
1. Introduction

This document constitutes a formal specification of the Network Time Protocol (NTP) Version 3,
which is used to synchronize timekeeping among a set of distributed time servers and clients. It
defines the architectures, algorithms, entities and protocols used by NTP and is intended primarily
for implementors. A companion document [MIL90b] summarizes the requirements, analytical
models, algorithmic analysis and performance under typical Internet conditions. NTP was first
described in RFC-958 [MIL85c], but has since evolved in significant ways, culminating in the most
recent NTP Version 2 described in RFC-1119 [MIL89]. It is built on the Internet Protocol (IP)
[DAR81a] and User Datagram Protocol (UDP) [POS80], which provide a connectionless transport
mechanism; however, it is readily adaptable to other protocol suites. NTP is evolved from the Time
Protocol [POS83b] and the ICMP Timestamp message [DAR81b], but is specifically designed to
maintain accuracy and robustness, even when used over typical Internet paths involving multiple
gateways, highly dispersive delays and unreliable nets.

The service environment consists of the implementation model and service model described in
Section 2. The implementation model is based on a multiple-process operating system architecture,
although other architectures could be used as well. The service model is based on a returnable-time
design which depends only on measured clock offsets, but does not require reliable message
delivery. The synchronization subnet uses a self-organizing, hierarchical-master-slave configura-
tion, with synchronization paths determined by a minimum-weight spanning tree. While multiple
masters (primary servers) may exist, there is no requirement for an election protocol.

NTP itself is described in Section 3. It provides the protocol mechanisms to synchronize time in
principle to precisions in the order of picoseconds while preserving a non-ambiguous date well into
the next century. The protocol includes provisions to specify the characteristics and estimate the
error of the local clock and the time server to which it may be synchronized. It also includes
provisions for operation with a number of mutually suspicious, hierarchically distributed primary
reference sources such as radio-synchronized clocks.

Section 4 describes algorithms useful for deglitching and smoothing clock-offset samples collected
on a continuous basis. These algorithms evolved from those suggested in [MIL85a], were refined
as the results of experiments described in [MIL85b] and further evolved under typical operating
conditions over the last several years. In addition, as the result of experience in operating multiple-
server subnets including radio clocks at several sites in the U.S. and with clients in the U.S. and
Europe, reliable algorithms for selecting good clocks from a population possibly including broken
ones have been developed [DEC89], [LU90], [MIL90b] and are described in Section 4.

The accuracies achievable by NTP depend strongly on the precision of the local-clock hardware
and stringent control of device and process latencies. Provisions must be included to adjust the
software logical-clock time and frequency in response to corrections produced by NTP. Section 5
describes a local-clock design evolved from the Fuzzball implementation described in [MIL83b]
and [MIL88b]. This design includes offset-slewing, frequency compensation and deglitching
mechanisms capable of accuracies in the order of a millisecond, even after extended periods when
synchronization to primary reference sources has been lost.

Details specific to NTP packet formats used with the Internet Protocol (IP) and User Datagram
Protocol (UDP) are presented in Appendix A, while details of a suggested auxiliary NTP Control
Message, which may be used when comprehensive network-monitoring facilities are not available,

1

are presented in Appendix B. Appendix C contains specification and implementation details of an
optional authentication mechanism which can be used to control access and prevent unauthorized
data modification, while Appendix D contains a listing of differences between Version 3 of NTP
and previous versions. Appendix E expands on issues involved with precision timescales and
calendar dating peculiar to computer networks and NTP. Appendix F describes an optional
algorithm to improve accuracy by combining the time offsets of a number of clocks. Appendix G
presents a detailed mathematical model and analysis of the NTP local-clock algorithms. Appendix
H analyzes the sources and propagation of errors and presents correctness principles relating to the
NTP time-transfer service. Appendix I illustrates C-language code segments for the clock-filter,
clock-selection and related algorithms described in Section 4.

1.1. Related Technology

Other mechanisms have been specified in the Internet protocol suite to record and transmit the time
at which an event takes place, including the Daytime protocol [POS83a], Time protocol [POS83b],
ICMP Timestamp message [DAR81b] and IP Timestamp option [SU81]. Experimental results on
measured clock offsets and roundtrip delays in the Internet are discussed in [MIL83a], [MIL85b],
[COL88] and [MIL88a]. Other synchronization algorithms are discussed in [LAM78], [GUS84],
[HAL84], [LUN84], [LAM85], [MAR85], [MIL85a], [MIL85b], [MIL85c], [GUS85b], [SCH86],
[TRI86], [38], [39], [RIC88], [MIL88a], [DEC89] and [MIL90b], while protocols based on them
are described in [MIL81a], [MIL81b], [MIL83b], [GUS85a], [MIL85c], [TRI86], [MIL88a],
[DEC89] and [MIL90b]. NTP uses techniques evolved from them and both linear-systems and
agreement methodologies. Linear methods for digital telephone network synchronization are
summarized in [LIN80], while agreement methods for clock synchronization are summarized in
[LAM85].

The Digital Time Service (DTS) [DEC89] has many of the same service objectives as NTP. The
DTS design places heavy emphasis on configuration management and correctness principles when
operated in a managed LAN or LAN-cluster environment, while NTP places heavy emphasis on
the accuracy and stability of the service operated in an unmanaged, global-internet environment. In
DTS a synchronization subnet consists of clerks, servers, couriers and time providers. With respect
to the NTP nomenclature, a time provider is a primary reference source, a courier is a secondary
server intended to import time from one or more distant primary servers for local redistribution and
a server is intended to provide time for possibly many end nodes or clerks. Unlike NTP, DTS does
not need or use mode or stratum information in clock selection and does not include provisions to
filter timing noise, select the most accurate from a set of presumed correct clocks or compensate
for inherent frequency errors.

In fact, the latest revisions in NTP have adopted certain features of DTS in order to support
correctness principles. These include mechanisms to bound the maximum errors inherent in the
time-transfer procedures and the use of a provably correct (subject to stated assumptions) mecha-
nism to reject inappropriate peers in the clock-selection procedures. These features are described in
Section 4 and Appendix H of this document.

The Fuzzball routing protocol [MIL83b], sometimes called Hellospeak, incorporates time synchro-
nization directly into the routing-protocol design. One or more processes synchronize to an external
reference source, such as a radio clock or NTP daemon, and the routing algorithm constructs a
minimum-weight spanning tree rooted on these processes. The clock offsets are then distributed
along the arcs of the spanning tree to all processes in the system and the various process clocks

2

corrected using the procedures described in Section 5 of this document. While it can be seen that
the design of Hellospeak strongly influenced the design of NTP, Hellospeak itself is not an Internet
protocol and is unsuited for use outside its local-net environment.

The Unix 4.3bsd time daemon timed [GUS85a] uses a single master-time daemon to measure offsets
of a number of slave hosts and send periodic corrections to them. In this model the master is
determined using an election algorithm [GUS85b] designed to avoid situations where either no
master is elected or more than one master is elected. The election process requires a broadcast
capability, which is not a ubiquitous feature of the Internet. While this model has been extended to
support hierarchical configurations in which a slave on one network serves as a master on the other
[TRI86], the model requires handcrafted configuration tables in order to establish the hierarchy and
avoid loops. In addition to the burdensome, but presumably infrequent, overheads of the election
process, the offset measurement/correction process requires twice as many messages as NTP per
update.

A scheme with features similar to NTP is described in [KOP87]. This scheme is intended for
multi-server LANs where each of a set of possibly many time servers determines its local-time offset
relative to each of the other servers in the set using periodic timestamped messages, then determines
the local-clock correction using the Fault-Tolerant Average (FTA) algorithm of [LUN84]. The FTA
algorithm, which is useful where up to k servers may be faulty, sorts the offsets, discards the k
highest and k lowest ones and averages the rest. As described in [KOP87], this scheme is most
suitable to LAN environments which support broadcast and would result in unacceptable overhead
in an internet environment. In addition, for reasons given in Section 4 of this paper, the statistical
properties of the FTA algorithm are not likely to be optimal in an internet environment with highly
dispersive delays.

A good deal of research has gone into the issue of maintaining accurate time in a community where
some clocks cannot be trusted. A truechimer is a clock that maintains timekeeping accuracy to a
previously published (and trusted) standard, while a falseticker is a clock that does not. Determining
whether a particular clock is a truechimer or falseticker is an interesting abstract problem which can
be attacked using agreement methods summarized in [LAM85] and [SRI86].

A convergence function operates upon the offsets between the clocks in a system to increase the
accuracy by reducing or eliminating errors caused by falsetickers. There are two classes of
convergence functions, those involving interactive-convergence algorithms and those involving
interactive-consistency algorithms. Interactive-convergence algorithms use statistical clustering
techniques such as the FTA and CNV algorithms of [LUN84], the majority-subset algorithm of
[MIL85a], the non-Byzantine algorithm of [RIC88], the egocentric algorithm of [SCH86], the
intersection algorithm of [MAR85] and [DEC89] and the algorithms in Section 4 of this document.

Interactive-consistency algorithms are designed to detect faulty clock processes which might
indicate grossly inconsistent offsets in successive readings or to different readers. These algorithms
use an agreement protocol involving successive rounds of readings, possibly relayed and possibly
augmented by digital signatures. Examples include the fireworks algorithm of [HAL84] and the
optimum algorithm of [SRI87]. However, these algorithms require large numbers of messages,
especially when large numbers of clocks are involved, and are designed to detect faults that have
rarely been found in the Internet experience. For these reasons they are not considered further in
this document.

3

In practice it is not possible to determine the truechimers from the falsetickers on other than a
statistical basis, especially with hierarchical configurations and a statistically noisy Internet. While
it is possible to bound the maximum errors in the time-transfer procedures, assuming sufficiently
generous tolerances are adopted for the hardware components, this generally results in rather poor
accuracies and stabilities. The approach taken in the NTP design and its predecessors involves
mutually coupled clock oscillators and maximum-likelihood estimation and clock-selection proce-
dures, together with a design that allows provable assertions on error bounds of to be made relative
to stated assumptions on the correctness of the primary reference sources. From the analytical point
of view, the system of distributed NTP peers operates as a set of mutually coupled phase-locked
oscillators, with the update algorithm functioning as a phase detector and the local clock as a
disciplined oscillator, but with deterministic error bounds calculated at each step in the time-transfer
process.

The particular choice of offset measurement and computation procedure described in Section 3 is
a variant of the returnable-time system used in some digital telephone networks [LIN80]. The clock
filter and selection algorithms are designed so that the clock synchronization subnet self-organizes
as a hierarchical-master-slave configuration [MIT80]. The selection algorithm is based on the
intersection algorithm of Marzullo and Owicki [MAR85], together with a refinement algorithm
similar to the self-stabilizing algorithm of Lu [LU90]. With respect to timekeeping accuracy and
stability, the similarity of NTP to digital telephone systems is not accidental, since systems like this
have been studied extensively [LIN80], [BRA80]. What makes the NTP model unique is the
adaptive configuration, polling, filtering, selection and correctness mechanisms which tailor the
dynamics of the system to fit the ubiquitous Internet environment.

2. System Architecture

In the NTP model a number of primary reference sources, synchronized by wire or radio to national
standards, are connected to widely accessible resources, such as backbone gateways, and operated
as primary time servers. The purpose of NTP is to convey timekeeping information from these
servers to other time servers via the Internet and also to cross-check clocks and mitigate errors due
to equipment or propagation failures. Some number of local-net hosts or gateways, acting as
secondary time servers, run NTP with one or more of the primary servers. In order to reduce the
protocol overhead, the secondary servers distribute time via NTP to the remaining local-net hosts.
In the interest of reliability, selected hosts can be equipped with less accurate but less expensive
radio clocks and used for backup in case of failure of the primary and/or secondary servers or
communication paths between them.

Throughout this document a standard nomenclature has been adopted: the stability of a clock is how
well it can maintain a constant frequency, the accuracy is how well its frequency and time compare
with national standards and the precision is how precisely these quantities can be maintained within
a particular timekeeping system. Unless indicated otherwise, The offset of two clocks is the time
difference between them, while the skew is the frequency difference (first derivative of offset with
time) between them. Real clocks exhibit some variation in skew (second derivative of offset with
time), which is called drift; however, in this version of the specification the drift is assumed zero.

NTP is designed to produce three products: clock offset, roundtrip delay and dispersion, all of which
are relative to a selected reference clock. Clock offset represents the amount to adjust the local clock
to bring it into correspondence with the reference clock. Roundtrip delay provides the capability to
launch a message to arrive at the reference clock at a specified time. Dispersion represents the

4

maximum error of the local clock relative to the reference clock. Since most host time servers will
synchronize via another peer time server, there are two components in each of these three products,
those determined by the peer relative to the primary reference source of standard time and those
measured by the host relative to the peer. Each of these components are maintained separately in
the protocol in order to facilitate error control and management of the subnet itself. They provide
not only precision measurements of offset and delay, but also definitive maximum error bounds, so
that the user interface can determine not only the time, but the quality of the time as well.

There is no provision for peer discovery or virtual-circuit management in NTP. Data integrity is
provided by the IP and UDP checksums. No flow-control or retransmission facilities are provided
or necessary. Duplicate detection is inherent in the processing algorithms. The service can operate
in a symmetric mode, in which servers and clients are indistinguishable, yet maintain a small amount
of state information, or in client/server mode, in which servers need maintain no state other than
that contained in the client request. A lightweight association-management capability, including
dynamic reachability and variable poll-rate mechanisms, is included only to manage the state
information and reduce resource requirements. Since only a single NTP message format is used,
the protocol is easily implemented and can be used in a variety of solicited or unsolicited polling
mechanisms.

