T HE UNIVERSITY O F MICHTI®GAN

Technical Report 7

THE SYNTACTIC STRUCTURE OF MAD/I

David L. Mills

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director
ORA Project 07449

supported by:
ADVANCED RESEARCH PROJECTS AGENCY

DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 0SA-3050
ARPA ORDER NO. 716

administered through

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

June 1968

TABLE OF CONTENTS

Page

LIST OF FIGURES. ... ittt v
I. INTRODUCTION. ...ttt iiiiiiiiiiiiit s 1
1.1 Evolution of MAD/I...... ... iiiennn. 1

IT. FORMAL SYNTACTIC SPECIFICATION............. 6
2.1 Terminology.......coiviiiiiiiiiiinnnnn 7

2.2 Production SystemsS.................... 10

2.3 Operator Precedence Grammars.......... 12

2.4 Contextual Features................c... 18

III. TRANSFORMATIONS.. ...ttt nns 26
3.1 Terminal Transformations.............. 28

3.2 Precedence Transformations............ 38

IV. A KERNEL GRAMMAR FOR MAD/I......... ..o, 45
4.1 An Operator Precedence Kernel Grammar. 46

4.2 Interpretation of the Kernel Grammar.. 64

V. STRUCTURE OF THE COMPILER........... ..., 74
5.1 The Symbol Table.......cvvevvinon... 78

5.2 Lexical Recognizer.........oovuuivuin.n.. 82

5.3 Syntactic Recognizer.................. 85

5.4 The Macro Interpreter................. 87
REFERENCES . . ittt i it i i it it ittt s i 91

iii

Figure

10
11
12
13
14
15
16
17
18
19

20

LIST OF FIGURES

Floyd's Simple Grammar........

Terminal MatriX......voeveeeu..

Terminal Context Matrix........

Example Grammar—Productions...

ooooooooooooo

ooooooooooooo

.............

Example Grammar—Terminal Context Matrix....

Kernel Productions for MAD/I..
Kernel Vocabulary.............
Descriptor Assignment.........
Left Terminal Derivatives.....
Right Terminal Derivatives....
Precedence Equivalence Classes

Precedence Matrix.............

ooooooooooooo

.............

Terminal Pair Equivalence Classes..........

Terminal Pair Matrix..........

Terminal Context Equivalence Classes.......

Terminal Context Matrix.......
Left Terminal Delimiters......
Right Terminal Delimiters.....

Organization of MAD/I Compiler

ooooooooooooo

22

25

31

33

47

50

53

54

55

56

57

S8

63

76

THE SYNTACTIC STRUCTURE OF MAD/I

I. INTRODUCTION

The various dialects of MAD developed at The Univer-
sity of Michigan and elsewhere can be described as ALGOL-1like
languages with strong flavors of FORTRAN. The language has en-
joyed considerable popularity at the University in both teaching
and research during a developmental evolution which began in 1960
with an IBM 704 version of the compiler and progressed to the
present IBM 7090 version. The MAD language itself is designed
to be readily taught to relatively unsophisticated students and
yet to provide the power of generality of expresssion necessary
in sophisticated research applicatbns. In general, the compiler
implementations have been finely tuned for high-speed translation
and for production of reasonably good object code. The list of
references at the end of this report contains a compendium of
reference material covering the development of the compiler and
the structure of the language. In the subsequent discussion of
this report a working familiarity with the MAD language will be
assumed in programming examples, although this is not strictly

necessary for an understanding of the principles involved.

1.1 Evolution of MAD/I

In mid-1965 the University began a gradual systems
change-over from the IBM 7090 to the System/360 Model 67. The
development of the System/360 system was predicated upon the

virtual-memory concept, which involves a hardware-assisted

-1-

dynamic address translation procedure in which each concurrent
system program is written as if it owned all the addressable

core storage of the machine. Successful operation of this pro-
cedure requires a high-speed backup storage, such as a drum, for
temporary storage of core memory overflows and furthermore a re-
liance upon a sharable system program structure. The implemen-
tation of the Michigan Timesharing System (MTS) is based on these
concepts and represents the environment in which both the new

MAD compiler and its compiled programs will operate.

At its inception the MAD project was faced with two
alternative developmental paths. On the one hand a MAD trans-
lator could be implemented for the Model 67 which would be a
virtual transliteration of the existing MAD/7090 translator and
with few additional features. On the other hand a new language
could be developed which contained all those useful features of
the existing MAD/7090 translator and in addition many new ones
required for such applications as the development of graphics
languages. The former effort would at least provide a contin-
uance of the MAD/7090 language itself, a factor thought vital
in the almost captive MAD-committed user population. The latter
effort would be expected to provide, in addition to the valuable
developmental experience itself, a sound theoretical framework
bolstering the specification of a new language called MAD/I and
the construction of its compiler. In addition, the framework
developed would include a systematic procedure for the specifi-

cation of new language families, based on MAD/I, within

which specialized languages suitable for the manipulation of
data structures could be developed.

Although, in the beginning, the developmental effort of
the MAD project was concentrated along the former or transliter-
ation path, a gradual shift in emphasis took place, to such an
extent that the dewlopmental effort at this time is almost
solely concentrated in the specification of MAD/I and the im-
plementation of its compiler. The new language is in many
respects very much like the old. For instance, the assignment,
transfer, conditional, iteration, and input/output statements
are incorporated into the MAD/I language in substantially the
same way as into MAD/7090. Variables, constants, functions,
arrays, and expressions have the same interpretation in both
languages. Several minor differences exist between the two languages,
however, in the rules for the naming of statements, the scope of
compound statements, and the elements of input/output statements.

The major differences between the two languages oc-
cur in the inclusion of comprehensive definitional facilities
and the introduction of new data structural types. In the MAD/
7090 language a definitional facility was implemented which
provided for the introduction of new data types and for the
definition of a restricted class of operations upon them. In
the new new language this facility has been expanded so that,
not only a much richer class of data types can be defined, but
quite general operations can be performed upon them. In order

to implement this expanded definitional facility, a new

metalanguage has been developed in which the definitions are
expressed. In fact, all of the MAD/I statements announced in
the programming manuals have been implemented in this new meta-
language.

The impact of the systematic introduction of new data
types is most obvious in the syntactic specification of the MAD/
I declaration statements. Although the MAD/7090 concepts of
dimension, storage mapping, and mode have validity in MAD/I
programs, their interpretation is far more general. For instance
arrays may contain arrays as elements, and the storage assigned
to them may vary dynamically during execution and be shared among
several functions. Linkages between functions are far more
flexible, and dynamic loading and overlay operations are possible.
In short, the declaration features of the language allow maximum
advantage to be taken of the virtual-memory concept and the time-
sharing environment in which MAD/I programs are executed.

The broadening of scope and generality as compared
with MAD/7090 has not been achieved without a corresponding loss
of compatibility in respect to the older language. In fact, the
characteristics of the 7090 as compared to those of the Model 67
seem to prejudice a virtue of compatibility in the first place.
As a result, many common gimmicks popular in MAD/7090 program-
ming simply have no counterpart in MAD/I programming. However,
the converse most certainly will be far more likely, in spite of
the fact that old programming habits die hard. The most common

incompatibilities are of course related to the character set

and the byte addressing structure of the Model 67, and this
directly affects those operations of bitwise shifting and mask-
ing of data, and the resolution of storage addresses. A trans-
lator has been constructed to aid in the conversion of MAD/7090
programs to their MAD/I counterparts, and has proved useful in
the majority of cases. In some cases involving packing/unpacking
and character-sensitive operations, translation is not possible
unless a highly sophisticated processor is postulated. Unfor-
tunately, the MAD language has been particularly convenient in
the construction of symbol manipulation programs; and a large
body of extant and useful programs are unavoidably threatened
with obsolescence as a result of the eventual change-over to
MAD/I.

