much larger than'll%xlo

so the inherent error in resolving time relative to the standard second can be neglected.

Let T(t) be the time displayed by a clock at epochlative to the standard timescale:

T(t) = ¥2D(to)[t - to]® + R(to)[t — to] + T(to) + x(t) ,

whereD(to) is thedrift (first derivative of frequency) per unit timB(tg) the frequency anii(to)

the time at some previous epoigh In the usual stationary model these quantities are assumed
constant or changing slowly with epoch. The random nature of the clock is charactendgd by
which represents the error relative to the standard timescale.

In the usual analysis the second-order tBx(tn) is ignored and the noise tert(t) modelled as a

normal distribution with predictable spectral density or autocorrelation function. Thebpitgba

density function (pdf) ok(t) usually appears as a bell-shaped curve centered near zero. The width
and general shape of the curve are determined by the oscillator jitter and wander characteristics, as
well as the measurement system and its transmission paths. Beginning abepedbell creeps

either to the left or right, depending on the valuB(@f) and accelerates depending on the value of
D(to).

In this analysis the local clock is represented by a counter/divider which increments at intervals of
s seconds and is driven by an oscillator which operates at freq&entr:é/for some integen. A

timestampT(t) is determined by reading the clock at an arbitrary tirttee argument will be

usually omitted for conciseness). Reading the clock truncates some number of low-order bits, which
introduces a reading error represented by the random vari@blended by the intervat[p, 0],

wherep depends on thprecision or interval between clock ticks. Since the intervals between
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reading the same clock are almost always independent of and much largesticaassive readings

can be considered independent and identically distributed. The frequency error of the clock oscillator
is represented by the random variablounded by the intervat[p, ¢], whered represents the
tolerance of the oscillator throughout its service life. Whiler a particular clock is a random
variable with respect to the population of all clocks, for any one clock it ordinarily changes only
slowly with time and can usually be assumed a constant for that clock. Thus, the error in a timestamp
can be represented by the random variable

eM)=t-T{)=r+fr,

wheret represents a clock readingrepresents the time interval since this reading and minor
approximations inherent in the measurementanfe neglected.

In order to assess the nature and expected magnitude of timestamp errors and the calculations based
on them, it is useful to examitige characteristics of the pgigx) andps(x) for r andf respectively.
Assuming the clock reading and counting processes are indepepdents uniform over the

interval [ p, 0] and zero elsewhere. With conventional manufacturing processes and temperature
variationspf(x) can be approximated by a truncated, zero-mean Gaussian distribution with standard
deviationo over the interval{ ¢, ¢] and zero elsewhere. In conventional manufacturing processes

o is maneuvered so that the fraction of samples rejected outside the intdryd] s acceptable.

The pdf for the total timestamp error is thus the sum of dredf contributions, computed as the
convolution

Pe(t)(X) = T[ pr(u)pr(x - u)du,

which appears as a bell-shaped curve, expandingiysymmetric about P and bounded by the

2
interval

[min(r) + min(ft), maxr) + maxft)] = [- p - ¢1, ¢1] .
Sincef changes only slowly over time for any single clock, the error is bounded by the interval
€ = [min(r) + ft, maxr) +ft] =[-p, O] + T,

which should not be confused with the random variafdg which represents the error itself. In
the following development subscripts will be used on varioustdies to indicate to which entity
or timestamp the quantity applies. Occasionaliyjll be used to designate an absolute maximum
error, rather than the interval, but the distinction will be clear from context.

7.2. Measurement Errors

The roundtrip delay and clock offset between two paexsdB are determined by a procedure in

which timestamps are exchanged via the subnet paths between them. The procedure involves the
four most recent timestamps numbered as shown in Figure 3, whépgd¢peesents the true offset

of peerB relative to peeA. TheT1 andT4 timestamps are determined relative toAhdock, while

the T2 andT3 timestamps are determined relative toBha#dock. The measured deléyand clock

0 of B relative toA are given by
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(T2-T1) + (T3 - Ty) _ (4)

0=(T4-T1)-(T3—-T2) and 6= 5

The errors inherent in determining the timestampg 2, T3 andT4 are, respectively,
e1=[-pa 0], e2=[-pB, 0], e3=[-pB, O] + fB(T3 —~ T2), €4 =[- pA, O] + fa(T4 - T1) .

For specific peera andB, wherefa andfg can be considered constants, the interval containing the
maximum error inherent in determinidgs given by

[min(e4) — maxe1) — maxel) + min(e2), maxe4) — min(e1) — min(e3) + maxe2)]
=[-pa-pB, pa+pB] +fa(T4-T1) - fB(T3-T2) .