It should be recognized that clock synchronization requires by its nature long periods and multiple
comparisons in order to maintain accurate timekeeping. While only a few measurements are usually
adequate to reliably determine local time to within a second or so, periods of many hours and dozens
of measurements are required to resolve oscillator skew and maintain local time to the order of a
millisecond. Thus, the accuracy achieved is directly dependent on the time taken to achieve it.
Fortunately, the frequency of measurements can be quite low and almost always non-intrusive to
normal net operations.

2.1. Implementation Model

In what may be the most common client/server model a client sends an NTP message to one or more
servers and processes the replies as received. The server interchanges addresses and ports, overwrites
certain fields in the message, recalculates the checksum and returns the message immediately.
Information included in the NTP message allows the client to determine the server time with respect
to local time and adjust the local clock accordingly. In addition, the message includes information

Update
Procedure

Receive
Process

Local Clock
Process

Transmit
Process

Network

Figure 1. Implementation Model

5

to calculate the expected timekeeping accuracy and reliability, as well as select the best from possibly
several servers.

While the client/server model may suffice for use on local nets involving a public server and perhaps
many workstation clients, the full generality of NTP requires distributed participation of a number
of client/servers or peers arranged in a dynamically reconfigurable, hierarchically distributed
configuration. It also requires sophisticated algorithms for association management, data manipu-
lation and local-clock control. Throughout the remainder of this document the term host refers to
an instantiation of the protocol on a local processor, while the term peer refers to the instantiation
of the protocol on a remote processor connected by a network path.

Figure 1 shows an implementation model for a host including three processes sharing a partitioned
data base, with a partition dedicated to each peer, and interconnected by a message-passing system.
The transmit process, driven by independent timers for each peer, collects information in the data
base and sends NTP messages to the peers. Each message contains the local timestamp when the
message is sent, together with previously received timestamps and other information necessary to
determine the hierarchy and manage the association. The message transmission rate is determined
by the accuracy required of the local clock, as well as the accuracies of its peers.

The receive process receives NTP messages and perhaps messages in other protocols, as well as
information from directly connected radio clocks. When an NTP message is received, the offset
between the peer clock and the local clock is computed and incorporated into the data base along
with other information useful for error determination and peer selection. A filtering algorithm
described in Section 4 improves the accuracy by discarding inferior data.

The update procedure is initiated upon receipt of a message and at other times. It processes the offset
data from each peer and selects the best one using the algorithms of Section 4. This may involve
many observations of a few peers or a few observations of many peers, depending on the accuracies
required.

The local-clock process operates upon the offset data produced by the update procedure and adjusts
the phase and frequency of the local clock using the mechanisms described in Section 5. This may
result in either a step-change or a gradual phase adjustment of the local clock to reduce the offset
to zero. The local clock provides a stable source of time information to other users of the system
and for subsequent reference by NTP itself.

2.2. Network Configurations

The synchronization subnet is a connected network of primary and secondary time servers, clients
and interconnecting transmission paths. A primary time server is directly synchronized to a primary
reference source, usually a radio clock. A secondary time server derives synchronization, possibly
via other secondary servers, from a primary server over network paths possibly shared with other
services. Under normal circumstances it is intended that the synchronization subnet of primary and
secondary servers assumes a hierarchical-master-slave configuration with the primary servers at the
root and secondary servers of decreasing accuracy at successive levels toward the leaves.

Following conventions established by the telephone industry [BEL86], the accuracy of each server
is defined by a number called the stratum, with the topmost level (primary servers) assigned as one
and each level downwards (secondary servers) in the hierarchy assigned as one greater than the
preceding level. With current technology and available radio clocks, single-sample accuracies in

6

the order of a millisecond can be achieved at the network interface of a primary server. Accuracies
of this order require special care in the design and implementation of the operating system and the
local-clock mechanism, such as described in Section 5.

As the stratum increases from one, the single-sample accuracies achievable will degrade depending
on the network paths and local-clock stabilities. In order to avoid the tedious calculations [BRA80]
necessary to estimate errors in each specific configuration, it is useful to assume the mean
measurement errors accumulate approximately in proportion to the measured delay and dispersion
relative to the root of the synchronization subnet. Appendix H contains an analysis of errors,
including a derivation of maximum error as a function of delay and dispersion, where the latter
quantity depends on the precision of the timekeeping system, frequency tolerance of the local clock
and various residuals. Assuming the primary servers are synchronized to standard time within
known accuracies, this provides a reliable, determistic specification on timekeeping accuracies
throughout the synchronization subnet.

Again drawing from the experience of the telephone industry, which learned such lessons at
considerable cost [ABA89], the synchronization subnet topology should be organized to produce
the highest accuracy, but must never be allowed to form a loop. An additional factor is that each
increment in stratum involves a potentially unreliable time server which introduces additional
measurement errors. The selection algorithm used in NTP uses a variant of the Bellman-Ford
distributed routing algorithm [37] to compute the minimum-weight spanning trees rooted on the
primary servers. The distance metric used by the algorithm consists of the (scaled) stratum plus the
synchronization distance, which itself consists of the dispersion plus one-half the delay. Thus, the
synchronization path will always take the minimum number of servers to the root, with ties resolved
on the basis of maximum error.

As a result of this design, the subnet reconfigures automatically in a hierarchical-master-slave
configuration to produce the most accurate and reliable time, even when one or more primary or
secondary servers or the network paths between them fail. This includes the case where all normal
primary servers (e.g., highly accurate WWVB radio clock operating at the lowest synchronization
distances) on a possibly partitioned subnet fail, but one or more backup primary servers (e.g., less
accurate WWV radio clock operating at higher synchronization distances) continue operation.
However, should all primary servers throughout the subnet fail, the remaining secondary servers
will synchronize among themselves while distances ratchet upwards to a preselected maximum
“infinity” due to the well-known properties of the Bellman-Ford algorithm. Upon reaching the
maximum on all paths, a server will drop off the subnet and free-run using its last determined time
and frequency. Since these computations are expected to be very precise, especially in frequency,
even extended outage periods should result in timekeeping errors not greater than a few milliseconds
per day.

In the case of multiple primary servers, the spanning-tree computation will usually select the server
at minimum synchronization distance. However, when these servers are at approximately the same
distance, the computation may result in random selections among them as the result of normal
dispersive delays. Ordinarily, this does not degrade accuracy as long as any discrepancy between
the primary servers is small compared to the synchronization distance. If not, the filter and selection
algorithms will select the best of the available servers and cast out outlyers as intended.

7

3. Network Time Protocol

This section consists of a formal definition of the Network Time Protocol, including its data formats,
entities, state variables, events and event-processing procedures. The specification is based on the
implementation model illustrated in Figure 1, but it is not intended that this model is the only one
upon which a specification can be based. In particular, the specification is intended to illustrate and
clarify the intrinsic operations of NTP, as well as to serve as a foundation for a more rigorous,
comprehensive and verifiable specification.

3.1. Data Formats

All mathematical operations expressed or implied herein are in two’s-complement, fixed-point
arithmetic. Data are specified as integer or fixed-point quantities, with bits numbered in big-endian
fashion from zero starting at the left, or high-order, position. Since various implementations may
scale externally derived quantities for internal use, neither the precision nor decimal-point placement
for fixed-point quantities is specified. Unless specified otherwise, all quantities are unsigned and
may occupy the full field width with an implied zero preceding bit zero. Hardware and software
packages designed to work with signed quantities will thus yield surprising results when the most
significant (sign) bit is set. It is suggested that externally derived, unsigned fixed-point quantities
such as timestamps be shifted right one bit for internal use, since the precision represented by the
full field width is seldom justified.

Since NTP timestamps are cherished data and, in fact, represent the main product of the protocol,
a special timestamp format has been established. NTP timestamps are represented as a 64-bit
unsigned fixed-point number, in seconds relative to 0h on 1 January 1900. The integer part is in the
first 32 bits and the fraction part in the last 32 bits. This format allows convenient multiple-precision
arithmetic and conversion to Time Protocol representation (seconds), but does complicate the
conversion to ICMP Timestamp message representation (milliseconds). The precision of this
representation is about 200 picoseconds, which should be adequate for even the most exotic
requirements.

Timestamps are determined by copying the current value of the local clock to a timestamp when
some significant event, such as the arrival of a message, occurs. In order to maintain the highest
accuracy, it is important that this be done as close to the hardware or software driver associated with
the event as possible. In particular, departure timestamps should be redetermined for each link-level
retransmission. In some cases a particular timestamp may not be available, such as when the host
is rebooted or the protocol first starts up. In these cases the 64-bit field is set to zero, indicating the
value is invalid or undefined.

Note that since some time in 1968 the most significant bit (bit 0 of the integer part) has been set and
that the 64-bit field will overflow some time in 2036. Should NTP be in use in 2036, some external
means will be necessary to qualify time relative to 1900 and time relative to 2036 (and other
multiples of 136 years). Timestamped data requiring such qualification will be so precious that
appropriate means should be readily available. There will exist an 200-picosecond interval,
henceforth ignored, every 136 years when the 64-bit field will be zero and thus considered invalid.

3.2. State Variables and Parameters

Following is a summary of the various state variables and parameters used by the protocol. They
are separated into classes of system variables, which relate to the operating system environment and

8

local-clock mechanism; peer variables, which represent the state of the protocol machine specific
to each peer; packet variables, which represent the contents of the NTP message; and parameters,
which represent fixed configuration constants for all implementations of the current version. For
each class the description of the variable is followed by its name and the procedure or value which
controls it. Note that variables are in lower case, while parameters are in upper case. Additional
details on formats and use are presented in later sections and Appendices.

3.2.1. Common Variables

The following variables are common to two or more of the system, peer and packet classes.
Additional variables are specific to the optional authentication mechanism as described in Appendix
C. When necessary to distinguish between common variables of the same name, the variable
identifier will be used.

Peer Address (peer.peeraddr, pkt.peeraddr), Peer Port (peer.peerport, pkt.peerport): These are the
32-bit Internet address and 16-bit port number of the peer.

Host Address (peer.hostaddr, pkt.hostaddr), Host Port (peer.hostport, pkt.hostport): These are the
32-bit Internet address and 16-bit port number of the host. They are included among the state
variables to support multi-homing.

Leap Indicator (sys.leap, peer.leap, pkt.leap): This is a two-bit code warning of an impending leap
second to be inserted in the NTP timescale. The bits are set before 23:59 on the day of insertion
and reset after 00:00 on the following day. This causes the number of seconds (rollover interval)
in the day of insertion to be increased or decreased by one. In the case of primary servers the
bits are set by operator intervention, while in the case of secondary servers the bits are set by
the protocol. The two bits, bit 0 and bit 1, respectively, are coded as follows:

00 no warning
01 last minute has 61 seconds
10 last minute has 59 seconds)
11 alarm condition (clock not synchronized)

In all except the alarm condition (112), NTP itself does nothing with these bits, except pass them
on to the time-conversion routines that are not part of NTP. The alarm condition occurs when,
for whatever reason, the local clock is not synchronized, such as when first coming up or after
an extended period when no primary reference source is available.

Mode (peer.mode, pkt.mode): This is an integer indicating the association mode, with values coded
as follows:

0 unspecified
1 symmetric active
2 symmetric passive
3 client
4 server
5 broadcast
6 reserved for NTP control messages
7 reserved for private use

9

Stratum (sys.stratum, peer.stratum, pkt.stratum): This is an integer indicating the stratum of the local
clock, with values defined as follows:

0 unspecified
1 primary reference (e.g., calibrated atomic clock, radio clock)
2-255 secondary reference (via NTP)

For comparison purposes a value of zero is considered greater than any other value. Note that
the maximum value of the integer encoded as a packet variable is limited by the parameter
NTP.MAXSTRATUM.

Poll Interval (sys.poll, peer.hostpoll, peer.peerpoll, pkt.poll): This is a signed integer indicating the
minimum interval between transmitted messages, in seconds as a power of two. For instance, a
value of six indicates a minimum interval of 64 seconds.

Precision (sys.precision, peer.precision, pkt.precision): This is a signed integer indicating the
precision of the various clocks, in seconds to the nearest power of two. The value must be
rounded to the next larger power of two; for instance, a 50-Hz (20 ms) or 60-Hz (16.67 ms)
mains-frequency clock would be assigned the value -5 (31.25 ms), while a 1000-Hz (1 ms)
crystal-controlled clock would be assigned the value -9 (1.95 ms).

Root Delay (sys.rootdelay, peer.rootdelay, pkt.rootdelay): This is a signed fixed-point number
indicating the total roundtrip delay to the primary reference source at the root of the synchroni-
zation subnet, in seconds. Note that this variable can take on both positive and negative values,
depending on clock precision and skew.

Root Dispersion (sys.rootdispersion, peer.rootdispersion, pkt.rootdispersion): This is a signed
fixed-point number indicating the maximum error relative to the primary reference source at the
root of the synchronization subnet, in seconds. Only positive values greater than zero are
possible.

Reference Clock Identifier (sys.refid, peer.refid, pkt.refid): This is a 32-bit code identifying the
particular reference clock. In the case of stratum 0 (unspecified) or stratum 1 (primary reference
source), this is a four-octet, left-justified, zero-padded ASCII string, for example (see Appendix
A for comprehensive list):

Stratum Code Meaning

0 DCN DCN routing protocol
0 TSP TSP time protocol
1 ATOM Atomic clock (calibrated)
1 WWVB WWVB LF (band 5) radio
1 GOES GOES UHF (band 9) satellite
1 WWV WWV HF (band 7) radio

In the case of stratum 2 and greater (secondary reference) this is the four-octet Internet address
of the peer selected for synchronization.

10

Reference Timestamp (sys.reftime, peer.reftime, pkt.reftime): This is the local time, in timestamp
format, when the local clock was last updated. If the local clock has never been synchronized,
the value is zero.