As a consequence of the power inherent in the defini-
tional facilities of the compiler, it is apparent that a des-
cription of the language in terms of its syntax would be mis-
leading at best. Obviously the structure of the translator pro-
vides the capabilities for the definition of a rather wide class
of languages, each one characterized by a consistent set of
statements of the definitional metalanguage. One of these sets
of definitional statements just happens to represent the lan-
guage called MAD/I in the programming manuals, but any other
consistent set of definitional statements might have been chosen
as well. The MAD/I set was chosen rather arbitrarily to re-
present that language thought most useful and economical for

the widest class of potential users, yet with a large capability

for enrichment through the inclusion of special-purpose defi-
nitional packages.

The most useful description of the MAD/I language
and its translator then demonstrably involves the syntactic
specification of those constructs which can be identified by
the various analysis algorithms embedded within the translator
and a description of the operations possible upon these con-
structs. These tasks will dominate the discussion for the re-
mainder of this report. However, many examples drawn from the
MAD/I language will be used from time to time to explicate
the discussion.

It should be noted that the procedures described
herein used to analyze the syntactic specification of MAD and
to construct its compiler are applicable to other than alge-
braic-type languages. In fact, the same analysis techniques
have been used in the construction of a machine-language as-
sembler and in the specification of a computer-to-computer

message transmission protocol.

ITI. FORMAL SYNTACTIC SPECIFICATION

The formal linguistic structure which describes the
MAD syntax can be described as a modified operator precedence
grammar. This structural description provides an exceptionally
sound framework which satisfies both the needs oif syntactic
flexibility in the definition of statement forms and of struc-

tural integrity in the control of error recovery. The approach

taken in the formulatory steps of the formal syntactic specifi-
cation is first to construct a kernel language of the operator
precedence type and then to construct a set of context-dependent
transformations which operate upon sentences of the source lan-
guage to produce sentences of the kernel language. Since it is
known that the family of precedence languages are unambiguous
and have rather good error-recovery characteristics; then, if
the context-dependent transformations are carefully chosen, the
resultant language should be considerably richer than the
operator-precedence kernel language and yet retain many of its

desirable characteristics.

2.1 Terminology

A terminal vocabulary VT is a set of symbols chosen

as the alphabet of the language. A language L is a collec-
tion of certain strings of all those strings formed by inde-
finite concatentions of elements of VT . Each of these strings
is a sentence S of L and is generated by applications of a

set of rules called a grammar G . In the grammars discussed

here each of these rules or productions take the form U»x ,

where U 1is an element of a nonterminal vocabulary VN and

X 1s a string over VT + VN » called simply the vocabulary.

Furthermore, every S in L is assigned a structural descrip-

tion by G which demonstrates how that string is decomposed
into its constituent structural units, each labeled by an

element of VN

The productions of G thus form an effective procedure
for deciding whether any string over the vocabulary is or is
not a sentence of the language. Furthermore, since every mean-

ingful constituent substring or prime phrase of a sentence is

assigned a nonterminal symbol by a production of G , then the
identification of a prime phrase during the decision process can
be made synonymous with the production of some arbitrary inter-
pretation or translation of the elements of the prime phrase
itself.

If all productions of G take the form U»x as

above, then L is described as context-free and the decomposi-

tion or parsing of a sentence into its constituent structural

units inwlves relatively simple techniques. On the other hand,
if some of the productions are of the form xUy»>z , where x ,
y, and z are strings over V , then L is described as con-

text-dependent, and more complicated parsing techniques are

required. A production-oriented description of MAD/I is ne-
cessarily context-dependent, although by far the majority of
productions are of the context-free type.

Any useful programming language like MAD/I should be
capable of being described by a particular grammar in such a
way that each sentence of the language is assigned exactly
one structural description, or, equivalently, that only one
parse exists. If such is the case, then the language is des-

cribed as unambiguous. Although it is not in general possible

to determine whether a particular phrase-structure grammar is
or is not unambiguous, certain families of phrase-structure
grammars can be shown to have this property. One of the most

useful of these families is that of the precedence grammars;

and, of these, the operator precedence grammars are particularly

suited to the description of MAD/I. In fact it is convenient
to describe the bulk of MAD's syntax in an operator-precedence
grammar and then to describe those few exceptions by means of
context-dependent transformations which are applied to the
source text prior to the operator-grammar parsing algorithm,.
There is one significant problem connected with this
approach. The useful operator precedence grammar parsing tech-
niques operate upon the terminal symbols of a sentence producing
progressively larger prime phrases as intermediate parses and
finally terminating when the entire sentence has been scanned.
Such a process, commonly called a bottom-up parse, is highly
adaptable to the parsing of the lower-level algebraic expres-
sion structures in the language. On the other hand, the pars-
ing of the higher-level statement structures is intuitively
a much more goal-oriented process, and a more general top-
down process is needed. In the syntactic specification of
MAD/I, the productions are carefully chosen so that contextual
features can provide clues for a macro-driven top-down state-
ment scan, yet retain the advantages of a bottom-up expres-

sion scan.

-10-

2.2 Production Systems

The set of productions defining a grammar may be
represented in any of several common notational schemes, the
most common of which may be the Backus Normal Form (BNF). The
particular notational scheme followed herein is an adaptation
of the BNF and is defined as follows:

Each production P «consists of a left part U ,

which 1s a particular symbol of VN , and a right part x ,

which is a string over V = VT + VN - In general there may be
more than one production with the same left part, each such
production corresponding to an instance of a component in a
BNF rule. It will be assumed that no right part is the null
string, for it can be shown that a grammar containing a pro-
duction with a null right part can be naturally rewritten
without such a production and without materially affecting

the generative capacity of the grammar.

A grammar, each rule of which takes one of the

following forms:

U-~»a 1.
Ul-*aU2 2,
Ul*UZa 3.
U1+aU2b, 4.

where U; are elements of VN and a, b are strings over V

is called a linear grammar. These grammars are characterized

by the fact that, in each production, only a single nonterminal

T

3

-11-

symbol on the right side is replaced or rewritten by the non-
terminal on the left; and, furthermore, each such rewrite

(except those corresponding to Rule 1) has fewer symbols than

the previous. If we add to these four forms the following
u,~u, 5.
U,”U,al, 6.

and require a and b to be single elements of V then an

T °
appropriate paradigm for an algebraic language production sys-
tem is evident. Here the terminal symbol a in Rule 1 corre-
sponds to the notion of operand, and the terminal symbols in the
remaining rules correspond to the notion of operator. The non-
terminal symbols correspond to the notions of expression and
statement, depending upon the hierarchy of the production system.
Note that these six rules represent all of the produc-
tion forms of an operator grammar (see below) which have right
sides of lengths no greater than three and, furthermore, con-
tain no sequences of two or more contiguous terminal symbols.
Although sequences of this type can occur in an operator gram-

mar, nevertheless, each such sequence can be mapped into a

single element of a set of metaterminals for convenience, and

this practice will be followed henceforth.
Rule 1 establishes a duality between the notion of
operand and that of nonterminal symbol. In general, in an

algebraic language grammar there is a derivation or sequence

of applications of the rules of the grammar starting with each

-12-

and every nonterminal symbol of the grammar and ending with an
operand. Using the notion of metaterminal mentioned above, it
is clear that only a single Rule 1 is necessary in an algebraic
language grammar. Rules 2 and 3 represent the types of produc-
tions assoclated with the unary prefix and unary postfix oper-
ators 1in the ianguage, and Rule 6 represents the type of produc-
tion associated with the binary operators. Rule 4 represents
the type of production associated with parenthesized groupings,
and Rule 5 represents really only a notational convenience so
that the grammar can be expressed in a more compact form,

By convention, each production whose form coincides
with Rules 2, 3, and 6 above will be identified by its single
terminal symbol, which serves as a referent in the application

of the semantic interpretation rules or macro transformation

associated with the production. Thus, when a prime phrase 1is
identified by the bottom-up parsing algorithm, it 1is only
necessary to identify whether its form coincides with Rule 2,

3, or 6 and which operator is involved. The nonterminal symbols

of the prime phrase play no part in this determination.

