
B. Appendix B. Word Error Rate for Asynchronous Radiotelegraph Signals

B.1. Introduction

An asynchronous radiotelegraph (RTTY) signal consists of a start bit interval followed by five or
eight data bit intervals and a stop bit interval, as shown in Figure B1. The start bit and data bits are
1.0 bit intervals in length, while the stop bit is either 1.0 or 1.5 bit interval, depending on the particular
code. Bit errors can affect not only the data bits, but the start and stop bits as well. This complicates
the calculation of word error (character) rate (WER) when given the bit error rate (BER), since an
error in the start or stop bits can affect not only the errored character, but following characters as
well. In this appendix a derivation of WER is developed that takes this factor into account. The
analysis is based on a Markov model which assumes bit errors are independent and identically
distributed.

The RTTY decoder detects the beginning of a character when the received data signal transitions
from mark to space, then starts a counter in order to decode the data bits. The stop bit follows the
data bits and must be a mark for correct character decoding. If either the start bit is received as a
mark or the stop bit is received as a space, a frame error (slip) occurs and the decoder attempts to
resynchronize on the following character stream. In almost all cases such as this, a slip results in
the loss of the errored character, as well as one or more following characters.

For the purposes of the following discussion, the RTTY signal is represented by a serial binary
clocked data stream with from five to eight data bits and start and stop bits, all of one bit interval
each. We will ignore the effects of clock frequency error or phase sampling error, so that the channel
is completely specified as a binary symmetric channel with specified bit error probability. We
assume that all n-bit code combinations are equally likely and that successive code combinations
are independent. We use p to designate the bit error probability and q = 1 − p. Therefore, the error

probability of an n-bit character is 1 − qn.

of all the n-bit error patters that can occur, half of them will have an error on the start bit. Of the
remainder, half will have an error on the stop bit. An error on the start bit will cause a slip of at least
one bit relative to a continuous data stream. An error on the stop bit may or may not cause a slip,
depending on the recovery procedure. When a slip occurs, a number m of following characters can
be lost in addition to the errored character. The expected value of m can be calculated using a Markov
model of n + 2 states, where each state corresponds to the (mis)alignment in bits between the decoder
and the transmitted signal. In the following, the general plan of development is to construct the state
transition probability matrix for each of three decoder models, start the Markov chain with specified
initial state probabilities, then calculate m as each model evolves to its final absorbing state.

B.2. RTTY Decoder Variants

In the design of electromechanical printers such as the once ubiquitous Teletype equipment, a
mechanical escapement and distributor mechanism is used in which the escapement is triggered by
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Figure B1. Asynchronous Character Framing
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the start bit (space pulse). As the drive shaft revolves, the data bits are distributed to latchbars which
function as a holding register. When the last data bit is found, the holding register contents are
transmitted to the printing mechanism. The escapement is then reset during the stop bit (mark hold),
after which it is ready for the next character. If the line signal at the stop bit is in error (space), then
the drive shaft continues to rotate and the distributor overwrites previous information, usually
resulting in a character garble. In this case, the machine “runs fast” or advances its phase relative
to the original start bit by an amount depending on the exact rotational speed of the drive shaft.

In the design of electronic devices like the Universal Asynchronous Receiver Transmitter (UART),
the receive clock is started at the mark-to-space transition which initiates the start bit and runs at
some multiple (typically between eight and 16) of the baud rate. A bit clock divided down from the
receive clock then samples the data bits at or near the center of each bit. The line signal at each
sample is then shifted through a shift register. After all bits have been shifted into the register, the
UART resumes searching for the next mark-to-space transition. Usually, but not necessarily, the
UART samples the stop bit, as well as the data bits, in order to check for a frame error or break
signal. Note that the next following character will not be initiated until the line signal has returned
to mark following the last sample.

The UART behavior has the advantage (or disadvantage, depending on the intent of the design) that
only a single character will be decoded at the beginning of a long space interval that might be
generated by a frame error, break signal or space disconnect. Where it is necessary to time these
intervals, the design can be modified so that, if the line signal is space during the stop bit, the sample
clock continues to run. In this case, a space found at the stop bit sample is taken as the start bit of
the next character and the samples continue to shift into the shift register. The behavior of this
modified design is thus similar to that of the electromechanical printers described previously.

In the preceding discussion, three cases have been identified:

Case 1 (Electromechanical-1). Operation of the shift register ceases at the last data bit. The decoder
either resumes searching for the next start bit, if the line signal is mark, or begins the next
character if the line signal is space.