Originate Timestamp (peer.org, pkt.org): This is the local time, in timestamp format, at the peer
when its latest NTP message was sent. If the peer becomes unreachable the value is set to zero.

Receive Timestamp (peer.rec, pkt.rec): This is the local time, in timestamp format, when the latest
NTP message from the peer arrived. If the peer becomes unreachable the value is set to zero.

Transmit Timestamp (peer.xmt, pkt.xmt): This is the local time, in timestamp format, at which the
NTP message departed the sender.

3.2.2. System Variables

Table 1 shows the complete set of system variables. In addition to the common variables described
previously, the following variables are used by the operating system in order to synchronize the
local clock.

Local Clock (sys.clock): This is the current local time, in timestamp format. Local time is derived
from the hardware clock of the particular machine and increments at intervals depending on the
design used. An appropriate design, including slewing and skew-compensation mechanisms, is
described in Section 5.

Clock Source (sys.peer): This is a selector identifying the current synchronization source. Usually
this will be a pointer to a structure containing the peer variables. The special value NULL
indicates there is no currently valid synchronization source.

3.2.3. Peer Variables

Table 2 shows the complete set of peer variables. In addition to the common variables described
previously, the following variables are used by the peer management and measurement functions.

System Variables Name Procedure

Leap Indicator sys.leap clock update
Stratum sys.stratum clock update
Precision sys.precision system
Root Delay sys.rootdelay clock update
Root Dispersion sys.rootdispersion clock update
Reference Clock Ident sys.refid clock update
Reference Timestamp sys.reftime clock update
Local Clock sys.clock clock update
Clock Source sys.peer selection
Poll Interval sys.poll local clock
Key Identifier sys.keyid authentication
Cryptographic Keys sys.keys authentication

Table 1. System Variables

11

Configured Bit (peer.config): This is a bit indicating that the association was created from
configuration information and should not be demobilized if the peer becomes unreachable.

Update Timestamp (peer.update): This is the local time, in timestamp format, when the most recent
NTP message was received. It is used in calculating the skew dispersion.

Reachability Register (peer.reach): This is a shift register of NTP.WINDOW bits used to determine
the reachability status of the peer, with bits entering from the least significant (rightmost) end.
A peer is considered reachable if at least one bit in this register is set to one.

Peer Timer (peer.timer): This is an integer counter used to control the interval between transmitted
NTP messages. Once set to a nonzero value, the counter decrements at one-second intervals

Peer Variables Name Procedure

Configured Bit peer.config initialization
Peer Address peer.peeraddress receive
Peer Port peer.peerport receive
Host Address peer.hostaddress receive
Host Port peer.hostport receive
Leap Indicator peer.leap packet
Mode peer.mode packet
Stratum peer.stratum packet
Peer Poll Interval peer.peerpoll packet
Host Poll Interval peer.hostpoll poll update
Precision peer.precision packet
Root Delay peer.rootdelay packet
Root Dispersion peer.rootdispersion packet
Reference Clock Ident peer.refid packet
Reference Timestamp peer.reftime packet
Originate Timestamp peer.org packet, clear
Receive Timestamp peer.rec packet, clear
Transmit Timestamp peer.xmt transmit, clear
Update Timestamp peer.update filter, clear
Reachability Register peer.reach packet, transmit,

clear
Peer Timer peer.timer receive, transmit,

poll update
Filter Register peer.filter filter
Valid Data Counter peer.valid transmit
Delay peer.delay filter
Offset peer.offset filter
Dispersion peer.dispersion filter
Authentic Enable Bit peer.authenable authentication
Authenticated Bit peer.authentic authentication
Key Identifier peer.keyid authentication

Table 2. Peer Variables

12

until reaching zero, at which time the transmit procedure is called. Note that the operation of
this timer is independent of local-clock updates, which implies that the timekeeping system and
interval-timer system architecture must be independent of each other.

3.2.4. Packet Variables

Table 3 shows the complete set of packet variables. In addition to the common variables described
previously, the following variables are defined.

Version Number (pkt.version): This is an integer indicating the version number of the sender. NTP
messages will always be sent with the current version number NTP.VERSION and will always
be accepted if the version number matches NTP.VERSION. Exceptions may be advised on a
case-by-case basis at times when the version number is changed. Specific guidelines for
interoperation between this version and previous versions of NTP are summarized in Appendix
D.

3.2.5. Clock-Filter Variables

When the filter and selection algorithms suggested in Section 4 are used, the following state variables
are defined in addition to the variables described previously.

Filter Register (peer.filter): This is a shift register of NTP.SHIFT stages, where each stage stores a
3-tuple consisting of the measured delay, measured offset and calculated dispersion associated
with a single observation. These 3-tuples enter from the most significant (leftmost) right and

Packet Variables Name Procedure

Peer Address pkt.srcadr transmit
Peer Port pkt.srcport transmit
Host Address pkt.dstadr transmit
Host Port pkt.dstport transmit
Leap Indicator pkt.leap transmit
Version Number pkt.version transmit
Mode pkt.mode transmit
Stratum pkt.stratum transmit
Poll Interval pkt.poll transmit
Precision pkt.precision transmit
Root Delay pkt.rootdelay transmit
Root Dispersion pkt.rootdispersion transmit
Reference Clock Ident pkt.refid transmit
Reference Timestamp pkt.reftime transmit
Originate Timestamp pkt.org transmit
Receive Timestamp pkt.rec transmit
Transmit Timestamp pkt.xmt transmit
Key Identifier pkt.keyid authentication
Crypto-Checksum pkt.check authentication

Table 3. Packet Variables

13

are shifted towards the least significant (rightmost) end and eventually discarded as new
observations arrive.

Valid Data Counter (peer.valid): This is an integer counter indicating the valid samples remaining
in the filter register. It is used to determine the reachability state and when the poll interval
should be increased or decreased.

Offset (peer.offset): This is a signed, fixed-point number indicating the offset of the peer clock
relative to the local clock, in seconds.

Delay (peer.delay): This is a signed fixed-point number indicating the roundtrip delay of the peer
clock relative to the local clock over the network path between them, in seconds. Note that this
variable can take on both positive and negative values, depending on clock precision and
skew-error accumulation.

Dispersion (peer.dispersion): This is a signed fixed-point number indicating the maximum error of
the peer clock relative to the local clock over the network path between them, in seconds. Only
positive values greater than zero are possible.

3.2.6. Authentication Variables

When the authentication mechanism suggested in Appendix C is used, the following state variables
are defined in addition to the variables described previously. These variables are used only if the
optional authentication mechanism described in Appendix C is implemented.

Authentication Enabled Bit (peer.authenable): This is a bit indicating that the association is to
operate in the authenticated mode.

Parameters Name Value

Version Number NTP.VERSION 3
NTP Port NTP.PORT 123
Max Stratum NTP.MAXSTRATUM 15
Max Clock Age NTP.MAXAGE 86,400 sec
Max Skew NTP.MAXSKEW 1 sec
Max Distance NTP.MAXDISTANCE 1 sec
Min Polling Interval NTP.MINPOLL 6 (64 sec)
Max Polling Interval NTP.MAXPOLL 10 (1024 sec)
Min Select Clocks NTP.MINCLOCK 1
Max Select Clocks NTP.MAXCLOCK 10
Min Dispersion NTP.MINDISPERSE .01 sec
Max Dispersion NTP.MAXDISPERSE 16 sec

Reachability Reg Size NTP.WINDOW 8
Filter Size NTP.SHIFT 8

Filter Weight NTP.FILTER 1/2
Select Weight NTP.SELECT 3/4

Table 4. Parameters

14

Authenticated Bit (peer.authentic): This is a bit indicating that the last message received from the
peer has been correctly authenticated.

Key Identifier (sys.keyid, peer.keyid, pkt.keyid): This is an integer identifying the cryptographic
key used to generate the message-authentication code.

Cryptographic Keys (sys.key): This is a set of 64-bit DES keys. Each key is constructed as in the
Berkeley Unix distributions, which consists of eight octets, where the seven low-order bits of
each octet correspond to the DES bits 1-7 and the high-order bit corresponds to the DES
odd-parity bit 8.

Crypto-Checksum (pkt.check): This is a crypto-checksum computed by the encryption procedure.

3.2.7. Parameters

Table 4 shows the parameters assumed for all implementations operating in the Internet system. It
is necessary to agree on the values for these parameters in order to avoid unnecessary network
overheads and stable peer associations. The following parameters are assumed fixed and applicable
to all associations.

Version Number (NTP.VERSION): This is the current NTP version number (3).

NTP Port (NTP.PORT): This is the port number (123) assigned by the Internet Assigned Numbers
Authority to NTP.

Maximum Stratum (NTP.MAXSTRATUM): This is the maximum stratum value that can be
encoded as a packet variable, also interpreted as “infinity” or unreachable by the subnet routing
algorithm.

Maximum Clock Age (NTP.MAXAGE): This is the maximum interval a reference clock will be
considered valid after its last update, in seconds.

Maximum Skew (NTP.MAXSKEW): This is the maximum offset error due to skew of the local
clock over the interval determined by NTP.MAXAGE, in seconds. The ratio

ϕ =
NTP.MAXSKEW
NTP.MAXAGE

 is interpreted as the maximum possible skew rate due to all causes.

Maximum Distance (NTP.MAXDISTANCE): When the selection algorithm suggested in Section
4 is used, this is the maximum synchronization distance for peers acceptable for synchronization.

Minimum Poll Interval (NTP.MINPOLL): This is the minimum poll interval allowed by any peer
of the Internet system, in seconds to a power of two.

Maximum Poll Interval (NTP.MAXPOLL): This is the maximum poll interval allowed by any peer
of the Internet system, in seconds to a power of two.

Minimum Select Clocks (NTP.MINCLOCK): When the selection algorithm suggested in Section
4 is used, this is the minimum number of peers acceptable for synchronization.

Maximum Select Clocks (NTP.MAXCLOCK): When the selection algorithm suggested in Section
4 is used, this is the maximum number of peers considered for selection.

15

Minimum Dispersion (NTP.MINDISPERSE): When the filter algorithm suggested in Section 4 is
used, this is the minimum dispersion increment for each stratum level, in seconds.

Maximum Dispersion (NTP.MAXDISPERSE): When the filter algorithm suggested in Section 4 is
used, this is the maximum peer dispersion and the dispersion assumed for missing data, in
seconds.

Reachability Register Size (NTP.WINDOW): This is the size of the reachability register
(peer.reach), in bits.

Filter Size (NTP.SHIFT): When the filter algorithm suggested in Section 4 is used, this is the size
of the clock filter (peer.filter) shift register, in stages.

Filter Weight (NTP.FILTER): When the filter algorithm suggested in Section 4 is used, this is the
weight used to compute the filter dispersion.

Select Weight (NTP.SELECT): When the selection algorithm suggested in Section 4 is used, this
is the weight used to compute the select dispersion.

3.3. Modes of Operation

Except in broadcast mode, an NTP association is formed when two peers exchange messages and
one or both of them create and maintain an instantiation of the protocol machine, called an
association. The association can operate in one of five modes as indicated by the host-mode variable
(peer.mode): symmetric active, symmetric passive, client, server and broadcast, which are defined
as follows:

Symmetric Active (1): A host operating in this mode sends periodic messages regardless of the
reachability state or stratum of its peer. By operating in this mode the host announces its
willingness to synchronize and be synchronized by the peer.

Symmetric Passive (2): This type of association is ordinarily created upon arrival of a message from
a peer operating in the symmetric active mode and persists only as long as the peer is reachable
and operating at a stratum level less than or equal to the host; otherwise, the association is
dissolved. However, the association will always persist until at least one message has been sent
in reply. By operating in this mode the host announces its willingness to synchronize and be
synchronized by the peer.

Client (3): A host operating in this mode sends periodic messages regardless of the reachability state
or stratum of its peer. By operating in this mode the host, usually a LAN workstation, announces
its willingness to be synchronized by, but not to synchronize the peer.

Server (4): This type of association is ordinarily created upon arrival of a client request message
and exists only in order to reply to that request, after which the association is dissolved. By
operating in this mode the host, usually a LAN time server, announces its willingness to
synchronize, but not to be synchronized by the peer.

Broadcast (5): A host operating in this mode sends periodic messages regardless of the reachability
state or stratum of the peers. By operating in this mode the host, usually a LAN time server
operating on a high-speed broadcast medium, announces its willingness to synchronize all of
the peers, but not to be synchronized by any of them.

16

The peer mode can be determined explicitly from the packet-mode variable (pkt.mode) if it is
nonzero and implicitly from the source port (pkt.peerport) and destination port (pkt.hostport)
variables if it is zero. For the case where pkt.mode is zero, included for compatibility with previous
NTP versions, the peer mode is determined as follows:

pkt.peerport pkt.hostport Mode

NTP.PORT NTP.PORT symmetric active
NTP.PORT not NTP.PORT server
not NTP.PORT NTP.PORT client
not NTP.PORT not NTP.PORT not possible

Note that it is not possible in this case to distinguish between symmetric active and symmetric
passive modes. Use of the pkt.mode and NTP.PORT variables in this way is not recommended and
may not be supported in future versions of the protocol.

A host operating in client mode occasionally sends an NTP message to a host operating in server
mode, perhaps right after rebooting and at periodic intervals thereafter. The server responds by
simply interchanging addresses and ports, filling in the required information and returning the
message to the client. Servers need retain no state information between client requests, while clients
are free to manage the intervals between sending NTP messages to suit local conditions. In these
modes the protocol machine described in this document can be considerably simplified to a simple
remote-procedure-call mechanism without significant loss of accuracy or robustness, especially
when operating over high-speed LANs.