2.3 Operator Precedence Grammars

A particular grammar can be found to belong to the
family of precedence grammars by application of a certain
technique which results in the assignment of one or more binary
relations between each pair of symbols of the vocabulary

V=V =+ V,_ . These relations can be symbolized as o (null)

-13-

<, = , and > , and summarized in an n x n matrix, where n
is the number of symbols of V . If no more than one of these
four relations holds between any such pair in the language, then
the grammar belongs to the class of simple precedence grammars.
The precedence matrix so constructed can serve as the driving
table in a simple algorithm which decomposes a sentence of the
language into its prime phrases.

The sheer size of the precedence matrix for a language
of some complexity (146x146 for the MAD/I case) encourages
further restriction in the grammar to exclude those productions
which contain adjacent nonterminal symbols. Such grammars,
known as the operator precedence grammars, are characterized
by a m x m precedence matrix, where m is the number of
symbols of VT . A good deal of violence is done to some natural
syntatic descriptions when this restriction is enforced, al-
though several techniques are available to enrich such a lan-
guage by the introduction of metaterminal symbols consisting
of certain strings over VN + VT . A certain rationale 1is
available, then, to restrict the kernel structural description
of MAD/I to an operator precedence grammar.

A verification procedure, due to Floyd (see Refer-
ences), is available with which it is possible to determine
whether or not a particular operator grammar is a member of
the precedence family or not. The procedure can be implemented

either recursively or iteratively as a computer program. Both

techniques have been implemented as MAD/7090 programs, with the

-14-

latter technioue enjoying a speed advantage of about ten-to-one
over the former. The latter technique can be illustrated by
the algorithms described below. In the following, U re-
presents an element of V and T an element of V_ . A

N T
string over V =—VT + VN is represented by a lower-case letter.
The process of constructing a precedence matrix for
an operator grammar consists of two steps: In the first step,
two tables are constructed showing for each nonterminal symbol
U € VN those terminal symbols which can occur as the leftmost
and rightmost symbols respectively in a derivation of U . The

table of leftmost terminal derivatives (LTD) can be constructed

by the following process:

1. For each production U1+Tlx or U1+U2T1x s
enter Tl as an LTD of U1
2, For each production U1+U2x , enter every LTD of

U2 as an LTD of U1
3. Repeat step 2 until, in a finite number of steps,

the process converges.

The table of rightmost terminal derivatives (RTD) is constructed
in the analogous way.

The second step for constructing the precedence matrix
for an operator grammar involves the two LTD and RTD tables
just constructed, the algorithm below, and the precedence matrix
itself, an n x n square matrix where n 1is the number of

symbols of VT . The algorithm cited assigns four relations,

-15-

one or more of which must hold between two terminal symbols

Tl and T2

1. T.=T if there is a production U-xT T,y or

1 2 1
U+leU1T2y
2. T1 > T2 if there is a production U+XU1T2y and
T1 is an RTD of U1
3. T1 < T2 if there 1s a production U+leUly and
T2 is an LTD of U1

4, T, o T if none of the above holds.

If no more than one of these relations holds between

any two terminal symbols T and T

1 5 then the operator gram-

mar is in fact an operator precedence grammar. Note that if

Tl and T2 were not constrained to be elements of VT s

could in fact be elements of VN + VT , then the same process

but

would result in a precedence matrix for a simple precedence
grammar.

Figure 1 summarizes those steps in the construction
of the precedence matrix for a simple algebraic-like language
taken from Floyd (see References). The equivalent steps for
the derivation of the precedence matrix for MAD/I are summarized
in Section 4,1, In this and subsequent examples the metater-
minal symbols will be assigned in each instance as names pre-
fixed by percent signs (%) . In this figure the void e
relation is assumed to hold in all those positions of the

matrix in which a blank is evident. Blank positions in the

Productions

S+A
A-A + B
A-B
B>B * C
B~>C
C~(A)

C+%1

Left Terminal Derivatives

NTC Terminal Characters

-16-

Nonterminal Vocabulary

Terminal Vocabulary

+
*
~
—
o
—

Right Terminal Derivatives

NTC Terminal Characters

S for) %T
A + *) %1
B *) %1

C) %I

Precedence Matrix

S + * (%1

A + * (%1

B * (%1

C (%1
+
*
(
)
%1

Figure 1.

* (
< <
> <
< <
>
o>

>

Floyd's Simple Grammar.

-17-

matrix correspond to those cases where a void precedence rela-
tion exists and provide either an opportunity for a context-
dependent transformation or an indication of an incorrect pro-
gram,that is, an occurrence of a sentence not in the language.
It is possible, reputably in all useful cases and
certainly here, to represent the nonvoid three precedence rela-
tions between any two terminal symbols in a conveniently compact
form which assigns two integers to every terminal symbol. These
integers might be called the left and right precedence functions
and represent the "order'" precedence relation in the same
fashion as the matrix when the left function of the leftmost

symbol is compared to the right function of the rightmost symbol

in a true order relation. Both of these precedence functions
are shown for Floyd's simple grammar in Table 1. It is possible
Terminal Character Precedence Functions
F G
* 3 2
* 5 4
(1 6
) 5 1

o\
—
[Oa
(@)}

Table 1.

in some cases to dispense with one of these functions and to
represent the precedence relations as a single integer assigned

to each terminal symbol, as is done in fact in 7090 MAD. The

-18-

~generality of the new MAD/I does not evidently permit this
simplification (see Section 4.1).

In practice it has not been necessary to represent
the entire precedence matrix for MAD/I within the compiler,
but only a much smaller matrix which shows whether or not a
nonvoid precedence relation exists between any two terminal
symbols. The internal descriptor corresponding to each non-
terminal symbol in the language has coded within it an index
into this compact matrix as well as both the left and right
precedence functions. This compact matrix, called the terminal
context matrix, has importance in other uses and is discussed

further below.

2.4 Contextual Features

If the grammar for a practical algebraic language
could be made as simple as Floyd's example presented in the
previous section, then the parsing algorithm could be excep-
tionally simple; indeed, Floyd gives an example of such an
algorithm. In the more complex pracical cases, a good deal
of contextual information must be available to provide handles
for such context-dependent transformations as those to resolve
the syntax of binary operators used in unary contexts and so
forth. The discussion in this section wil1 be concerned with
the development of certain tables and matrices which are highly
useful in gaining insight into the contextual structure of the
language generated by a context-free grammar. As implied, the
development of these tables and matrices does not require that

the grammar be an operator or a precedence grammar,

-19-

The allowable pairs of terminal symbols in the lan-
guage generated by a context-free grammar can be determined
with the following two-step procedure (due to Floyd). The

results are summarized in an m x m terminal matrix, where m

is the number of symbols of V The procedure is similar in

T
nature to that outlined above for the construction of the pre-
cedence matrix. In the first step two tables are constructed,
each giving respectively the left most and rightmost symbols
of V = VN + VT which may occur in a derivation for a non-
terminal symbol. The table of leftmost symbols (LS) is con-

structed by the following process:

1. For each X € V , enter X as an LS of X
2. For each production U - Xy , enter each LS of
X as an LS of U
3. Repeat step 2 until, in a finite number of steps,

the process converges.