Case 2 (Electromechanical-2). Operation of the shift register continues past the last data bit to
include the stop bit, in order to detect a frame error, break signal or space disconnect. The decoder
either resumes searching for the next start bit, if the line signal is mark, or begins the next
character if the line signal is space.

Case 3 (UART). Operation of the shift register continues past the last data bit to include the stop
bit, in order to detect a frame error, break signal or space disconnect. The decoder waits until
the line signal returns to mark (if not already in that condition) and resumes searching for the
next start bit.

In Case 1, the decoder will begin the next character one bit early if an error occurs on the stop bit.
In Case 2, the decoder will begin the next character correctly (assuming the next start bit is correct)
whether or not an error occurs on the stop bit. In Case 3, if an error occurs on the stop bit, the decoder
will freeze until the line signal returns to mark and then resume searching for a start bit. In the
following development, each of these three cases is studied in detail in order to evaluate how well
each succeeds in minimizing m with respect to p.
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B.3. Markov Models

In transmitting a continuous stream of RTTY characters, the stop bit of a character is followed
immediately by the start bit of the following character, as shown in Figure B1. In the Markov models
considered below, each state corresponds to a misalignment between the decoder and the transmitted
signal. Starting in a specific initial state, succeeding state transitions are driven by the bits (mark or
space) as they arrive, eventually concluding in the final state where the decoder and transmitted
signal are once again correctly aligned. For each evolution of the model, the decoder slips a number
of bits to the first space bit, assumed to be the start bit of the next character, and then slips five bits
(Case 1) or six bits (Cases 2 and 3) to the end of that character. If not correctly aligned at that point,
the model evolves an additional step. The model predicts the number of character slips m as a
function of bit error probability p. The number of bit slips that may precede a character slip are
ignored, since the WER contribution produced by the bit slips is small compared to the character
slips.

The probabilities assigned the state transitions are computed separately for each of the three cases
mentioned above. For instance, in Case 2 with n = 5, the transition diagram is shown in Figure B2.
The transition probabilities follow directly from the assumptions of equiprobable and independent
code combinations. If the decoder is in State 7 and the next bit is a space, then a start bit has been
detected and the next five bits plus the stop bit will be processed as a valid character. Now consider
the Markov chain with initial probability concentrated in State 3, which represents a misalignment
of three bits late or, equivalently, four bits early. If the next bit is a space, the chain returns to the
same state. If the next bit is a mark, the chain slips to the next higher numbered state. The Markov
models considered here are absorbing, with State 7 the absorbing state. Therefore, the chain
eventually slips to State 7, after which normal character decoding resumes.

The three models are approximate in that they are finite and in some cases violate the memoryless
property. However, the intent of the models is to determine general behavior, not predict precise
behavior in every case; moreover, the exceptional cases occur with very low probability. In models
it is assumed that additional bit errors which may occur while the decoder is attempting to
resynchronize to the character stream do not alter the behavior predicted by the model; in particular,
they do not affect the start or stop bits. At bit error rates likely to occur in practice, this is a reasonable
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41



assumption. When they do in fact occur, the chances are good that they will affect the data bits, but
not the start or stop bits. Obviously, the Markov model could be extended to include the affects of
these errors, but this is left for a subsequent exercise.

Let v1, v2, ..., vn+2 represent the initial probabilities assigned to the states s1, s2, ..., sn+2 respectively,

and let π(0) = (v1, v2, ..., vn+2) represent the initial state vector of these probabilities. Let the matrix
P = {pij} represent the transition probabilities, where pij is the probability of a transition from state

si to sj. Given the state vector π(k−1) at transition k − 1 (k > 0), the state vector at transition k is

π(k) = π(k−1)P = π(0)Pk.

Since this is an absorbing Markov chain, the state vector should approach

π = lim
k→∞

 π(k) = (0, 0, ..., 1) ,

for all π(0), where the absorbing state sn+2 has been ordered last.

The value of the sn+2 component of the state vector at each transition is the probability that the slip

interval ends at or before that transition. Let s(k) be the value of this component at the kth transition.
The mean slip interval at the kth (k > 0) transition is

m(k) = ∑ 
i=1

k

i s(i) − (i − 1) s(i−1) ,

and

m = lim
k→∞

 m(k) .