In the symmetric modes the client/server distinction (almost) disappears. Symmetric passive mode
is intended for use by time servers operating near the root nodes (lowest stratum) of the synchroni-
zation subnet and with a relatively large number of peers on an intermittent basis. In this mode the
identity of the peer need not be known in advance, since the association with its state variables is
created only when an NTP message arrives. Furthermore, the state storage can be reused when the
peer becomes unreachable or is operating at a higher stratum level and thus ineligible as a
synchronization source.

Symmetric active mode is intended for use by time servers operating near the end nodes (highest
stratum) of the synchronization subnet. Reliable time service can usually be maintained with two
peers at the next lower stratum level and one peer at the same stratum level, so the rate of ongoing
polls is usually not significant, even when connectivity is lost and error messages are being returned
for every poll.

Normally, one peer operates in an active mode (symmetric active, client or broadcast modes) as
configured by a startup file, while the other operates in a passive mode (symmetric passive or server
modes), often without prior configuration. However, both peers can be configured to operate in the
symmetric active mode. An error condition results when both peers operate in the same mode, but
not symmetric active mode. In such cases each peer will ignore messages from the other, so that
prior associations, if any, will be demobilized due to reachability failure.

Broadcast mode is intended for operation on high-speed LANs with numerous workstations and
where the highest accuracies are not required. In the typical scenario one or more time servers on
the LAN send periodic broadcasts to the workstations, which then determine the time on the basis
of a preconfigured latency in the order of a few milliseconds. As in the client/server modes the

17

protocol machine can be considerably simplified in this mode; however, a modified form of the
clock selection algorithm may prove useful in cases where multiple time servers are used for
enhanced reliability.

3.4. Event Processing

The significant events of interest in NTP occur upon expiration of a peer timer (peer.timer), one of
which is dedicated to each peer with an active association, and upon arrival of an NTP message
from the various peers. An event can also occur as the result of an operator command or detected
system fault, such as a primary reference source failure. This section describes the procedures
invoked when these events occur.

3.4.1. Notation Conventions

The NTP filtering and selection algorithms act upon a set of variables for clock offset (θ, Θ),
roundtrip delay (δ, ∆) and dispersion (ε, Ε). When necessary to distinguish between them, lower-
case Greek letters are used for variables relative to a peer, while upper-case Greek letters are used
for variables relative to the primary reference source(s), i.e., via the peer to the root of the
synchronization subnet. Subscripts will be used to identify the particular peer when this is not clear
from context. The algorithms are based on a quantity called the synchronization distance (λ, Λ),
which is computed from the roundtrip delay and dispersion as described below.

As described in Appendix H, the peer dispersion ε includes contributions due to measurement error

ρ = 1 << sys.precision, skew-error accumulation ϕτ, where ϕ =
NTP.MAXSKEW
NTP.MAXAGE

 is the maximum

skew rate and τ = sys.clock − peer.update is the interval since the last update, and filter (sample)
dispersion εσ computed by the clock-filter algorithm. The root dispersion Ε includes contributions
due to the selected peer dispersion ε and skew-error accumulation ϕτ, together with the root
dispersion for the peer itself. The system dispersion includes the select (sample) dispersion εξ
computed by the clock-select algorithm and the absolute initial clock offset |Θ| provided to the
local-clock algorithm. Both ε and Ε are dynamic quantities, since they depend on the elapsed time
τ since the last update, as well as the sample dispersions calculated by the algorithms.

Each time the relevant peer variables are updated, all dispersions associated with that peer are
updated to reflect the skew-error accumulation. The computations can be summarized as follows:

θ ≡ peer.offset ,
δ ≡ peer.delay ,

ε ≡ peer.dispersion = ρ + ϕτ + εσ ,

λ ≡ ε +
δ
2

 ,

where τ is the interval since the original timestamp from which θ and δ were determined was
transmitted to the present time and εσ is the filter dispersion (see clock-filter procedure below). The
variables relative to the root of the synchronization subnet via peer i are determined as follows:

Θi = θi ,
∆i ≡ peer.rootdelay + δi ,

18

Εi ≡ peer.rootdispersion + εi + ϕτi ,

Λi ≡ Εi +
∆i
2

 ,

where all variables are understood to pertain to the ith peer. Finally, assuming the ith peer is selected
for synchronization, the system variables are determined as follows:

Θ = combined final offset ,
∆ = ∆i ,

Ε = Εi + εξ + |Θ| ,
Λ = Λi ,

where εξ is the select dispersion (see clock-selection procedure below).

Informal pseudo-code which accomplishes these computations is presented below. Note that the
pseudo-code is represented in no particular language, although it has many similarities to the C
language. Specific details on the important algorithms are further illustrated in the C-language
routines in Appendix I.

3.4.2. Transmit Procedure

The transmit procedure is executed when the peer timer decrements to zero for all modes except
client mode with a broadcast server and server mode in all cases. In client mode with a broadcast
server messages are never sent. In server mode messages are sent only in response to received
messages. This procedure is also called by the receive procedure when an NTP message arrives that
does not result in a persistent association.

begin transmit procedure

The following initializes the packet buffer and copies the packet variables. The value skew is
necessary to account for the skew-error accumulated over the interval since the local clock was last
set.

pkt.peeraddr ← peer.hostaddr; /* copy system and peer variables */
pkt.peerport ← peer.hostport;
pkt.hostaddr ← peer.peeraddr;
pkt.hostport ← peer.peerport;
pkt.leap ← sys.leap;
pkt.version ← NTP.VERSION;
pkt.mode ← peer.mode;
pkt.stratum ← sys.stratum;
pkt.poll ← peer.hostpoll;
pkt.precision ← sys.precision;
pkt.rootdelay ← sys.rootdelay;
if (sys.leap = 112 or (sys.clock – sys.reftime) > NTP.MAXAGE)

skew ← NTP.MAXSKEW;
else

skew ← ϕ(sys.clock − sys.reftime);
pkt.rootdispersion ← sys.rootdispersion + (1 << sys.precision) + skew;

19

pkt.refid ← sys.refid;
pkt.reftime ← sys.reftime;

The transmit timestamp pkt.xmt will be used later in order to validate the reply; thus, implementa-
tions must save the exact value transmitted. In addition, the order of copying the timestamps should
be designed so that the time to format and copy the data does not degrade accuracy.

pkt.org ← peer.org; /* copy timestamps */
pkt.rec ← peer.rec;
pkt.xmt ← sys.clock;
peer.xmt ← pkt.xmt;

The call to encrypt is implemented only if authentication is implemented. If authentication is
enabled, the delay to encrypt the authenticator may degrade accuracy. Therefore, implementations
should include a system state variable (not mentioned elsewhere in this specification) which contains
an offset calculated to match the expected encryption delay and correct the transmit timestamp as
obtained from the local clock.

#ifdef (authentication implemented) /* see Appendix C */
call encrypt;
#endef

send packet;

The reachability register is shifted one position to the left, with zero replacing the vacated bit. If all
bits of this register are zero, the clear procedure is called to purge the clock filter and reselect the
synchronization source, if necessary. If the association was not configured by the initialization
procedure, the association is demobilized.

peer.reach ← peer.reach << 1; /* update reachability */
if (peer.reach = 0 and peer.config = 0) begin

demobilize association;
exit ;
endif

If valid data have been shifted into the filter register at least once during the preceding two poll
intervals (low-order bit of peer.reach set to one), the valid data counter is incremented. After eight
such valid intervals the poll interval is incremented. Otherwise, the valid data counter and poll
interval are both decremented and the clock-filter procedure called with zero values for offset and
delay and NTP.MAXDISPERSE for dispersion. The clock-select procedure is called to reselect the
synchronization source, if necessary.

if (peer.reach & 3 ≠ 0) /* test two low-order bits */
if (peer.valid < NTP.SHIFT) /* valid data received */

peer.valid ← peer.valid + 1;
else peer.hostpoll ← peer.hostpoll + 1;

else begin
peer.valid ← peer.valid − 1; /* nothing heard */
peer.hostpoll ← peer.hostpoll − 1);
call clock-filter(0, 0, NTP.MAXDISPERSE);
call clock-select; /* select clock source */

20

endif
call poll-update;
end transmit procedure;

3.4.3. Receive Procedure

The receive procedure is executed upon arrival of an NTP message. It validates the message,
interprets the various modes and calls other procedures to filter the data and select the synchroni-
zation source. If the version number in the packet does not match the current version, the message
may be discarded; however, exceptions may be advised on a case-by-case basis at times when the
version is changed. If the NTP control messages described in Appendix B are implemented and the
packet mode is 6 (control), the control-message procedure is called. The source and destination
Internet addresses and ports in the IP and UDP headers are matched to the correct peer. If there is
no match a new instantiation of the protocol machine is created and the association mobilized.

begin receive procedure
if (pkt.version ≠ NTP.VERSION) exit ;
#ifdef (control messages implemented)

if (pkt.mode = 6) call control-message;
#endef

for (all associations) /* access control goes here */
match addresses and ports to associations;

if (no matching association)
call receive-instantiation procedure; /* create association */

The call to decrypt is implemented only if authentication is implemented.

#ifdef (authentication implemented) /* see Appendix C */
call decrypt;
#endef

peer.mode →
mode ↓

sym act
1

sym pas
2

client
3

server
4

bcst
5

sym active recv pkt recv2 xmit2 xmit1,2

sym passive recv error recv2 error error
client xmit2 xmit2 error xmit xmit1

server recv2 error recv error error
broadcast recv1,2 error recv1 error error

Notes:

1. A broadcast server responds directly to the client with pkt.org and pkt.rec containing correct
values. At other times the server simply broadcasts the local time with pkt.org and pkt.rec set
to zero.

2. Ordinarily, these mode combinations would not be used; however, within the limits of the
specification, they would result in correct time.

Table 5. Modes and Actions

21

If the packet mode is nonzero, this becomes the value of mode used in the following step; otherwise,
the peer is an old NTP version and mode is determined from the port numbers as described in Section
3.3.

if (pkt.mode = 0) /* for compatibility with old versions */
mode ← (see Section 3.3);

else
mode ← pkt.mode;

Table 5 shows for each combination of peer.mode and mode the resulting case labels.

case (mode, peer.hostmode) /* see Table 5 */

If error the packet is simply ignored and the association demobilized, if not previously configured.

error: if (peer.config = 0) /* see no evil */
demobilize association;

break ;

If recv the packet is processed and the association marked reachable if tests five through eight (valid
header) enumerated in the packet procedure succeed. If, in addition, tests one through four succeed
(valid data), the clock-update procedure is called to update the local clock. Otherwise, if the
association was not previously configured, it is demobilized.

recv: call packet; /* process packet */
if (valid header) begin /* if valid header, update local clock */

peer.reach ← peer.reach | 1;
if (valid data) call clock-update;
endif

else
if (peer.config = 0) demobilize association;

break ;

If xmit the packet is processed and an immediate reply is sent. The association is then demobilized
if not previously configured.

xmit: call packet; /* process packet */
peer.hostpoll ← peer.peerpoll; /* send immediate reply */
call poll-update;
call transmit;
break ;

If pkt the packet is processed and the association marked reachable if tests five through eight (valid
header) enumerated in the packet procedure succeed. If, in addition, tests one through four succeed
(valid data), the clock-update procedure is called to update the local clock. Otherwise, if the
association was not previously configured, an immediate reply is sent and the association demobi-
lized.

pkt: call packet; /* process packet */
if (valid header) begin /* if valid header, update local clock */

peer.reach ← peer.reach | 1;

22

if (valid data) call clock-update;
endif

else if (peer.config = 0) begin
peer.hostpoll ← peer.peerpoll; /* send immediate reply */
call poll-update;
call transmit;
demobilize association;
endif

endcase
end receive procedure;

3.4.4. Packet Procedure

The packet procedure checks the message validity, computes delay/offset samples and calls other
procedures to filter the data and select the synchronization source. Test 1 requires the transmit
timestamp not match the last one received from the same peer; otherwise, the message might be an
old duplicate. Test 2 requires the originate timestamp match the last one sent to the same peer;
otherwise, the message might be out of order, bogus or worse. In case of broadcast mode (5) the
apparent roundtrip delay will be zero and the full accuracy of the time-transfer operation may not
be achievable. However, the accuracy achieved may be adequate for most purposes. The poll-update
procedure is called with argument peer.hostpoll (peer.peerpoll may have changed).

begin packet procedure
peer.rec ← sys.clock; /* capture receive timestamp */
if (pkt.mode ≠ 5) begin

test1 ← (pkt.xmt ≠ peer.org); /* test 1 */
test2 ← (pkt.org = peer.xmt); /* test 2 */
endif

else begin
pkt.org ← peer.rec; /* fudge missing timestamps */
pkt.rec ← pkt.xmt;
test1 ← true ; /* fake tests */
test2 ← true ;
endif

peer.org ← pkt.xmt; /* update originate timestamp */
peer.peerpoll ← pkt.poll; /* adjust poll interval */
call poll-update(peer.hostpoll);

Test 3 requires that both the originate and receive timestamps are nonzero. If either of the timestamps
are zero, the association has not synchronized or has lost reachability in one or both directions.

Ti−2

Ti−1

Ti−3

Ti

PeerHost

Figure 2. Calculating Delay and Offset

23

test3 ← (pkt.org ≠ 0 and pkt.rec ≠ 0); /* test 3 */

The roundtrip delay and clock offset relative to the peer are calculated as follows. Number the times
of sending and receiving NTP messages as shown in Figure 2 and let i be an even integer. Then
Ti-3, Ti-2, Ti-1 and Ti are the contents of the pkt.org, pkt.rec, pkt.xmt and peer.rec variables
respectively. The clock offset θ, roundtrip delay δ and dispersion ε of the host relative to the peer
is:

δ = (Ti − Ti−3) − (Ti−1 − Ti−2) ,

θ =
(Ti−2 − Ti−3) + (Ti−1 − Ti)

2
 ,

ε = (1 << sys.precision) + ϕ(Ti − Ti−3) ,

where, as before, ϕ =
NTP.MAXSKEW
NTP.MAXAGE

. The quantity ε represents the maximum error or dispersion

due to measurement error at the host and local-clock skew accumulation over the interval since the
last message was transmitted to the peer. Subsequently, the dispersion will be updated by the
clock-filter procedure.