The table of rightmost symbols (RS) is constructed by an analo-
gous process.

The second step in the construction of the terminal
matrix involves consideration of all pairs of adjacent symbols
XY which may occur in the right part of a production. If a
is a terminal symbol which is an RS of X , and b is a ter-
minal symbol which is an LS of Y , then ab 1is an allowable
terminal symbol pair in the language. The terminal matrix cor-

responding to Floyd's simple grammar is shown in Figure 2.

-20-

+ * () %1
+ T T
* T T
(T T
y T T T
1 T T T

Figure 2. Terminal Matrix.

-21-

As before, blank positions in the matrix correspond to invalid
constructions and can be used in connection with context-de-
pendent transformations.

During the scan of certain statement types it becomes
convenient to invoke the statement-scanning algorithm from a
macro transformation (see Section 3.2) at a higher syntactic
level. The algorithm is expected to terminate in the identifi-
cation of one of the nonterminal symbols described in connection
with the production system. The contextual features necessary
to properly initiate and terminate such a procedure can be sum-
marized in a pair of tables, each giving respectively the left

and right terminal symbol delimiters which may bracket the non-

terminal symbol to be identified as the goal of the procedure.
The algorithm is given below.
The table of left terminal symbol delimiters (LSD)

can be constructed by the following process:

1. For every production U+leU1y enter T1 as

an LSD of U1

2. For every production U+U1x enter every LSD of

U1 as an LSD of U
3. Repeat Step 2 until in a finite number of steps

the process converges.

The table of right terminal symbol delimiters (RSD)
is constructed by an analogous process. Figure 3 shows these

two tables as derived from Floyd's simple grammar.

-22-

Left Terminal Delimiters

NTC Terminal Characters
S

A

B + (

C +

Right Terminal Delimiters

NTC Terminal Characters
S

A +)

B + *)

C)

Figure 3. Terminal Delimiter Tables.

-23-

The most useful of all the various tables and matrices

discussed so far is a three-dimensional array called the ter-

minal context matrix. This matrix, used in the application of

context-dependent transformations, indicates for every pair of

terminal symbols a and b whether:

1. the pair ab 1s allowable in the language,
2. a nonvoid precedence relation exists between a

and b

The matrix can be considered as two layers of a p X p square
array, the ith column and ith row of which are identified by an
equivalence class. The equivalence classes are constructed

from the precedence and terminal matrices as follows:

1. Construct an m x m square matrix, the ith
column and ith row of which are identified by each of the m
symbols of V., . Each element of the matrix is identified by

T

its coordinates as the element of the aith row and ajth
column, where a. and aj are symbols of VT . Each such
element is a coded number from which can be determined
a. whether the adjacent symbol pair aiaj is
allowable,
b. whether a nonvoid precedence relation exists
between a, and aj
2. From this matrix a reduced matrix is constructed

by deleting equivalent rows and columns in the following way:

-24-

if a, and aj identify two rows and in addition the corre-
sponding two columns, then a; and aj belong to the same
equivalence class if the rows identified by a, and aj are
identical and in addition the columns identified by a, and
aj are identical. The resultant matrix will have p rows
and p columns.

3. The terminal context matrix is then constructed
f.om the reduced matrix by associating with the first p x p
layer a set of integer-valued elements which, for the aith
row and ajth column, take on the value one if aiaj is an
allowable terminal pair and zero otherwise. The second p x p
layer is constructed in the same manner of the same elements,

which take on the value one if a nonvoid precedence relation

exists between ai and aj and zero otherwise.

The equivalence classes and terminal context matrix
derived from Floyd's simple grammar are shown in Figure 4. 1In
this figure the letter T stands for a one in the first layer
and the letter P for a one in the second layer. In the con-
struction of the terminal context matrix a partition of V

T

has been achieved which assigns to each symbol of V a

T
syntactic class number which is an index to a row or column

of the terminal context matrix. Each terminal and metaterminal
symbol of the MAD/I language is assigned such a syntactic class

number along with its left and right precedence functions as

part of the internal descriptor developed within the compiler.

-25-

Equivalence Classes

CL Rep Members
01 + *
02 (
03)
04 %1
Matrix
+ () %1
+ P PT P PT 01
(p PT P PT 02
) PT PT 03
%1 PT PT 04

01 02 03 04

Figure 4. Terminal Context Matrix.

-26-

The motivation for constructing the terminal context
matrix in just this manner will become clearer subsequently
upon consideration of context-dependent transformations. It
may be pointed out here that the elements of each of the two
layers may take on values other than zero and one in connection
with these transformations, and in a sense form the elements
of a kind of state transition table which drives the statement—

scanning algorithm,

ITI. TRANSFORMATIONS

It was pointed out in passing above that a strictly
limited operator-precedence grammar is simply not rich enough
to describe those syntactic structures required for MAD/I.
There are two immediate demonstrations of this fact, both in-
volving contextual information needed for the resolution of a
syntactic type. In the first, a single terminal symbol of VT
is used both to represent a wunary operator and to represent
a binary operator. The unary plus and minus signs are the most
common examples of this, but others can be found in the MAD/I
syntax.

Apparently this common syntactical form cannot be
described in the obvious fashion in an operator precedence
grammar. However, if the two uses of the operator are assigned
different names, perhaps the minus sign for the binary case

and the %NEG symbol for the unary case, then an operator

precedence grammar description is readily apparent. Moreover,

-27-

by inspection of the terminal context matrix (see Section 2.4)
a simple context-dependent transformation can be synthesized
which indicates exactly those contexts in which the minus sign
is to be replaced by the metaterminal %NEG. The generaliza-

tion of this procedure leads to the notion of terminal trans-

formation which will be discussed in detail in following
sections.

The second demonstration of the inadequacy of the
unenriched operator precedence grammar description for the
MAD/I syntax appears at the level of statement parsing. The
problem is that, while at the expression level the order of
the identification of the various prime phrases parallels the
order in which the object code produced will be executed, at
the statement level this is not necessarily the case. One
might in fact say that the match between the identified syn-
tactic construct and the applicable semantic rules seems to be
poor. Another way of saying the same thing is that the basic
operator precedence grammar expression scanner is a bottom-up
syntax analyzer and such an analyzer works well in a simple
algebraic expression environment. On the other hand, the
binding structure among the expressional components of a state-
ment can really best be parsed by a goal-oriented top-down
analyzer. Techniques for turning the expression scanner inside-
out, so to speak, for this purpose will be discussed in follow-
ing sections. These techniques involve the notion of the

precedence transformation, really an extension of the familiar

-28-

technique which associates to each instance of an identified
prime phrase a macro definition in which the semantic interpre-
tation rules associated with that phrase are expressed.

All context-dependent transformétions are identified
using the terminal context matrix described in Section 2.4.
Properly constructed, the terminal context matrix initiates
each type of transformation only under well-defined contextual
environments. The hat trick in this procedure, however, is to
insure that the excellent error-recovery characteristics in-
herent in the operator precedence grammar are not unreasonably
compromised and that no ambiguities are introduced into the
language by virtue of the new syntactic constructions so de-
fined. A specification of the necessary constraints upon the
applicable contexts in order that these requirements be satis-
fied appears elusive using the analysis techniques illustrated
herein. On the other hand, a specification of sufficient con-

straints can be given in certain cases.