There is no a-priori guarantee that this limit exists for all possible sequences of character combina-
tions; in fact, a continuous sequence of spaces following a mark would hang the Case 3 decoder
forever. In practice, however, the effect of such improbable sequences can be ignored. To test this
conjecture, the computations in each of the cases were performed by computer and converged to
within seven decimal digits for k less than 100.
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B.4. Discussion of Results

It is a straightforward, but tedious, exercise to develop Markov models for Case 1 and Case 3, which
are similar to the Case 2 model of Figure B2. The state transition matrices for all three cases are
shown in Figure B3. In all of these models, the signal structure of Figure B1 is used with the stop

bit interval equal to one bit. As mentioned at the outset, the character error probability is 1 − q7,
since an error on any bit, including the start and stop bits, counts as a character error. However,
errors on the start and stop bits have an additional impact due to the slips that result. The purpose
of this section is to predict the extent of this impact using the Markovian models developed in the
last section.

A new arrival to a channel in the process of sending continuous traffic may experience a number
of character slips until correctly synchronized on the transmitted start and stop bits. The mean

number of character slips can be determined by setting π(0) = (1⁄7, 1⁄7, 1⁄7, 1⁄7, 1⁄7, 1⁄7, 1⁄7); that is,
making all initial states equiprobable. The value of m determined by the above procedure for each
of the three models is shown in the second column of Table B1.

Of all error patters, those with good start and stop bits represent errors in the data bits, which do not
cause a character slip. Since one-quarter of all error patterns have good start and stop bits, the WER
contribution due to data errors is

(1 − q7)
4

 . 

In the case of a bad start bit (space becomes mark), the decoder will slip to the first data bit. The

number m of character slips can be determined by setting π(0) = (0, 1, 0, 0, 0, 0, 0); that is, starting
the chain with an initial slip of one bit. Since half of the error patters have a bad start bit, the WER
contribution due to start-bit character slips is

m 
(1 − q7)

2
 , 

where m is determined by the above procedure for all three models, as shown in the fourth column
of Table B1.

In the case of a good start bit and a bad stop bit (mark becomes space), the decoder will either slip
one bit early (Case 1), slip to the first mark-space transition (Case 3) or have no slip at all (Case 2).
This requires that each case be considered separately.

In Case 1, m can be determined by setting π(0) = (0, 0, 0, 0, 0, 1, 0); that is, starting the chain with
an initial slip of six bits, which is equivalent to a negative slip of one bit. The WER contribution
due to stop-bit character slips is

Case Initial Start Bit Stop Bit I Stop Bit II

1 6.88 4.63 7.75
2 4.86 8.00
3 3.16 4.78 2.33 3.75

Table B1. Word Error Probabilities
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m 
(1 − q7)

4
 .

where m is determined by the above procedure for all three models, as shown in the fifth column
of Table B1.

In Case 2, a bad stop bit is treated the same as a bad data bit and does not cause a slip. This accounts
for one-fourth of the data errors and is added to that WER contribution.  In Case 3, there are two
subcases: one in which the following character has a good start bit, and the other in which it is bad.
In the first subcase, which occurs with probability q, the decoder slips until the first mark is found,
then resets and cont inues to search for the next start bi t.  Thus, we set

π(0) = (0, 1⁄2, 1⁄4, 1⁄8, 1⁄16, 1⁄32, 1⁄32) to approximate the initial state occupancy in this subcase. The
results are shown in the fifth column of Table B1. In the second subcase, which occurs with
probability p, the decoder resets on the bad start bit (mark) and continues as in Case 1.

In summary, the total WER for Case 1 due to all causes is

WER1 = (1 − q7)(1
4
 + 

4.63
2

 + 
7.75

4
) = 4.50(1 − q7) ,

the total WER for Case 2 due to all causes is

WER2 = (1 − q7)(1
4
 + 

8.00
2

 + 
1
4

) = 4.50(1 − q7) ,

and the total WER for Case 3 due to all causes is

WER3 = (1 − q7)(1
4
 + 

4.78
2

 + 
2.33p + 3.75q

4
) ≈ 3.58(1 − q7) ,

assuming q >> p. Figure B4 shows a graph of the WER as a function of the BER for all three
cases.The top trace represents both Case 1 and Case 2, which are almost identical. The middle trace
represents Case 3. The bottom trace represents the WER of the five-bit character when the RTTY
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decoder is operating in synchronous mode and the PLL has correctly locked on the start-bit
transitions. In this case, the start and stop bits are ignored, other than to derive the Viterbi distance.
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