The above method amounts to a continuously sampled, returnable-time system, which is used in
some digital telephone networks [BEL86]. Among the advantages are that the order and timing of
the messages are unimportant and that reliable delivery is not required. Obviously, the accuracies
achievable depend upon the statistical properties of the outbound and inbound data paths. Further
analysis and experimental results bearing on this issue can be found in [MIL90b] and in Appendix
H.

Test 4 requires that the calculated delay be within “reasonable” bounds:

test4 ← (|δ| < NTP.MAXDISPERSE and 0 < ε < NTP.MAXDISPERSE); /* test 4 */

Test 5 is implemented only if the authentication mechanism described in Appendix C is imple-
mented. It requires either that authentication be explicitly disabled or that the authenticator be
present and correct as determined by the decrypt procedure.

#ifdef (authentication implemented) /* test 5 */
test5 ← ((peer.config = 1 and peer.authenable = 0) or peer.authentic = 1);
#endef

Test 6 requires the peer clock be synchronized and the interval since the peer clock was last updated
be positive and less than NTP.MAXAGE. Test 7 insures that the host will not synchronize on a peer
with greater stratum. Test 8 requires that the header contains “reasonable” values for the pkt.root-
delay and pkt.rootdispersion fields.

test6 ← (pkt.leap ≠ 112 and 0 ≤ pkt.xmt − pkt.reftime < NTP.MAXAGE)/* test 6 */
test7 ← (peer.config = 1 or pkt.stratum ≤ sys.stratum); /* test 7 */
test8 ← (|pkt.rootdelay| < NTP.MAXDISPERSE and /* test 8 */

0 < pkt.rootdispersion < NTP.MAXDISPERSE);

With respect to further processing, the packet includes valid (synchronized) data if tests one through
four succeed (test1 & test2 & test3 & test4 = 1), regardless of the remaining tests. Only packets with
valid data can be used to calculate offset, delay and dispersion values. The packet includes a valid

24

header if tests five through eight succeed (test5 & test6 & test7 & test8 = 1), regardless of the
remaining tests. Only packets with valid headers can be used to determine whether a peer can be
selected for synchronization. Note that test1 and test2 are not used in broadcast mode (forced to
true), since the originate and receive timestamps are undefined.

The clock-filter procedure is called to produce the delay (peer.delay), offset (peer.offset) and
dispersion (peer.dispersion) for the peer. Specification of the clock-filter algorithm is not an integral
part of the NTP specification; however, one found to work well in the Internet environment is
described in Section 4.

if (not valid header) exit ;
peer.leap ← pkt.leap; /* copy packet variables */
peer.stratum ← pkt.stratum;
peer.precision ← pkt.precision;
peer.rootdelay ← pkt.rootdelay;
peer.rootdispersion ← pkt.rootdispersion;
peer.refid ← pkt.refid;
peer.reftime ← pkt.reftime;
if (valid data) call clock-filter(θ, δ, ε); /* process sample */
end packet procedure;

3.4.5. Clock-Update Procedure

The clock-update procedure is called from the receive procedure when valid clock offset, delay and
dispersion data have been determined by the clock-filter procedure for the current peer. The result
of the clock-selection and clock-combining procedures is the final clock correction Θ, which is used
by the local-clock procedure to update the local clock. If no candidates survive these procedures,
the clock-update procedure exits without doing anything further.

begin clock-update procedure
call clock-select; /* select clock source */
if (sys.peer ≠ peer) exit ;

It may happen that the local clock may be reset, rather than slewed to its final value, but this can
happen only if the computed corrections exceed a defined threshold for a considerable time. In this
case the clear procedure is called for every peer to purge the clock filter, reset the poll interval and
reselect the synchronization source, if necessary. Note that the local-clock procedure sets the leap
bits sys.leap to “unsynchronized” 112 in this case, so that no other peer will attempt to synchronize
to the host until the host once again selects a peer for synchronization.

The distance procedure calculates the root delay ∆, root dispersion Ε and root synchronization
distance Λ via the peer to the root of the synchronization subnet. The host will not synchronize to
the selected peer if the distance is greater than NTP.MAXDISTANCE. The reason for the minimum
clamp at NTP.MINDISPERSE is to discourage subnet route flaps that can happen with Bellman-
Ford algorithms and small roundtrip delays.

call dist(peer); /* update system variables */
 if (Λ ≥ NTP.MAXDISTANCE) exit ;

sys.leap ← peer.leap;
sys.stratum ← peer.stratum + 1;

25

sys.refid ← peer.peeraddr;
call local-clock;
if (local clock reset) begin /* if reset, clear state variables */

sys.leap ← 112;
for (all peers) call clear;
endif

else begin
sys.peer ← peer; /* if not, adjust local clock */
sys.rootdelay ← ∆;
sys.rootdispersion ← Ε + max(εξ + |Θ|, NTP.MINDISPERSE);
endif

sys.reftime ← sys.clock;
end clock-update procedure;

In some system configurations a precise source of timing information is available in the form of a
train of timing pulses spaced at one-second intervals. Usually, this is in addition to a source of
timecode information, such as a radio clock or even NTP itself, to number the seconds, minutes,
hours and days. In these configurations the system variables are set to refer to the source from which
the pulses are derived. For those configurations which support a primary reference source, such as
a radio clock or calibrated atomic clock, the stratum is set at one as long as this is the actual
synchronization source and whether or not the primary-clock procedure is used.

Specification of the clock-selection and local-clock algorithms is not an integral part of the NTP
specification. A clock-selection algorithm found to work well in the Internet environment is
described in Section 4, while a local-clock algorithm is described in Section 5. The clock-selection
algorithm described in Section 4 usually picks the peer at the lowest stratum and minimum
synchronization distance among all those available, unless that peer appears to be a falseticker. The
result is that the algorithms all work to build a minimum-weight spanning tree relative to the primary
reference time servers and thus a hierarchical-master-slave synchronization subnet.

3.4.6. Primary-Clock Procedure

When a primary reference source such as a radio clock is connected to the host, it is convenient to
incorporate its information into the data base as if the clock were represented as an ordinary peer.
In the primary-clock procedure the clock is polled once a minute or so and the returned timecode
used to produce a new update for the local clock. When peer.timer decrements to zero for a primary
clock peer, the transmit procedure is not called; rather, the radio clock is polled, usually using an
ASCII string specified for this purpose. When a valid timecode is received from the radio clock, it
is converted to NTP timestamp format and the peer variables updated. The value of peer.leap is set
depending on the status of the leap-warning bit in the timecode, if available, or manually by the
operator. The value for peer.peeraddr, which will become the value of sys.refid when the clock-up-
date procedure is called, is set to an ASCII string describing the clock type (see Appendix A).

begin primary-clock-update procedure
peer.leap ← from radio or operator; /* copy variables */
peer.peeraddr ← ASCII identifier;
peer.rec ← radio timestamp;
peer.reach ← 1;

26

call clock-filter(sys.clock − peer.rec, 0, 1 << peer.precision); /* process sample */
call clock-update; /* update local clock */
end primary-clock-update procedure;

3.4.7. Initialization Procedures

The initialization procedures are used to set up and initialize the system, its peers and associations.

3.4.7.1. Initialization Procedure

The initialization procedure is called upon reboot or restart of the NTP daemon. The local clock is
presumably undefined at reboot; however, in some equipment an estimate is available from the
reboot environment, such as a battery-backed clock/calendar. The precision variable is determined
by the intrinsic architecture of the local hardware clock. The authentication variables are used only
if the authentication mechanism described in Appendix C is implemented. The values of these
variables are determined using procedures beyond the scope of NTP itself.

begin initialization procedure
#ifdef (authentication implemented) / * see Appendix C */

sys.keyid ← as required;
sys.keys ← as required;
#endef ;

sys.leap ← 112; /* copy variables */
sys.stratum ← 0 (undefined);
sys.precision ← host precision;
sys.rootdelay ← 0 (undefined);
sys.rootdispersion ← 0 (undefined);
sys.refid ← 0 (undefined);
sys.reftime ← 0 (undefined);
sys.clock ← external reference;
sys.peer ← NULL;
sys.poll ← NTP.MINPOLL;
for (all configured peers) /* create configured associations */

call initialization-instantiation procedure;
end initialization procedure;

3.4.7.2. Initialization-Instantiation Procedure

This implementation-specific procedure is called from the initialization procedure to define an
association. The addresses and modes of the peers are determined using information read during
the reboot procedure or as the result of operator commands. The authentication variables are used
only if the authentication mechanism described in Appendix C is implemented. The values of these
variables are determined using procedures beyond the scope of NTP itself. With the authentication
bits set as suggested, only properly authenticated peers can become the synchronization source.

begin initialization-instantiation procedure
peer.config ← 1;
#ifdef (authentication implemented) /* see Appendix C */

peer.authenable ← 1 (suggested);
peer.authentic ← 0;

27

peer.keyid ← 0;
#endef ;

peer.peeraddr ← peer IP address; /* copy variables */
peer.peerport ← NTP.PORT;
peer.hostaddr ← host IP address;
peer.hostport ← NTP.PORT;
peer.mode ← host mode;
peer.peerpoll ← 0 (undefined);
peer.timer ← 0;
peer.delay ← 0 (undefined);
peer.offset ← 0 (undefined);
call clear; /* initialize association */
end initialization-instantiation procedure;

3.4.7.3. Receive-Instantiation Procedure

The receive-instantiation procedure is called from the receive procedure when a new peer is
discovered. It initializes the peer variables and mobilizes the association. If the message is from a
peer operating in client mode (3), the host mode is set to server mode (4); otherwise, it is set to
symmetric passive mode (2). The authentication variables are used only if the authentication
mechanism described in Appendix C is implemented. If implemented, only properly authenticated
non-configured peers can become the synchronization source.

begin receive-instantiation procedure
#ifdef (authentication implemented) /* see Appendix C */

peer.authenable ← 0;
peer.authentic ← 0;
peer.keyid ← 0;
#endef

peer.config ← 0; /* copy variables */
peer.peeraddr ← pkt.peeraddr;
peer.peerport ← pkt.peerport;
peer.hostaddr ← pkt.hostaddr;
peer.hostport ← pkt.hostport;
if (pkt.mode = 3) /* determine mode */

peer.mode ← 4;
else
peer.mode ← 2;

peer.peerpoll ← 0 (undefined);
peer.timer ← 0;
peer.delay ← 0 (undefined);
peer.offset ← 0 (undefined);
call clear; /* initialize association */
end receive-instantiation procedure;

28

3.4.7.4. Primary Clock-Instantiation Procedure

This procedure is called from the initialization procedure in order to set up the state variables for
the primary clock. The value for peer.precision is determined from the radio clock specification and
hardware interface. The value for peer.rootdispersion is nominally ten times the inherent maximum
error of the radio clock; for instance, 10 µs for a calibrated atomic clock, 10 ms for a WWVB or
GOES radio clock and 100 ms for a less accurate WWV radio clock.

begin clock-instantiation procedure
peer.config ← 1; /* copy variables */

 peer.peeraddr ← 0 undefined;
peer.peerport ← 0 (not used);
peer.hostaddr ← 0 (not used);
peer.hostport ← 0 (not used);
peer.leap ← 112;
peer.mode ← 0 (not used);
peer.stratum ← 0;
peer.peerpoll ← 0 (undefined);

 peer.precision ← clock precision;
peer.rootdelay ← 0;

 peer.rootdispersion ← clock dispersion;
peer.refid ← 0 (not used);
peer.reftime ← 0 (undefined);
peer.timer ← 0;
peer.delay ← 0 (undefined);
peer.offset ← 0 (undefined);
call clear; /* initialize association */
end clock-instantiation procedure;

In some configurations involving a calibrated atomic clock or LORAN-C receiver, the primary
reference source may provide only a seconds pulse, but lack a complete timecode from which the
numbering of the seconds, etc., can be derived. In these configurations seconds numbering can be
derived from other sources, such as a radio clock or even other NTP peers. In these configurations
the primary clock variables should reflect the primary reference source, not the seconds-numbering
source; however, if the seconds-numbering source fails or is known to be operating incorrectly,
updates from the primary reference source should be suppressed as if it had failed.