3.1 Terminal Transformations

The introduction of context-dependent transformations
can be established at two levels: first, consider a sequence

of input symbols a a ..(a € VT) which are input to

l"“aiaj'
the compiler. These are extracted in turn from the actual in-
put character stream by the lexical analyzer, so that a, and
aj for example are identifiers which are represented by des-

criptors within the compiler. Now, consider the case where

the statement scanning algorithm, having just read symbol a.

-29.-

is about to read symbol aj . At this point the terminal con-

text matrix is accessed and the integer found at the inter-

section of the row and column corresponding to a. and a, 1is
J
extracted. The following cases are possible:
1. The integer has the value one, in which case the

pair aiaj is allowable and the statement scanning algorithm
proceeds.,

2. The integer has the value zero, in which case
the pair aiaj represents an error, and a recovery procedure
is initiated.

3. The integer has a value other than one or zero
and is assumed to identify a built-in transformation which
is immediately executed. Such a transformation is called a

terminal transformation, and several such are described below.

A terminal transformation is designed to produce

a string of terminal symbols in the following manner:
ab > axb ,

where both a and b are terminal symbols and x is an
arbitrary string of terminal symbols. (In the useful cases
described here x is a single terminal symbol).

In practice, a terminal transformation is constructec
by defining an operator precedence grammar with certain addi-
tional primitives which cannot by design in the language be

elements of an input string. Let the environment of such a

-30-

primitive a be represented by xay , where x represents

any member of the set of terminal symbols which may occur ad-
jacent to a on the left and y any member of the set which
may occur on the right. Now verify that the contexts formed

by juxtapositions of an element of x and an element of y are
all invalid; that is, these contexts do not occur in the ter-
minal context matrix. When one of these "invalid" contexts

is found, then, the introduction of the primitive a 1in the
manner shown is guaranteed to be unambiguous.

In order to preserve the consistency of the language
it is necessary to apply the terminal transformation in all
equivalent contexts; that is, if both ab and cd are valid
terminal strings in the new grammar; then if the terminal trans-
formation is applied in the ab context, it must also be ap-
plied in the «c¢d context.

As an example of a practical application of this
technique, consider the grammar whose productions are shown
in Figure 5. This grammar happens to be used to describe the
syntax of the operator and operand fields in an experimental
assembler for the PDP-8 and PDP-9 computers. The plus and
minus symbols are interpreted as two's complement binary
operators and the logical symbols as one's complement bit-
wise binary operators. The %M symbol stands for the two's
complement unary negation operator and the %N symbol stands
for fhe one's complemenf unary bitwise inversion operator.

The %I symbol stands for any operand, either a variable or

-31-

PRCDUCTIONS

001 U1 = %I

002 U1 = U1l 2ZA
003 U? = N

004 U2 = ZN U2
005 Us = U2

006 U4 = U4 & U2
007 U5 = U4

0C8 US = U5 | Ubs
00S US = US ~ U4
010 Uk = US

01! Us = U7

012 UT = gN U7
013 UT = ZIM UA
014 U6 = U4 & U7
015 U6 = Us | u7?
016 Ub = U5 -~ U7
017 U8 = Ub

018 UB = U8B % Ub
019 U8B = U8 / U6
020 U9 = U8

021 U9 = U9 + U8B
022 U9 = US - UB
023 UR = U9

024 Ul = (UB)
025 UF = ZL UB %R

NCNTERMINAL VUCABULARY

Uyl uy2 usa U5 Us UT U8 U9 UB UE

TERMINAL VOCARBULARY

I %A ZIN & | - ™M % / + - {

Figure 5. Example Grammar—Productions.

-32-

o

a constant. The L and %R symbols stand for left closure,
which marks the bottom of the stack, and right closure, which
represents the end-of-statement (card) delimiters respectively.
These two symbols are introduced for convenience in error re-
covery. Finally, the %A stands for an attribute operator
used to specify a property of an identifier.

It is the intent in the source language of this ex-
perimental assembler to represent both the two's complement
binary subtraction operation and the unary negation (%M)
operations by the minus sign (-) and both the one's comple-
ment bitwise binary subtraction (i.e., exclusive-OR) and
unary inversion (%N) operations by the logical-not symbol
() . Thus a terminal transformation is to be synthesized
which results in the replacement of the - symbol by the %M
symbol and the — symbol by the %N symbol in the proper
contextual environments.

These environments are readily apparent from the
terminal context matrix for this grammar (Figure 6). In this
figure note that all the binary operators are in equivalence
Class 4 and all the unary operators in equivalence Class 3.

%N and x§ , where X

Then note that the terminal contexts x
represents any terminal symbol, %N (a unary operator of Class
3) and & (a binary operator of Class 4) are mutually ex-
clusive. In particular, then, if an "invalid" context vy§&

is found in the source text and furthermore the context y%N

is valid, then the terminal transform x§>x%N 1is indicated.

Figure 6.

-33-

TERMINAL CONTEXT MATRIX
EQUIVALENCE CLASSES

CL REP MEMBERS

01 %I

02 ZA

03 3IN 3IM

04 & N 2
05 '
06)

c7 %L

08 %R

EQUIVALENCE MATRIX

ZI %A ZN & () ZL %R

21 PY PY PT PT 01
ZA PT PT PT T PT 02
IN PT P PTP PT P P 03
& PT P PT P PTP P 04
{ PT P PT P PTP 05
) PT pT PT PT C&
L PT P PT P PT P 07
r L g

01 02 03 04 05 06 07 08

Example Grammar—Terminal Context Matrix.

-34-

Terminal transformations are implemented within the

MAD/I compiler as a macro call, the operands of which include

3

1. the last terminal symbol scanned a.

2. the terminal symbol next to be read aj.
The macro may produce the following results:

1. return immediately to the statement-scanning
algorithm (a no-operation),

2. replace aj with a new symbol ay s
3. delete aj , and
4. 1insert a single symbol x such that x will

be the symbol next to be read and aj the next symbol follow-

ing x

The following six terminal transformations are presently im-

plemented within the compiler:

Terminal Error.

The pair aiaj is not allowable in the language,
nor does it represent a context of any terminal transformation.
The macro definition associated with this transformation by

convention prints a diagnostic message.

Unary Operation.

The pair aiaj represents a context in which aj
would normally be expected to be a unary operator. In this

case, however, aj belongs to the class of binary operators.

-35-

The macro definition associated with this transformation by con-

vention:

1. if aj is the symbol "+'" then aj is deleted,
2. 1if aj is the symbol '"-" then aj is replaced

by the symbol %NEG representing the unary negation operation.

In other than these two cases a diagnostic message is generated

Empty Argument.

| The pair aiaj represents a context in which aj
would normally be expected to be an operand, and furthermore,
if x represents such an operand, then the context a, x aj
is valid in the language. This transformation is involved in
several contexts corresponding td missing arguments in function
calls and subscription operations. The macro definition as-
sociated with this transformation by convention inserts a dum-
my operand between a., and aj and this is not considered

1

an error.

Empty Statement.

The pair aiaj represents a context in which aj

is normally expected to be a statement, and furthermore, if

X Tepresents such a statement, then the context a, X a, is
J

valid in the language. The macro definition associated with

this transformation by convention inserts a dummy operand

between ai and aj and this is not considered an error.

-36-

Empty Declarative List Element.

The pair aiaj represents a context in which aj
is normally expected to be a declarative list element (see
Section 4.2), and furthermore, if x represents such an
element, then the context a, X aj is valid in the language.
This transformation is used during the scan of those declara-
tions which apply default attributes to the program. The macro
definition associated with this transformation by convention
inserts the %DEFAULT operand between a, and a, and, if

J
aj is the symbol ";" , this is not considered an error.

Empty Executable List Element.