In a precision local clock the residual frequency erig@endfg are minimized through the use of
atype-Il phase-lockoop (PLL). Under most conditions these errors will be small and can be ignored.
The pdf for the remaining errors is symmetric, so drakd> is an unbiased maximum-likiebod
estimator for the true delay, independent of the particular valygsaridpsg.

However, in order to reliably bound the errors under all conditions of component variation and
operational regimes, the design of the PLL and its oscillator tolerance must be controlled so that it
is not possible under any circumstancesAar fg to exceed the bounds §a, da] or [~ ¢B, dB],
respectively. Setting = maxpa, ps) for convenience, the absolute maximum egginherent in
determining delay is given by

es=p+9oA(Ta—Ti1) +¢8(T3-T2) ,
neglecting residuals.

As in the case fob, wherefa andfg can be considered constants, the interval containing the
maximum error inherent in determiniBgs given by

[min(e2) — maxe1) + min(ez) — maxe4), maxe2) — min(e1) + maxes) — min(e4)]
2

fa(T3—T2) — fa(Ta—T
:[_pB’pA]+B(3 2)2A(4 1)

Under most conditions the errors duég@ndfg will be small and can be ignored gi = ps = p;

that is, if both the& andB clocks have the same resolution, the pdf for the remaining errors is
symmetric, so tha = <6> is an unbiased maximum-likelihood estimator for the true offset
independent of the particular valuepofif pa # pB, <6> is not an unbiased estimator; however, the
bias error is in the order of

PA~PB
5 .

and can usually be neglected.

Again settingp = maxpa, ps) for convenience, the absolute maximum eggoinherent in deter-
mining offsetd is given by

P+ 0A(T4-T1) + ¢B(T3-T2)
> .

€=
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7.3. Network Errors

In practice, errors due to statistical network delays usually dominate the erret.dodgeneral, it

is not possible to characterize network delays as a stationary random process, since network queues
can grow and shrink in chaotic fashion and packet arrivals are frequently bursty. However, itis a
simple exercise to calculate absolute error bounds as a function of measured delay. Let
T2-Ti1=aandT3-T4=b. Then, from (4)

a+b

d=a-b and 6= 5

The true offset oB relative toA is calleddo in Figure 3. Lek denote the actual delay between the
departure of a message frénand its arrival aB. Thereforex + 8p = T2 — T1 = a. Sincex must be
positive in our universes =a — 6p = 0, which require®p < a. A similar argument requires that
b < B0, so surelyb < 6p < a. This inequality can also be expressed

_a+b a-b

atb a-b_
b_2 2

2 T T&

<0p<
which is equivalent to

e—gseose+2.

In the previous section bounds on delay and offset errors were determined. This inequality can also
be written

+ &5
2 b

+ &5

) )
SR <B0<O+eg+
wheregg is the maximum offset error amg is the maximum delay error derived previously. The
guantity

& _

E=€p+
% 5

p+OA(Ta—T1) +6B(T3-T2),
called the peer dispersion, defines the maximum statistical error in the inequality. Thus, the
maximum absolute error must be bounded on the interval
0 0 5)
-— - +—+¢].
[6 57 E 0 5 €]
By construction, if the peer server is correctly synchronized to UTC with zero error; then, with
respect to the local clock, the true value of UTC must lie somewhere in this interval.

7.4. Inherited Errors

Since the synchronization subnet is structured as a tree rooted at the gemary some time

servers are farther from the primary server than others. Errors accumulate at each subnet server and
on the network transmission paths between them. The following discussion establishes how errors
inherent in the time-transfer process accumul&temthe subnet and contribute to the error budget

at each level.
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Peer Variables Filter Filter Variables System Variables

V[(T2-T) +(T3-T4)] — 6 —— 0=6 clock offset =0
(Ta-Ty) - (T3-T2) — Oi —  0=10 @— root delayA =6 + A’
p+¢(Ta—-Ti) — &+ ¢T — E£=¢gi+¢o {z} root dispersionE =

eE+dT+es+ O +F

root delayA’ = A

root dispersion
E=E+p+0t

Figure 9. Error Accumulations

The time servers at each level calculate the local clock @fsedot delayA and root dispersion

E relative to the primary server. As described previously, the update mesdades timestamps
from which the offseb, delayd and dispersiol of the local clock relative to a peer server are
computed. In addition, the precisipnroot delayA and root dispersioB of the peeserver relative

to the primary server are included in theessage. The disg#on ¢ includes the following
contributions:

1. Each time the local clock is read a reading error is incurred due tmiteegfanularity or
precision of the implementation. This is called the measurement dispgrsion

2. Once a time offset is determined, an error due to frequency offset accumulates with time. This
is called the skew dispersign, where¢ is the maximum frequency error ané the interval
since the dispersion was last updated.