3.4.8. Clear Procedure

The clear procedure is called when some event occurs that results in a significant change in
reachability state or potential disruption of the local clock.

begin clear procedure
peer.org ← 0 (undefined); /* mark timestamps undefined */
peer.rec ← 0 (undefined);
peer.xmt ← 0 (undefined);
peer.reach ← 0; /* reset state variables */
peer.filter ← [0, ,0, NTP.MAXDISPERSE];
peer.valid ← 0;

29

peer.dispersion ← NTP.MAXDISPERSE;
peer.hostpoll ← NTP.MINPOLL; /* reset poll interval */
call poll-update;
call clock-select; /* select clock source */
end clear procedure;

3.4.9. Poll-Update Procedure

The poll-update procedure is called when a significant event occurs that may result in a change of
the poll interval or peer timer. It checks the values of the host poll interval (peer.hostpoll) and peer
poll interval (peer.peerpoll) and clamps each within the valid range. If the peer is selected for
synchronization, the value is further clamped as a function of the computed compliance (see Section
5).

begin poll-update procedure
temp ← peer.hostpoll; /* determine host poll interval */
if (peer = sys.peer)

temp ← min(temp, sys.clock, NTP.MAXPOLL);
else

temp ← min(temp, NTP.MAXPOLL);
peer.hostpoll ← max(temp, NTP.MINPOLL);
temp ← 1 << min(peer.hostpoll, max(peer.peerpoll, NTP.MINPOLL));

If the poll interval is unchanged and the peer timer is zero, the timer is simply reset. If the poll
interval is changed and the new timer value is greater than the present value, no additional action
is necessary; otherwise, the peer timer must be reduced. When the peer timer must be reduced it is
important to discourage tendencies to synchronize transmissions between the peers. A prudent
precaution is to randomize the first transmission after the timer is reduced, for instance by the sneaky
technique illustrated.

if (peer.timer = 0) /* reset peer timer */
peer.timer ← temp;

else if (peer.timer > temp)
peer.timer ← (sys.update & (temp − 1)) + 1;

end poll-update procedure;

3.5. Synchronization Distance Procedure

The distance procedure calculates the synchronization distance from the peer variables for the peer
peer.

begin dist(peer) procedure;
∆ ← peer.rootdelay + peer.delay;
Ε ← peer.rootdispersion + peer.dispersion + ϕ(sys.clock − peer.update);

Λ ← Ε +
∆
2

 ;

end distance procedure;

Note that, while ∆ is not necessarily greater than zero, both Ε and Λ should be greater than zero.

30

3.6. Access Control Issues

The NTP design is such that accidental or malicious data modification (tampering) or destruction
(jamming) at a time server should not in general result in timekeeping errors elsewhere in the
synchronization subnet. However, the success of this approach depends on redundant time servers
and diverse network paths, together with the assumption that tampering or jamming will not occur
at many time servers throughout the synchronization subnet at the same time. In principle, the subnet
vulnerability can be engineered through the selection of time servers known to be trusted and
allowing only those time servers to become the synchronization source. The authentication proce-
dures described in Appendix C represent one mechanism to enforce this; however, the encryption
algorithms can be quite CPU-intensive and can seriously degrade accuracy, unless precautions such
as mentioned in the description of the transmit procedure are taken.

While not a required feature of NTP itself, some implementations may include an access-control
feature that prevents unauthorized access and controls which peers are allowed to update the local
clock. For this purpose it is useful to distinguish between three categories of access: those that are
preauthorized as trusted, preauthorized as friendly and all other (non-preauthorized) accesses.
Presumably, preauthorization is accomplished by entries in the configuration file or some kind of
ticket-management system such as Kerberos [STE88]. In this model only trusted accesses can result
in the peer becoming the synchronization source. While friendly accesses cannot result in the peer
becoming the synchronization source, NTP messages and timestamps are returned as specified.

It does not seem useful to maintain a secret clock, as would result from restricting non-preauthorized
accesses, unless the intent is to hide the existence of the time server itself. Well-behaved Internet
hosts are expected to return an ICMP service-unavailable error message if a service is not
implemented or resources are not available; however, in the case of NTP the resources required are
minimal, so there is little need to restrict requests intended only to read the clock. A simple but
effective access-control mechanism is then to consider all associations preconfigured in a symmetric
mode or client mode (modes 1, 2 and 3) as trusted and all other associations, preconfigured or not,
as friendly.

If a more comprehensive trust model is required, the design can be based on an access-control list
with each entry consisting of a 32-bit Internet address, 32-bit mask and three-bit mode. If the logical
AND of the source address (pkt.peeraddr) and the mask in an entry matches the corresponding
address in the entry and the mode (pkt.mode) matches the mode in the entry, the access is allowed;
otherwise an ICMP error message is returned to the requestor. Through appropriate choice of mask,
it is possible to restrict requests by mode to individual addresses, a particular subnet or net addresses,
or have no restriction at all. The access-control list would then serve as a filter controlling which
peers could create associations.

4. Filtering and Selection Algorithms

A most important factor affecting the accuracy and reliability of time distribution is the complex of
algorithms used to reduce the effect of statistical errors and falsetickers due to failure of various
subnet components, reference sources or propagation media. The algorithms suggested in this
section were developed and refined over several years of operation in the Internet under widely
varying topologies, speeds and traffic regimes. While these algorithms are believed the best
available at the present time, they are not an integral part of the NTP specification. A comprehensive
discussion of the design principles and performance is given in Appendix H and [MIL90b].

31

In order for the NTP filter and selection algorithms to operate effectively, it is useful to have a
measure of recent sample variance recorded for each peer. The measure adopted in NTP is based
on first-order differences, which are easy to compute and effective for the purposes intended. There
are two measures, one called the filter dispersion εσ and the other the select dispersion εξ. Both are
computed as the weighted sum of the clock offsets in a temporary list sorted by synchronization
distance. If θi (0 ≤ i < n) is the offset of the ith entry, then the sample difference εij of the ith entry
relative to the jth entry is defined εij = |θi − θj| . The dispersion relative to the jth entry is defined
εj and computed as the weighted sum

εj = ∑
i = 0

n − 1

εij w i+1 ,

where w is a weighting factor chosen to control the influence of synchronization distance in the
dispersion budget. In the NTP algorithms w is chosen less than 1⁄2: w = NTP.FILTER for filter
dispersion and w = NTP.SELECT for select dispersion. The (absolute) dispersion εσ and εξ as used
in the NTP algorithms are defined relative to the 0th entry ε0.

There are two procedures described in the following, the clock-filter procedure, which is used to
select the best offset samples from a given clock, and the clock-selection procedure, which is used
to select the best clock among a hierarchical set of clocks.

4.1. Clock-Filter Procedure

The clock-filter procedure is executed upon arrival of an NTP message or other event that results
in new data samples. It takes arguments of the form (θ, δ, ε), where θ is a sample clock offset
measurement and δ and ε are the associated roundtrip delay and dispersion. It determines the filtered
clock offset (peer.offset), roundtrip delay (peer.delay) and dispersion (peer.dispersion). It also
updates the dispersion of samples already recorded and saves the current time (peer.update).

The basis of the clock-filter procedure is the filter shift register (peer.filter), which consists of
NTP.SHIFT stages, each stage containing a 3-tuple [θi, δi, εi], with indices numbered from zero on
the left. The filter is initialized with the value [0, 0, NTP.MAXDISPERSE] in all stages by the clear
procedure. New data samples are shifted into the filter at the left end, causing first NULLs then old
samples to fall off the right end. The packet procedure provides samples of the form (θ, δ, ε) as new
updates arrive, while the transmit procedure provides samples of the form
[0, 0, NTP.MAXDISPERSE] when two poll intervals elapse without a fresh update. While the same
symbols (θ, δ, ε) are used here for the arguments, clock-filter contents and peer variables, the
meaning will be clear from context. The following pseudo-code describes this procedure.

begin clock-filter procedure (θ, δ, ε)

The dispersion εi for all valid samples in the filter register must be updated to account for the
skew-error accumulation since the last update. These samples are also inserted on a temporary list
with entry format [distance,index]. The samples in the register are shifted right one stage, with the
overflow sample discarded and the new sample inserted at the leftmost stage. The temporary list is
then sorted by increasing distance. If no samples remain in the list, the procedure exits without
updating the peer variables.

32

for (i from NTP.SIZE – 1 to 1) begin /* update dispersion */
[θi, δi, εi] ← [θi−1, δi−1, εi−1]; /* shift stage right */
εi = εi + ϕτ;

add [λi ≡ εi +
δi
2

, i] to temporary list;

endfor ;
[θ0, δ0, ε0] ← [θ, δ, ε]; /* insert new sample */

add [λ ≡ ε +
δ
2

, 0] to temporary list;

peer.update ← sys.clock; /* reset base time */
sort temporary list by increasing distance||index;

The filter dispersion εσ is computed and included in the peer dispersion. Note that for this purpose
the temporary list is already sorted.

εσ ← 0;
for (i from NTP.SHIFT–1 to 0) /* compute filter dispersion */

if (peer.dispersionindex[i] ≥ NTP.MAXDISPERSE or
|θi − θ0| > NTP.MAXDISPERSE)
εσ ← (εσ + NTP.MAXDISPERSE) × NTP.FILTER;

else
εσ ← (εσ + |θi − θ0|) × NTP.FILTER;

The peer offset θ0, delay δ0 and dispersion ε0 are chosen as the values corresponding to the
minimum-distance sample; in other words, the sample corresponding to the first entry on the
temporary list, here represented as the 0th subscript.

peer.offset ← θ0; /* update peer variables */
peer.delay ← δ0;
peer.dispersion ← min(ε0 + εσ, NTP.MAXDISPERSE);
end clock-filter procedure

The peer.offset and peer.delay variables represent the clock offset and roundtrip delay of the local
clock relative to the peer clock. Both of these are precision quantities and can usually be averaged
over long intervals in order to improve accuracy and stability without bias accumulation (see
Appendix H). The peer.dispersion variable represents the maximum error due to measurement error,
skew-error accumulation and sample variance. All three variables are used in the clock-selection
and clock-combining procedures to select the peer clock(s) used for synchronization and to
maximize the accuracy and stability of the indications.

4.2. Clock-Selection Procedure

The clock-selection procedure uses the peer variables Θ, ∆, Ε and τ and is called when these variables
change or when the reachability status changes. It constructs a list of candidate peers eligible to
become the synchronization source, computes a confidence interval for each and casts out falsetick-
ers using a technique adapted from Marzullo and Owicki [MAR85]. Next, it sorts the list of surviving
candidates in order of stratum and synchronization distance and repeatedly casts out outlyers on the
basis of select dispersion until only the most accurate, precise and stable survivors are left. A bit is

33

set for each survivor to indicate the outcome of the selection process. The system variable sys.peer
is set as a pointer to the most likely survivor, if there is one, or to the NULL value if not.

begin clock-selection procedure

Each peer is examined in turn and added to an endpoint list only if it passes several sanity checks
designed to avoid loops and use of exceptionally noisy data. If no peers survive the sanity checks,
the procedure exits without finding a synchronization source. For each of m survivors three entries
of the form [endpoint, type] are added to the endpoint list: [Θ − Λ, − 1], [Θ, 0] and [Θ + Λ, 1]. There
will be 3m entries on the list, which is then sorted by increasing endpoint.

m ← 0;
for (each peer i) /* calling all peers */

if (peer.reach ≠ 0 and peer.dispersion < NTP.MAXDISPERSE and
not (peer.stratum > 1 and peer.refid = peer.hostaddr)) begin
call dist(i); /* make list entry */
add [Θ − Λ, −1] to endpoint list;
add [Θ, 0] to endpoint list;
add [Θ + Λ, 1] to endpoint list;
m ← m + 1;
endif

endfor
if (m = 0) begin /* skedaddle if no candidates */

sys.peer ← NULL;
exit ;
endif

sort endpoint list by increasing endpoint||type;

The following algorithm is adapted from DTS [DEC89] and is designed to produce the largest single
intersection containing only truechimers. The algorithm begins by initializing a value f and counters
i and c to zero. Then, starting from the lowest endpoint of the sorted endpoint list, for each entry
[endpoint, type] the value of type is subtracted from the counter i, which is the number of
intersections. If type is zero, increment the value of c, which is the number of falsetickers (see
Appendix H). If i ≥ m − f for some entry, endpoint of that entry becomes the lower endpoint of the
intersection; otherwise, f is increased by one and the above procedure is repeated. Without resetting
f or c, a similar procedure is used to find the upper endpoint, except that the value of type is added
to the counter.. If after both endpoints have been determined c ≤ f, the procedure continues having
found m − f truechimers; otherwise, f is increased by one and the entire procedure is repeated.

for (f from 0 to f ≥
m
2

) begin /* calling all truechimers */

c ← 0;
i ← 0;
for (each [endpoint, type] from lowest) begin /* find low endpoint */

i ← i − type;
low ← endpoint;
if (i ≥ m − f) break ;
if (type = 0) c ← c + 1;

34

endfor ;
i ← 0;

for (each [endpoint, type] from highest) begin /* find high endpoint */
i ← i + type;
high ← endpoint;
if (i ≥ m − f) break ;
if (type = 0) c ← c + 1;
endfor ;

if (c ≤ f) break ; /* continue until all falsetickers found */
endfor ;

if (low > high) begin /* quit if no intersection found */
sys.peer ← NULL;
exit ;
endif ;

Note that processing continues past this point only if there are more than
m
2

 intersections. However,

it is possible, but not highly likely, that there may be fewer than
m
2

 truechimers remaining in the

intersection.

In the original DTS algorithm the clock-selection procedure exits at this point with the presumed
correct time set midway in the computed intersection [low, high]. However, this can lead to a
considerable loss in accuracy and stability, since the individual peer statistics are lost. In NTP the
candidates that survived the preceding steps are processed further using an algorithm similar to Lu
[LU90], in which outlyers are discarded based on liklihood-ratio tests and statistical hypotheses.
The candidate list is rebuilt with entries of the form [distance, index], where distance is computed
from the (scaled) peer stratum and synchronization distance Λ. The scaling factor provides a
mechanism to weight the combination of stratum and distance. Ordinarily, the stratum will
dominate, unless one or more of the survivors has an exceptionally high distance. The list is then
sorted by increasing distance.

m ← 0;
for (each peer i) begin /* calling all peers */

if (low ≤ θ ≤ high) begin
call dist(i); /* make list entry */
add [peer.stratum × NTP.MAXDISPERSE + Λ, i] to candidate list;
m ← m + 1;
endif ;

endfor ;
sort candidate list by increasing distance||index;

The next steps are designed to cast out outlyers which exhibit significant dispersions relative to the
other members of the candidate list while minimizing wander, especially on high-speed LANs with
many time servers. Wander causes needless network overhead, since the poll interval is clamped at
sys.poll as each new peer is selected for synchronization and only slowly increases when the peer
is no longer selected. It has been the practical experience that the number of candidates surviving

35

to this point can become quite large and can result in significant processor cycles without materially
enhancing stability and accuracy. Accordingly, the candidate list is truncated at NTP.MAXCLOCK
entries.