The pair aiaj represents a context in which a, 1is
normally expected to be an executable list element (see Section
4,2), and furthermore, if x 7represents such an element, then
the context ai X aj is valid in the language. The macro
definition associated with this transformation by convention
inserts a dummy operand between a. and aj and this 1is

not considered an error.

The %TAG Transformation.

Although classed as a terminal transformation, the
%TAG transformation exhibits a special behavior. The pair
aiaj represents one of the contexts ") (" or "%ID('. The
%TAG transformation causes a metaterminal symbol x to be
inserted between a. and aj such that the context a, x a;

J

is valid in the kernel grammar. There are two interpretations

-37-

of this transformation depending upon its occurrence in a
declarative list element or an executable list element. If
the %TAG transformation occurs in a declarative list element,
then an implicit attribute assignment is indicated which
interprets the list elements within the parentheses on the
right as an attribute structure to be attached to the operand
(possibly a list enclosed in parentheses) on the left. The
nature of this interpretation can depend both on the name of
the declaration statement in which this occurrence is embedded
and on the name of the macro definition invoked by the trans-
formation. In this case, the name is given as an argument to
the statement-scanning algorithm.

If the %TAG transformation occurs in an executable
list element, then an implicit subscdption operation is in-
dicated which interprets the list elements within the paren-
theses on the right as an argument to a component selection
function which identifies a particular component of an array
during execution. In this case also, the macro name invoked
by the transformation is given as an argument to the state-
ment-scanning algorithm.

The above transformations provide some enrichment
of the kernel grammar without materially affecting its gener-
ative power. Note that although the contextual environments
which cause these transformations to be invoked are not
normally definable during compilation, the macro definitions
associated with the names mentioned are of course definable
Thus the behavior effected in the individual cases may be

altered by definitional procedures.

-38-

3,2 Precedence Transformations

Although the terminal transformations described in
the preceding section provide some additional power to the
basic expression-scanning algorithm, the power is principally
concentrated in reducing the nuisance value of the language
by allowing some syntactic 'cheating" in the specification of
the language. On the other hand, the basic analytical problem
inherent in a bottom-up parsing algorithm remains: it is
exceedingly difficult to specify the syntax of a complicated
statement involving several constituent expressions without
doing much violence to its semantic interpretation rules.

The approach taken in the design of the MAD/I com-
piler has been to represent certain syntactic forms which
have been parsed by the expression-scanning algorithm as an
instance of a metaterminal symbol which is an element of the
kernel grammar. This technique involves the identification
by means of a terminal transformation of the initial character
or prefix of that structure which, when parsed, will become
the metaterminal symbol. Once such a context has been identi-
fied, the basic scanning process recurses 1in such a way as to
exhibit a top-down behavior. In other words, the identifica-
tion of the metaterminal becomes a process directed by com-
mands embedded within a macro definition, and this process can
be obviously context-dependent. Some of the macro commands
can cause the basic scanning process to resume its precedence-

directed scan at this lower level, but with the additional

-39-

requirement that a goal-directed behavior be realized. When
the syntactic structure representing the metaterminal symbol
is completdy parsed, perhaps requiring several goal-directed
scanner calls, a nonterminal symbol representing the meta-
terminal symbol is generated and the scanner pops up to the
original statement scan level.

The manner in which the goal-directed syntactic
scan is realized using a precedence-directed scanning algorithm
is obviously the key to the success of this technique. This 1is
done candidly, by a seat-of-the-pants combination of rule-
bending and judicious use of what are called here precedence
transformations.

The explanation of how this 1is done requires some
superficial explanation of the manner in which the statement-
scanning algorithm operates. The algorithm, patterned after
those suggested by Bauer and Samelson, Arden and Galler,
Floyd, and several others, makes use of a compile-time stack
in which symbols are stored during the parsing process. This
stack at each instance during the scan contains a sequence of
symbols, each symbol representing either an operator or a non-
terminal symbol. At the top of the stack i1s a nonterminal

symbol X (possibly null), and immediately below this 1s at

least one terminal symbol a, not of the operand class. Let
this terminal symbol be identified by I Then consider
the sequence of symbols aoalonaak,c,aj which are input to

the translator. Now, having just read aj , the statement-

-40-

scanning algorithm establishes a precedence relation between

a, on one hand and aj on the other. Note that the symbols
between ay and aj already have been read and the terminal
pairs established as allowable. Thus all terminal transforma-
tions have been completed at this point. Now, when ay and

aj are compared in the precedence relation, the second layer

of the terminal context matrix is accessed and the integer found
at the intersection of the row and column corresponding to ay

and aj is extracted. The following cases are possible:

1. The integer has the value one, in which case the
pair akaj is contained in a nonvoid precedence relation and
the statement scanning algorithm proceeds.

2., The integer has the value zero, in which case

the pair a aj represents an error and a recovery procedure

k
is initiated.

3. The integer has a value other than one or zero
and is assumed to identify a macro transformation which is

immediately executed. Such a transformation is called a pre-

cedence transform, and several such are described below.

A precedence transformation is implemented within
the MAD/I compiler by a macro definition in the following

manner: Let ay and aj represent the terminal symbols

compared in the precedence relation in the manner described

above. Let the precedence context akaj be selected as an

environment fora precedence transformation, and furthermore

-41-

require that a < aj . Then the precedence transformation

associated with the name aj will:

1. stack the representative of the equivalence
class containing aj (or a representative of another equiv-
alent class which obeys the same precedence and terminal rela-
tions in the "left context" of a.);

2. initiate the statement-scanning algorithm at
the next lower level to scan the arguments of the statement
idgntified by aj ; and, finally,

3. replace X and aj on the stack with a non-
terminal symbol which represents the result of the transforma-

tion.

The integrity of the kernel language is not compro-
mised if at least the following conditions are satisfied:

Let T be a metaterminal symbol such that

1. in all allowable contexts TlUlT , the pair

TlT is selected as an environment for the same transforma-

tion and, in all of these contexts, T1 < T ;

2. in all allowable contexts TU2T2 , I > T

Thus the macro associated with the transformation bears the
responsibility of '"positioning'" the input text pointer
properly before surrendering to the higher statement scanning
level at which it was invoked. Convenient rules for ac-
complishing this involve the tables of left and right terminal

delimiters developed in Section 2.4.

-42-

Four precedence transformations are recognized with-
in the compiler. Three out of these four are essentially
fixed within the compiler and are not subject to redefinition.
The fourth 1s implemented as a macro call and is a good
example of the statement definition capability of the compiler.

A1l of these will be discussed briefly below.

Parenthesized List Element.

Note the productions containing the parenthesized
list element (PLS) in Figure 7, Section 4.1, as a left part.
A1l of these productions take the form (X) where X is a
nonterminal symbol. Furthermore, the only occurrence of
parentheses are in these productions. The parenthesized list
element transformation in fact performs the operation (X)-PLS
This transformation could have been performed as a macro opera-
tion and is performed as a compiler operation only for the

sake of convenience.

List Element.

A1l argument lists in function calls and subscription
operations are presumed to be linear; that is, no tree-like
structures are allowed. The commas which separate the list
items are then superfluous. The list transformation performs

the operation

(X:'—*X(

where X is a nonterminal symbol. Both the parenthesized

-43-

list transformation and the list transformation are expected
to evolve as richer structures are incorporated into the com-

piler.

Statement Keyword.