3 When a series of offsets are determined at regular intervals and accumulated in a window of
samples, as in the NTP clock-filter algorithm, the (estimated) additional error due to the offset
sample variance is called the filter dispersen

4. When a number of peers are considered for synchronization and two or more are determined to
be correctly synchronized to a primasgrver, as in the NTP clock-eetion algorithm, the
(estimated) additional error due to the combined offset sample variance is called the selection
dispersiores.

Figure 9 shows how these errors accumulate in the ordinary course of processing. The peer variables
include the timestamps and most recent root delay and root dispersion computed by the peer. From
the four most recent timestamps T2, T3 andT4 the offset and delay of the local clock relative to

the peer server are calculated. Included in the message are the rodt deldyoot dispersioR’

of the peer itself; however, before sending, the peer adds the measurement digpardiskew
dispersionpt, where these quantities are determined by the peeariatide interval determined by

the peer since its clock was last updated.

The clock-filter procedure saves the several most recent saf@edd; in a shift register. The
quantitiesp and¢ characterize the local clock maximum reading error and maximum frequency
error, respectively. Upon arrival each sample is assigned a disparsipnt+ ¢ (T4 — T1), which
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represents the dispersion accumulated since readifig tmestamp. When a new sample arrives,
all samples in the filter are updated with the skew dispefsigrwherert; is the interval since the
last sample arrived. The clock-filter algorithm determines the selected @ftegfether with the
associated delayand filter dispersiogg. It addses to the associated sample dispersioio form
the peer dispersion

The clock-selection procedure selects a single peer to become the synchronization source. The
operation of the algorithm determines the final of8etlelayA and dispersioft relative to the

primary server, as shown in Figure 9. Note the inclusion of the selected peer dispersion and skew
accumulation since that dispersion was last updated, as well as the select dispemouted

by the clock-select algorithm itself. In order to preserve overall synchronizatimetsstability,

the final offse® is in fact determined from the offset of the local clock relative to the peer server,
rather than the primary server. Finally, note that the varidblesdE' are in fact determined from

the latest rassage received, not at the precise time the afédetted by the clock-filter algorithm

was determined. Minor errors arising due to these simplifications are ignored. Thus, the total
dispersion accumulation relative to the primary server is

E=e+dr+e+|O|+E',

wheret is the time since the local variables were last updateddunithe absolute error in setting
the local clock.

The synchronization subnet topology is that of a tree rooted at the primary server. Ordinarily, the
offset©®o, root delayAo and root dispersioBo at the primanserver are all zero, althouddy can

be manipulated to reflect the diyaof the radio clock or other source of standard time. These three
values are all additive; that is,Gf, Ai andE; represent the values at péeelative to the primary
server, the values

i) =0 +6j(t), Aj()=Ai+9j, Ejt)=E +¢&i+c¢t),

represent the offset, delay and dispersion of pattimet. The time dependence @ft) ande;(t)
represents the local-clock correction and dispersion accumulated since the last update was received
from peeii, while the terngj represents the dispersion accumulated byidean the time its clock

was last set until the latest update was sent tojpeer

Since there is an unbroken path from every time server to the preeagr.the statistical error

bound is the sum of the maximum absolute errors and estimated statistical errors accumulated from
the primary server. According to the above development the statistical error bound is in fact the root

dispersionE. From (5) and the above development, the absolute error bound, also called the

synchronization distan¢és

A
N=E+_.
2

The synchronization distance is the metric used by the NTP clock-selection algorithm to organize
the synchronization subnet, which is in fact a minimum-distance spanning tree rootguliatdahe

server. In this manner the algorithm operates to minimize the overall absolute error at each level in
the subnet.
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8. Summary

This report has presented an in-depth analysis of issues important to achieve accurate, stable and
reliable time synchronization in a computer network. These issues include the design of the
synchronization protocol, the local clock, and the algorithms used to filter, select and combine the
reading of possibly many peer servers. The various design parameters are established using an
analysis of the local clock modelled as a linear feedback loop. The loop includes a disciplined
oscillator, which is realized as an adaptive-parameter, phase-locked loop. The behavior of this loop
can be controlled automatically to adjust to oscillators of varying stability and network paths of
widely varying delay.

In order to reliably quantify the correctness and accuracy of a local clock, it is necessary to establish
bounds on the maximum error of the clock, as well as the errors expected in ordinary system
operation. The error analysis in this report constructs an exhaustive error budget starting from the
basic process of reading the clock, continuing through the process of exchangisigtips
between the peers of the hierarchical synchronization subnet and concluding with the process of
combining the information from possibly many peers and establishing error bounds for the next
hierarchical level.
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