Note εξi is the select (sample) dispersion relative to the ith peer represented on the candidate list,
which can be calculated in a manner similar to the filter dispersion described previously. The Εj is
the dispersion of the jth peer represented on the list and includes components due to measurement
error, skew-error accumulation and filter dispersion. If the maximum εξi is greater than the minimum
Εj and the number of survivors is greater than NTP.MINCLOCK, the ith peer is discarded from the
list and the procedure is repeated. If the current synchronization source is one of the survivors and
there is no other survivor of lower stratum, then the procedure exits without doing anything further.
Otherwise, the synchronization source is set to the first survivor on the candidate list. In the following
i, j, k, l are peer indices, with k the index of the current synchronization source (NULL if none) and
l the index of the first survivor on the candidate list.

while begin
for (each survivor [distance, index]) begin /* compute dispersions */

find index i for max εξi;
find index j for min Εj;
endfor

if (εξi ≤ Εj or m ≤ NTP.MINCLOCK) break ;
peer.survivor[i] ← 0 ; /* discard ith peer */
if (i = k) sys.peer ← NULL;
delete the ith peer from the candidate list;
m ← m − 1;
endwhile

 if (peer.survivor[k] = 0 or peer.stratum[k] > peer.stratum[l]) begin
sys.peer ← l; /* new clock source */
call poll-update;
endif

end clock-select procedure;

The algorithm is designed to favor those peers near the head of the candidate list, which are at the
lowest stratum and distance and presumably can provide the most accurate and stable time. With
proper selection of weight factor v (also called NTP.SELECT), entries will be trimmed from the
tail of the list, unless a few outlyers disagree significantly with respect to the remaining entries, in
which case the outlyers are discarded first. The termination condition is designed to avoid needless
switching between synchronization sources when not statistically justified, yet maintain a bias
toward the low-stratum, low-distance peers.

5. Local Clocks

In order to implement a precise and accurate local clock, the host must be equipped with a hardware
clock consisting of an oscillator and interface and capable of the required precision and stability. A
logical clock is then constructed using these components plus software components that adjust the
apparent time and frequency in response to periodic updates computed by NTP or some other
time-synchronization protocol such as Hellospeak [MIL83b] or the Unix 4.3bsd TSP [GUS85a].
This section describes the Fuzzball local-clock model and implementation, which includes provi-

36

sions for precise time and frequency adjustment and can maintain time to within 15 ns and frequency
to within 0.3 ms per day. The model is suitable for use with both compensated and uncompensated
quartz oscillators and can be adapted to mains-frequency oscillators. A summary of the charac-
teristics of these and other types of oscillators can be found in Appendix E, while a comprehensive
mathematical analysis of the NTP local-clock model can be found in Appendix G.

5.1. Fuzzball Implementation

The Fuzzball local clock consists of a collection of hardware and software registers, together with
a set of algorithms, which implement a logical clock that functions as a disciplined oscillator and
synchronizes to an external source. Following is a description of its components and manner of
operation. Note that all arithmetic is two’s complement integer and all shifts “<<” and “>>” are
arithmetic (sign-fill for right shifts and zero-fill for left shifts). Also note that x << n is equivalent
to x >> − n.

The principal components of the local clock are shown in Figure 3, in which the fraction points
shown are relative to whole milliseconds. The 48-bit clock register and 32-bit prescaler function as
a disciplined oscillator which increments in milliseconds relative to midnight at the fraction point.
The 32-bit clock-adjust register is used to adjust the oscillator phase in gradual steps to avoid
discontinuities in the indicated timescale. Its contents are designated x in the following. The 32-bit
skew-compensation register is used to trim the oscillator frequency by adding small phase incre-
ments at periodic adjustment intervals and can compensate for frequency errors as much as .01%
or ±100 ppm. Its contents are designated y in the following. The 16-bit watchdog counter and 32-bit
compliance register are used to determine validity, as well as establish the PLL bandwidth and poll
interval (see Appendix G). The contents of the compliance register are designated z in the following.
The 32-bit pps-adjust register is used to hold a precision time adjustment when a source of 1-pps
pulses is available, while the 8-bit pps counter is used to verify presence of these pulses. The two-bit
flags register contains the two leap bits described elsewhere (leap).

All registers except the prescaler register are ordinarily implemented in memory. In typical clock
interface designs such as the DEC KWV11-C, the prescaler register is implemented as a 16-bit
buffered counter driven by a quartz-controlled oscillator at a rate of 1000 Hz. A counter overflow

Clock (48)

Clock-Adjust (32)

Prescaler (32)

Skew-Compensation (32)

16

32

Compliance (32)

fraction point

16
Watchdog (16)

Flags (3)

PPS Adjust (16)

16
PPS (8)

16

Figure 3. Clock Registers

37

is signalled by an interrupt, which results in an increment of the clock register at bit 15. The time
of day is determined by reading the prescaler register, which does not disturb the counting process,
and adding its value to that of the clock register with fraction points aligned as shown and with
unimplemented low-order bits set to zero. In other interface designs, such as the LSI-11 event-line
mechanism, each tick of the clock is signalled by an interrupt at intervals of 16-2/3 ms or 20 ms,
depending on interface and mains frequency. When this occurs the appropriate increment in
fractional milliseconds is added to the clock register.

The various parameters used are summarized in Table 6, in which certain parameters have been
rescaled from those given in Appendix G due to the units here being in milliseconds. When the
system is initialized, all registers and counters are cleared and the leap bits set to 112 (unsynchron-
ized). At adjustment intervals of CLOCK.ADJ seconds CLOCK.ADJ is added to the watchdog
counter. Also, CLOCK.ADJ is subtracted from the pps counter, but only if the previous contents of
the pps counter are greater than zero. The watchdog counter is incremented, but clamped so as not
to exceed NTP.MAXAGE divided by CLOCK.ADJ (one full day). In addition, if the watchdog
counter reaches this value, the leap bits are set to 112 (unsynchronized).

In some system configurations a precise source of timing information is available in the form of a
train of timing pulses spaced at one-second intervals. Usually, this is in addition to a source of
timecode information, such as a radio clock or even NTP itself, to number the seconds, minutes,
hours and days. In typical clock interface designs such as the DEC KWV11-C, a special input is
provided which can trigger an interrupt as each pulse is received. When this happens the pps counter
is set to CLOCK.PPS and the current time offset is determined in the usual way. Then, the time
offset is divided by 1000 and the pps-adjust register set to the remainder. Finally, if the pps-adjust
register is greater than or equal to 500, 1000 is subtracted from its contents. As described below,
the pps-adjust and pps counters can be used in conjunction with an ordinary timecode to produce
an extremely accurate local clock.

5.2. Gradual Phase Adjustments

Left uncorrected, the local clock runs at the offset and frequency resulting from its last update. An
update is produced by an event that results in a valid clock selection. It consists of a signed 48-bit
integer in whole milliseconds and fraction, with fraction point to the left of bit 32. If the magnitude
is greater than the maximum aperture CLOCK.MAX, a step adjustment is required, in which case
proceed as described later. Otherwise, the watchdog counter is set to zero and a gradual phase
adjustment is performed. Normally, the update is computed by the NTP algorithms described

Parameter Name Crystal Mains

Adjustment Interval CLOCK.ADJ 4 sec 1 sec
PPS Timeout CLOCK.PPS 60 sec 60 sec
Step Timeout CLOCK.MINSTEP 900 sec 900 sec
Maximum Aperture CLOCK.MAX ± 0.128 sec ± 0.512 sec
Frequency Weight CLOCK.FREQ 16 16
Phase Weight CLOCK.PHASE 8 9
Compliance Weight CLOCK.WEIGHT 13 13
Compliance Maximum CLOCK.COMP 4 4
Compliance Multiplier CLOCK.MULT 4 4

Table 6. Clock Parameters

38

previously; however, if the pps counter is greater than zero, the value of the seconds register is used
instead. Let u be a 32-bit quantity with bits 0-31 set as bits 16-47 of the update. If some of the
low-order bits of the update are unimplemented, they are set as the value of the sign bit. These
operations move the fraction point of u to the left of bit 16 and minimize the effects of truncation
and roundoff errors. Let b be the number of leading zeros of the absolute value of the compliance
register and let c be the number of leading zeros of the watchdog counter, both of which are easily
computed by compact loops. Then, set b to

b = b − 16 + CLOCK.COMP

and clamp it to be not less than zero. This represents the logarithm of the loop time constant. Then,
set c to

c = 10 − c

and clamp it to be not greater than NTP.MAXPOLL – NTP.MINPOLL. This represents the
logarithm of the integration interval since the last update. The clamps insure stable operation under
typical conditions encountered in the Internet. Then, compute new values for the clock-adjust and
skew-compensation registers

x = u >> b ,
y = y + (u >> (b + b − c)) .

Finally, compute the exponential average

z = z + (u << (b + CLOCK.MULT) − z) >> CLOCK.WEIGHT ,

where the left shift realigns the fraction point for greater precision and ease of computation.

At each adjustment interval the final clock correction consisting of two components is determined.
The first (phase) component consists of the quantity

x >> CLOCK.PHASE ,

which is then subtracted from the previous contents of the clock-adjust register to form the new
contents of that register. The second (frequency) component consists of the quantity

y >> CLOCK.FREQ .

The sum of the phase and frequency components is the final clock correction, which is then added
to the clock register. Operation continues in this way until a new correction is introduced.

The value of b computed above can be used to update the poll interval system variable (sys.poll).
This functions as an adaptive parameter that provides a very valuable feature which reduces the
polling overhead, especially if the clock-combining algorithm described in Appendix F is used:

sys.poll ← 1 << (b + NTP.MINPOLL) .

Under conditions when update noise is high or the hardware oscillator frequency is changing
relatively rapidly due to environmental conditions, the magnitude of the compliance increases. With
the parameters specified, this causes the loop bandwidth (reciprocal of time constant) to increase
and the poll interval to decrease, eventually to NTP.MINPOLL seconds. When noise is low and the
hardware oscillator very stable, the compliance decreases, which causes the loop bandwidth to
decrease and the poll interval to increase, eventually to NTP.MAXPOLL seconds.

39

The parameters in Table 6 have been selected so that, under good conditions with updates in the
order of a few milliseconds, a precision of a millisecond per day (about .01 ppm or 10-8), can be
achieved. Care is required in the implementation to insure monotonicity of the clock register and
to preserve the highest precision while minimizing the propagation of roundoff errors. Since all of
the multiply/divide operations (except those involved with the 1-pps pulses) computed in real time
can be approximated by bitwise-shift operations, it is not necessary to implement a full multiply/di-
vide capability in hardware or software.

In the various implementations of NTP for many Unix-based systems it has been the common
experience that the single most important factor affecting local-clock stability is the matching of
the phase and frequency coefficients to the particular kernel implementation. It is vital that these
coefficients be engineered according to the model values, for otherwise the PLL can fail to track
normal oscillator variations and can even become unstable.

5.3. Step Phase Adjustments

When the magnitude of a correction exceeds the maximum aperture CLOCK.MAX, the possibility
exists that the clock is so far out of synchronization with the reference source that the best action is
an immediate and wholesale replacement of clock register contents, rather than in gradual adjust-
ments as described above. However, in cases where the sample variance is extremely high, it is
prudent to disbelieve a step change, unless a significant interval has elapsed since the last gradual
adjustment. Therefore, if a step change is indicated and the watchdog counter is less than the
preconfigured value CLOCK.MINSTEP, the update is ignored and the local-clock procedure exits.
These safeguards are especially useful in those system configurations using a calibrated atomic
clock or LORAN-C receiver in conjunction with a separate source of seconds-numbering informa-
tion, such as a radio clock or NTP peer.

If a step change is indicated the update is added directly to the clock register and the clock-adjust
register and watchdog counter both set to zero, but the other registers are left undisturbed. Since a
step change invalidates data currently in the clock filters, the leap bits are set to 112 (unsynchronized)
and, as described elsewhere, the clear procedure is called to purge the clock filters and state variables
for all peers. In practice, the necessity to perform a step change is rare and usually occurs when the
local host or reference source is rebooted, for example. This is fortunate, since step changes can
result in the local clock apparently running backward, as well as incorrect delay and offset
measurements of the synchronization mechanism itself.

Considerable experience with the Internet environment suggests the values of CLOCK.MAX
tabulated in Table 6 as appropriate. In practice, these values are exceeded with a single time-server
source only under conditions of the most extreme congestion or when multiple failures of nodes or
links have occurred. The most common case when the maximum is exceeded is when the time-server
source is changed and the time indicated by the new and old sources exceeds the maximum due to
systematic errors in the primary reference source or large differences in path delays. It is recom-
mended that implementations include provisions to tailor CLOCK.MAX for specific situations. The
amount that CLOCK.MAX can be increased without violating the monotonicity requirement
depends on the clock register increment. For an increment of 10 ms, as used in many workstations,
the value shown in Table 6 can be increased by a factor of five.

40

5.4. Implementation Issues

The basic NTP robustness model is that a host has no other means to verify time other than NTP
itself. In some equipment a battery-backed clock/calendar is available for a sanity check. If such a
device is available, it should be used only to confirm sanity of the timekeeping system, not as the
source of system time. In the common assumption (not always justified) that the clock/calendar is
more reliable, but less accurate, than the NTP synchronization subnet, the recommended approach
at initialization is to set the clock register as determined from the clock/calendar and the other
registers, counters and flags as described above. On subsequent updates if the time offset is greater
than a configuration parameter (e.g., 1000 seconds), then the update should be discarded and an
error condition reported. Some implementations periodically record the contents of the skew-com-
pensation register in stable storage such as a system file or NVRAM and retrieve this value at
initialization. This can significantly reduce the time to converge to the nominal stability and accuracy
regime.