Several terminal symbol syntactic classes are desig-
nated as statement keyword classes. Among these are the
symbols of the %SIMP, %COMP, %DECL, %LIST, %ATRB, @ and:
classes (see Figure 7, Section 4.1). The first four of these
represent symbols most likely to designate an identifying key-
word of a statement. Inspection of the precedence matrix for
the kernel grammar (Figure 13, Section 4.1) reveals that for
every symbol a which can occur i1in a precedence relation on
the left along with a statement keyword b on the right,

that
a <b

Each instance of this type is chosen as an instance of a
keyword transformation, which causes a macro definition to be
invoked, the name of which is the keyword itself. The macro
definition generates connectives as required and calls upon
the statement-scanning algorithm at a lower level to scan the
arguments of the prefix and scope. Each time the statement-
scanning algorithm is called, an element of one of the state-
ment keyword classes is stacked, depending upon the nonter-

minal symbol expected as the argument, and according to the

“44-

following table, which is a subset of the terminal delimiter

tables (see Figures 13 and 19,

Keyword Class Nonterminal Lis
%SIMP STM
%COMP STM
SLIST LST
%DECL LSD

Section 4.1)

t Separator Statement Separator
none) 3 %END %RC
5 %END
)) ; %END %RC
s) ; %END %RC

The statement-scanning algorithm parses the succeeding text

until an ending condition is re

End.

cognized.

This transformation complements the above keyword

transformation by providing a mechanism for returning the

statement-scanning algorithm to

The ending condition is recogni

the macro which initiated it.

zed when a precedence com-

parison is made between the keyword stacked upon initiation.

of the scan (see above) and one
the list separator or statement
table. The elements in the list

separator columns of this table

of the symbols in either
separator columns of the above
separator and statement

are determined as follows:

if a 1is a keyword, and b 1is a right terminal delimiter of
U in a production

U1 -+ aUb ,
then b 1is a list separator if a <« b , and b 1is a state-

ment separator 1f b » a The

statement-scanning algorithm

-45-

will then return control to the macro which initiated its
operation. The macro now has the option of continuing the
scan by again calling the statement—scanning algorithm or
returning to the statement-scanning algorithm at the next
higher level, depending upon whether the terminating symbol

belongs to the list separator or statement separator classes.

IV. A KERNEL GRAMMAR FOR MAD/I

In establishing a production system for MAD/I,
several considerations are apparent. First, of course, the
language generated must be unambiguous. Second, the produc-
tions must provide some 'handles" so that context-dependent
transformations can be strategically applied. Finally, the
productions must bear a relationship to those program con-
structions most familiar in MAD, that is the expression, the
statement, and the program.

The first requirement is satisfied by insisting that
the kernel production system represent an operator precedence
grammar. Certain context—dependent transformations can be
applied to the source language to preserve the integrity of
the language in each exceptional instance. Some of these
transformations generate metaterminal symbols which by design
cannot occuf in the input text. These provide the "handles"
satisfying the second condition. The third condition is
satisfied rather naturally by requiring that the productions

take on the forms of Rules 1-6 (see Section 2.2).

-46-

4.1 An Operator Precedence Kernel Grammar

Figure 7 shows a table of productions which con-
stitute an operator precedence kernel grammar of MAD/I. These

productions are divided roughly 1into five groups:

1. the program primitives,

2. the assignment statement,

3. the list statement,

4. the declaration statement, and
5. the program structure

The collection of all those symbols on the left of the equal
sign = , which corresponds to the more familiar right arrow
> , corresponds to the nonterminal vocabulary VN . The
complement of VN relative to all the symbols occurring
either on the left or the right of the equal sign is the
terminal vocabulary VT . These two sets are enumerated in
Figure 8. Note that in these and other tables of this
Section only the first three characters of each symbol are
shown.

Only those nonterminal symbols which do not begin

with an X are significant in the discussion; these are

interpreted roughly as follows (see also Section 4.2):

IDR - Stands for either an identifier extracted by

the lexical scan or a parenthesized list.

-47-

__PRODUCT IONS

PROGRAM PRIMITIVES

091 XL = ZIDN
072 XL = ZLP PLS
023 IDR = XL -
024 IDR = IDR @ XL
025 XM = IDR
006 XM = XM ZTAG IDR
207 XM = XM ZKEY
008 NES = XM
~NN9 DES = DES .+ XM

ASSIGNMENT STATEMENT

017 X1 = DES

011 X1 = .ABS. X!
n12 X2 = X1 o
A3 X2 = X2 LS. X1
014 X2 = X2 +RS. X1
215 X3 = X2

016 X3 = X3y

717 X3U = JABS. X3U

018 X3 = X2 LS. XU
219 X3 = X2 «RS. X3U
N20 X3U = «N. X3
221 X4 = X3
N22 X4 = X4 A. X3
n23 X5 = X4
024 X5 = X5 V. X4
025 X5 = X5 EV., X4
n26 X6 = X5
N2T X6 = X6 %% X5
n28 X7 = X6
N29 X7 = XTU
030 XTU = LABS. XTU
031 X7 = X2 LS. X7U
N33 XTU = N. X74
N34 XT = X4 +A. XTU
035 X7 = X5 V. X7U
036 X7 = X5 +EV. X7U
037 XT = X6 *% XTU
038 XTU = ENEG X7
039 X8 = X7
D40 XB = X8 * X7
%) X8 = X8 / X7
042 X9 = X8 B
N43 X9 = X9 + X8
244 XO = X9 - X8
345 XA = X9
246 XA = XA = X9

Figure 7. Kernel Productions for MAD/I.

[Page 1 of 3]

247 XA = XA == X9
. N4B XA = XA > X9
049 XA = XA >= X9
250 XA = XA < X9
051 XA = XA <= X9
D52 XB = XA
053 XB = XBU

054 XBU = .ABS. X8U

055 XB = X2 LS. XRU
n56 XB = X2 +RS. XBU
057 XBU = JN. XBU
058 XB = X4 .A. XBU
N59 XB = X5 .V. XBU
060 XB = X5 .EV. XBU
061 XB = X6 *% XBU
N62 XBU = INFG XRU
763 XB = X8 * XBU
N64 XB = X8 / XRU
n65 XR = X9 + XRU
066 XB = X9 = XBU
767 XB = XA = XRU
048 XB = XA ~= XRU
n69 XB = XA > XPU
o470 XB = XA >= XBU
071 XB = XA < XRU
272 XB = XA <= XBU
073 XBU = =~ XB
074 XC = XB
075 XC = XC & XB
976 XD = XC
n77 XD = XD | XC
D78 XD = XD . FXOR. XC
379 XE = XD
080 XE = XE JTHEN. XD
N81 XF = XE
282 XF = XF .EQV. XE
n83 ASN = XF
284 ASN = DES == ASN
AR5 STM = ASN

LIST STATEMENT

D86 XH = DES

087 XH = XH ... DES
088 XJ = XH
289 XJ = ASN
09D LST = XJ
091 LST = LST , XJ
92 STM = ZLIST LST

Figure 7. Kernel Productions for MAD/I.
[Page 2 of 3]

-49-

DECLARATION STATEMENT

093 XK = IDR

094 XK = XK ZATRB IDR
095 LSD = XK
096 LSD = LSD , XK
097 STM = ZDECL LSD

PROGRAM STRUCTURE

098 PLS = (LSD)
099 PLS = (LST)

17C PLS = (STM)

101 STM = DES : STM

102 STM = SSIMP STM

103 STL = STM

104 STL = STL ; STM

195 STM = XCOMP STL ZEND
106 PGM = BLC STL ZRC

Figure 7. Kernel Productions for MAD/I.
[Page 3 of 3]

-50-

NONTERMINAL VOCABULARY

XL IDR XM DES X1 X2 X3 X3U X4 X5 X6 XT X7U X8 X9 XA XB
XBU XC XD XE XF ASN STM XH XJ LST XK LSD PLS STL PGM

"TERMINAL VDCABULARY

ZID ZLP @ ZTA ZKE . oAB LS «RS oNe oA. oV. EV #%x INE * 7
+ - = = > >= < <= - £ ‘ eEX <TH FQ == s8e 9
ZLT ZAT ZDE () : 2SI ; %CO ZEN %LC 2RC

Figure 8. Kernel Vocabulary.