Conversion from NTP format to the common date and time formats used by application programs
is simplified if the internal local-clock format uses separate date and time variables. The time
variable is designed to roll over at 24 hours, give or take a leap second as determined by the
leap-indicator bits, with its overflows (underflows) incrementing (decrementing) the date variable.
The date and time variables then indicate the number of days and seconds since some previous
reference time, but uncorrected for intervening leap seconds.

On the day prior to the insertion of a leap second the leap bits (sys.leap) are set at the primary servers,
presumably by manual means. Subsequently, these bits show up at the local host and are passed to
the local-clock procedure. This causes the modulus of the time variable, which is the length of the
current day, to be increased or decreased by one second as appropriate. Immediately following
insertion the leap bits are reset. Additional discussion on this issue can be found in Appendix E.

Lack of a comprehensive mechanism to administer the leap bits in the primary servers is presently
an awkward problem better suited to a comprehensive network-management mechanism yet to be
developed. As a practical matter and unless specific provisions have been made otherwise, currently
manufactured radio clocks have no provisions for leap seconds, either automatic or manual. Thus,
when a leap actually occurs, the radio must resynchronize to the broadcast timecode, which may
take from a few minutes to some hours. Unless special provisions are made, a primary server might
leap to the new timescale, only to be yanked back to the previous timescale when it next synchronizes
to the radio. Subsequently, the server will be yanked forward again when the radio itself resynchron-
izes to the broadcast timecode.

This problem can not be reliably avoided using any selection algorithm, since there will always
exist an interval of at least a couple of minutes and possibly as much as some hours when some or
all radios will be out of synchronization with the broadcast timecode and only after the majority of
them have resynchronized will the subnet settle down. The CLOCK.MINSTEP delay is designed
to cope with this problem by forcing a minimum interval since the last gradual adjustment was made
before allowing a step change to occur. Therefore, until the radio resynchronizes, it will continue
on the old timescale, which is one second off the local clock after the leap and outside the maximum
aperture CLOCK.MAX permitted for gradual phase adjustments. When the radio eventually
resynchronizes, it will almost certainly come up within the aperture and again become the reference
source. Thus, even in the unlikely case when the local clock incorrectly leaps, the server will go no
longer than CLOCK.MINSTEP seconds before resynchronizing.

41

6. Acknowledgments

Many people contributed to the contents of this document, which was thoroughly debated by
electronic mail and debugged using two different prototype implementations for the Unix 4.3bsd
operating system, one written by Louis Mamakos and Michael Petry of the University of Maryland
and the other by Dennis Ferguson of the University of Toronto. Another implementation for the
Fuzzball operating system [MIL88b] was written by the author. Many individuals to numerous to
mention meticulously tested the several beta-test prototype versions and ruthlessly smoked out the
bugs, both in the code and the specification. Especially useful were comments from Dennis Ferguson
and Bill Sommerfeld, as well as discussions with Joe Comuzzi and others at Digital Equipment
Corporation.

7. References

[ABA89] Abate, J., et al. AT&T’s new approach to the synchronization of telecommunication
networks. IEEE Communications Magazine (April 1989), 35-45.

[ALL74a] Allan, D.W., J.H. Shoaf and D. Halford. Statistics of time and frequency data analysis.
In: Blair, B.E. (Ed.). Time and Frequency Theory and Fundamentals. National Bureau of
Standards Monograph 140, U.S. Department of Commerce, 1974, 151-204.

[ALL74b] Allan, D.W., J.E. Gray and H.E. Machlan. The National Bureau of Standards atomic
time scale: generation, stability, accuracy and accessibility. In: Blair, B.E. (Ed.). Time and
Frequency Theory and Fundamentals. National Bureau of Standards Monograph 140, U.S.
Department of Commerce, 1974, 205-231.

[ALL89] Allan, D.W., M.A. Weiss and T.K. Peppler. In search of the best clock. IEEE Trans.
Instrumentation and Measurement 38, 2 (April 1989), 624-630.

[BAR87] Barnes, J.A., and S.R. Stein. Application of Kalman filters and ARIMA models to digital
frequency and phase lock loops. Proc. Nineteenth Annual Precise Time and Time Interval (PTTI)
Applications and Planning Meeting, (Redondo Beach, CA, December 1988), 311-323..

[BEL86] Bell Communications Research. Digital Synchronization Network Plan. Technical Advi-
sory TA-NPL-000436, 1 November 1986.

[BER87] Bertsekas, D., and R. Gallager. Data Networks. Prentice-Hall, Englewood Cliffs, NJ, 1987.

[BLA74] Blair, B.E. Time and frequency dissemination: an overview of principles and techniques.
In: Blair, B.E. (Ed.). Time and Frequency Theory and Fundamentals. National Bureau of
Standards Monograph 140, U.S. Department of Commerce, 1974, 233-314.

[BRA80] Braun, W.B. Short term frequency effects in networks of coupled oscillators. IEEE Trans.
Communications COM-28, 8 (August 1980), 1269-1275.

[COL88] Cole, R., and C. Foxcroft. An experiment in clock synchronisation. The Computer Journal
31, 6 (1988), 496-502.

[DAR81a] Defense Advanced Research Projects Agency. Internet Protocol. DARPA Network
Working Group Report RFC-791, USC Information Sciences Institute, September 1981.

42

[DAR81b] Defense Advanced Research Projects Agency. Internet Control Message Protocol.
DARPA Network Working Group Report RFC-792, USC Information Sciences Institute,
September 1981.

[DEC89] Digital Time Service Functional Specification Version T.1.0.5. Digital Equipment Cor-
poration, 1989.

[FRA82] Frank, R.L. History of LORAN-C. Navigation 29, 1 (Spring 1982).

[GUS84] Gusella, R., and S. Zatti. TEMPO - A network time controller for a distributed Berkeley
UNIX system. IEEE Distributed Processing Technical Committee Newsletter 6, NoSI-2 (June
1984), 7-15. Also in: Proc. Summer USENIX Conference (June 1984, Salt Lake City).

[GUS85a] Gusella, R., and S. Zatti. The Berkeley UNIX 4.3BSD time synchronization protocol:
protocol specification. Technical Report UCB/CSD 85/250, University of California, Berkeley,
June 1985.

[GUS85b] Gusella, R., and S. Zatti. An election algorithm for a distributed clock synchronization
program. Technical Report UCB/CSD 86/275, University of California, Berkeley, December
1985.

[HAL84] Halpern, J.Y., B. Simons, R. Strong and D. Dolly. Fault-tolerant clock synchronization.
Proc. Third Annual ACM Symposium on Principles of Distributed Computing (August 1984),
89-102.

[JON83] Jones, R.H., and P.V. Tryon. Estimating time from atomic clocks. J. Research of the
National Bureau of Standards 88, 1 (January-February 1983), 17-24.

[JOR85] Jordan, E.C. (Ed). Reference Data for Engineers, Seventh Edition. H.W. Sams & Co., New
York, 1985.

[KOP87] Kopetz, H., and W. Ochsenreiter. Clock synchronization in distributed real-time systems.
IEEE Trans. Computers C-36, 8 (August 1987), 933-939.

[LAM78] Lamport, L., Time, clocks and the ordering of events in a distributed system. Comm. ACM
21, 7 (July 1978), 558-565.

[LAM85] Lamport, L., and P.M. Melliar-Smith. Synchronizing clocks in the presence of faults. J.
ACM 32, 1 (January 1985), 52-78.

[LIN80] Lindsay, W.C., and A.V. Kantak. Network synchronization of random signals. IEEE Trans.
Communications COM-28, 8 (August 1980), 1260-1266.

[LUN84] Lundelius, J., and N.A. Lynch. A new fault-tolerant algorithm for clock synchronization.
Proc. Third Annual ACM Symposium on Principles of Distributed Computing (August 1984),
75-88.

[LU90] Lu, M., D. Zhang and T. Murata. Analysis of self-stabilizing clock synchronization by
means of stochastic petri nets. IEEE Trans. Computers 39, 5 (May 1990), 597-604.

[MAR85] Marzullo, K., and S. Owicki. Maintaining the time in a distributed system. ACM
Operating Systems Review 19, 3 (July 1985), 44-54.

43

[MIL81a] Mills, D.L. Time Synchronization in DCNET Hosts. DARPA Internet Project Report
IEN-173, COMSAT Laboratories, February 1981.

[MIL81b] Mills, D.L. DCNET Internet Clock Service. DARPA Network Working Group Report
RFC-778, COMSAT Laboratories, April 1981.

[MIL83a] Mills, D.L. Internet Delay Experiments. DARPA Network Working Group Report
RFC-889, M/A-COM Linkabit, December 1983.

[MIL83b] Mills, D.L. DCN local-network protocols. DARPA Network Working Group Report
RFC-891, M/A-COM Linkabit, December 1983.

[MIL85a] Mills, D.L. Algorithms for synchronizing network clocks. DARPA Network Working
Group Report RFC-956, M/A-COM Linkabit, September 1985.

[MIL85b] Mills, D.L. Experiments in network clock synchronization. DARPA Network Working
Group Report RFC-957, M/A-COM Linkabit, September 1985.

[MIL85c] Mills, D.L. Network Time Protocol (NTP). DARPA Network Working Group Report
RFC-958, M/A-COM Linkabit, September 1985.

[MIL88a] Mills, D.L. Network Time Protocol (version 1) - specification and implementation.
DARPA Network Working Group Report RFC-1059, University of Delaware, July 1988.

[MIL88b] Mills, D.L. The fuzzball. Proc. ACM SIGCOMM 88 Symposium (Palo Alto, CA, August
1988), 115-122.

[MIL89] Mills, D.L. Network Time Protocol (version 2) - specification and implementation.
DARPA Network Working Group Report RFC-1119, University of Delaware, September 1989.

[MIL90a] Mills, D.L. Measured performance of the Network Time Protocol in the Internet system.
ACM Computer Communication Review 20, 1 (January 1990), 65-75.

[MIL90b] Mills, D.L. Internet time synchronization: the Network Time Protocol. To appear in IEEE
Trans. Communications.

[MIT80] Mitra, D. Network synchronization: analysis of a hybrid of master-slave and mutual
synchronization. IEEE Trans. Communications COM-28, 8 (August 1980), 1245-1259.

[NBS77] Data Encryption Standard. Federal Information Processing Standards Publication 46.
National Bureau of Standards, U.S. Department of Commerce, 1977.

[NBS79] Time and Frequency Dissemination Services. NBS Special Publication 432, U.S. Depart-
ment of Commerce, 1979.

[NBS80] DES Modes of Operation. Federal Information Processing Standards Publication 81.
National Bureau of Standards, U.S. Department of Commerce, December 1980.

[PER78] Percival, D.B. The U.S. Naval Observatory clock time scales. IEEE Trans. Instrumentation
and Measurement 27, 4 (December 1978), 376-385.

[POS80] Postel, J. User Datagram Protocol. DARPA Network Working Group Report RFC-768,
USC Information Sciences Institute, August 1980.

44

[POS83a] Postel, J. Daytime protocol. DARPA Network Working Group Report RFC-867, USC
Information Sciences Institute, May 1983.

[POS83b] Postel, J. Time protocol. DARPA Network Working Group Report RFC-868, USC
Information Sciences Institute, May 1983.

[RAW87] Rawley, L.A., J.H. Taylor, M.M. Davis and D.W. Allan. Millisecond pulsar PSR
1937+21: a highly stable clock. Science 238 (6 November 1987), 761-765.

[RIC88] Rickert, N.W. Non Byzantine clock synchronization - a programming experiment. ACM
Operating Systems Review 22, 1 (January 1988), 73-78.

[SCH86] Schneider, F.B. A paradigm for reliable clock synchronization. Department of Computer
Science Technical Report TR 86-735, Cornell University, February 1986.

[SMI86] Smith, J. Modern Communications Circuits. McGraw-Hill, New York, NY, 1986.

[STE88] Steiner, J.G., C. Neuman, and J.I. Schiller. Kerberos: an authentication service for open
network systems. Proc. Winter USENIX Conference (February 1988).

[SU81] Su, Z. A specification of the Internet protocol (IP) timestamp option. DARPA Network
Working Group Report RFC-781. SRI International, May 1981.

[SRI87] Srikanth, T.K., and S. Toueg. Optimal clock synchronization. J. ACM 34, 3 (July 1987),
626-645.

[TRI86] Tripathi, S.K., and S.H. Chang. ETempo: a clock synchronization algorithm for hierarchical
LANs - implementation and measurements. Systems Research Center Technical Report TR-86-
48, University of Maryland, 1986.

[TRY83] Tryon, P.V., and R.H. Jones. Estimation of parameters in models for cesium beam atomic
clocks. J. Research of the National Bureau of Standards 88, 1 (January-February 1983), 3-11.

[VAN84] Van Dierendonck, A.J., and W.C. Melton. Applications of time transfer using NAVSTAR
GPS. In: Global Positioning System, Papers Published in Navigation, Vol. II, Institute of
Navigation, Washington, DC, 1984.

[VAS78] Vass, E.R. OMEGA navigation system: present status and plans 1977-1980. Navigation
25, 1 (Spring 1978).

[WEI89] Weiss, M.A., D.W. Allan and T.K. Peppler. A study of the NBS time scale algorithm.
IEEE Trans. Instrumentation and Measurement 38, 2 (April 1989), 631-635.

45