DES

ASN

LST

LSD

PLS

STM

STL

PGM

-51-

Stands for a designator, that is an identifier,

with or without attribute notation, possibly
subscripted, or the result of a function eval-
uation.

Stands for an assignment, that is an expres-

sion containing the usual arithmetic and logi-
cal operators and in addition the substitution
operator ==

Stands for a list element, that is a list of

elements each of which is either an assignment
or an instance of block notation.

Stands for a declarative list element, that 1is

a list of elements each of which is either an
identifier or a special notation used in the
declaration statements.

Stands for a parenthesized list, that is a list

of list elements, declarative list elements,
or statements.

Stands for a statement, that is either an as-
signment or a list preceded by a keyword.

Stands for a statement list, that is a list

of statements separated by a semicolon ;
Stands for a program, that is a statement list
delimited by the metaterminal symbols for left

and right closure.

-52-

The various terminal symbols are interpreted as in
Figure 9. Note that all those symbols preceded by the per-
cent sign % are identified as metaterminal symbols within
the compiler and are created as the result of context-de-
pendent transformations. Note further that some communications
equipment cannot produce or recognize some of the special
characters used here. In these cases, synonyms constructed
of names surrounded by periods are provided.

The remaining figures 1in this section correspond to
those tables and matrices developed for Floyd's simple gram-
mar in Sections 2.3 and 2.4. Figures 10 and 11 show respec-
tively the table of left and right terminal derivatives, and
Figure 12 shows the equivalence classes assigned to the pre-
cedence matrix and the members of each class. Figure 13 shows
the precedence matrix itself. Note that only the first two
characters of the symbol representing each class are shown.

Figure 14 shows the equivalence classes assigned
to the terminal matrix, and Figure 15 shows the terminal
matrix itself. Figure 16 shows the equivalence classes as-
signed the terminal context matrix, and Figure 17 shows the
terminal context matrix itself. Figures 18 and 19 show the
table of left and right terminal delimiters respectively.
Finally, Figure 9 summarizes the equlvalence class assign-
ments for all of the matrices and in addition shows the left
and right precedence functions assigned to each terminal

symbol.

TRM
SYM

%ID
7%LP

%TAG

7%KEY
ABS.
.N.
#NEG

LS.
.RS.
A,
V.
JEV,

.EXOR.
.THEN.
.EQV.

’
%LIST
7%ATRB
7%DECL

7%SIMP

s
7%COMP
FEND
7%LC
%RC

RULE
FORM

AN NNDPR LN —

[Mo W« I« W« Mo We M- S Y

rPEPPPOINMNOOPPLPNOINOIOTOITITIIIOO

DESC

PRC
MTRX

0O — O U P W~
~ W

Figure 9.

-53-

RIPTOR ASSIGNMENTS

TRM CTX REL
MIRX MTRX F G
1 1 33 34
2 2 33 34
3 3 33 32
4 4 31 30
4 4 29 28
5 5 31 30
6 6 27 28
6 6 25 28
6 6 19 28
6 6 13 28
7 7 27 26
7 7 27 26
7 7 25 24
7 7 23 22
7 7 23 22
7 7 21 20
7 7 19 18
7 7 19 18
7 7 17 16
7 7 17 16
7 7 15 114
7 7 15 14
7 7 15 14
7 7 15 14
7 7 15 14
7 7 15 14
7 7 13 12
7 7 11 10
7 7 11 10
7 7 9 8
7 7 7 6
7 8 5 6
4 9 7 6
7 10 5 4
8 11 3 4
3 12 7 6
9 13 3 4
10 14 1 34
11 15 33 1
12 16 3 4
13 17 3 4
14 18 3 2
13 19 1 4
15 20 31
16 21 1 1
17 22 1 1

Descriptor Assignment.

operand

literal prefix operator
attribute notation operator
tag operator

function operator

component selection operator
absolute value operator
bitwise logical NOT operator
negation operator

logical NOT operator

bitwise left shift operator
bitwise right shift operator
bitwise logical AND operator
bitwise logical OR operator
bitwise logical EXCLUSIVE

OR operator

exponentiation operator
multiplication operator
division operator

addition

subtraction

EQUAL relational operator
INEQUAL relational operator
GREATER THAN relational operator
GREATER THAN OR EQUAL relational
operator

LESS THAN relational operator
LESS THAN OR EQUAL relational operato
logical AND operator

logical OR operator

logical EXCLUSIVE OR operator
logical IMPLICATION operator
logical EQUIVALENCE operator
substitution operator

block notation operator

list delimiter

list statement

attribute expression
declaration statement

left paren

right paren

label delimiter

simple statement

statement delimiter

compound statement

END delimiter

left closure

right closure

LEFT TERMINAL

DERIVATIVES

-54-

NTC TERMINAL CHARACTERS
XL XID 3ZLP
IDR %10 ¥LP &
XM ZID ZLP @ ZTA ZKE
DES ¥ID ZLP 3 ETA ZKE ,
X1 2ID ZLpP 2 ZTA %KF . +AB
X2 ZID ZLP 3 ZTA 3BKF . «AB LS .RS
X3 ZID %LP a ¥TA ZKE . «AB LS RS .N.
X3U +AB N,
X4 ZID ZLP @ ETA ZKE . +AB LS .RS .N. A,
X5 3ID 3P 2 $TA ZKE . «AB LS RS N« +A. V. .FV
X6 ZID ZLP 2 ETA ZKE «AB JLS RS N, JA. V. JEV %%
X7 ZID ZLP & 3TA %KE . «AB LS RS .N. JA. V. LEV %% ZNF
X7U .AB N, ZENE
X8 ZID ZLP @ ZBTA ZKE . +AB LS RS oN. +A. V. LEV %% ZNE %
/
X9 ZID 3LP 2 2TA %KE «AB LS RS JNo& A, V. .FV %%k ZINF %
/ + -
XA ZID ZLP @& ZTA ZKE . +AB LS RS .N. .A. V. .EV *%x 2ZNF *
7/ + - = -z > = [4 =
XB ZID ZLP @ ZTA ZKFE . «AB oLS RS oN. +A. Ve EV X% ZINF *
/ + - = - > = < <= -
. X BU » A B . N . zNE - - e e _
XC ZID %LP 3 ETA ZKE . «AB LS 4RS o Ns oA, Ve LEV %k EINE %
/4 - = A= > 3= o< <= 4 & o
XD ZID 3LP 2 FTA ZKE , «AB oLS 4RSS Ne oA. Ve EV *% INE %
/ + - = = D> = < = - & | « EX
XE ZID ZLP 2 ZTA ZKE . «AB LS RS N. A, V. EV %Xk ENE %
[/ *+ - = 2= > > < &=~ & | WEX JH
XF 21D ZLP 2 ZTA ZKE «AB JLS RS N, A. Ve EV %% ZINF %
/ ‘4'7 f = = > = < <= - &] DEX .TH .ED
ASN ZID 3LP 2 XTA %ZKE . «AB LS RS .N. JA. V. FV %% 2ZNF *
/ +, 7 - = =) = < <= - a ' OFX .TH .EQ ==
STM ZID %LP @ ETA ZKE . «AB JLS RS N. JA. V. EV %%k ZNF *
/ 4 = = a= > >= < <= =~ & | JEX .TH .EQ ==
FLI ZDE = ZS1 %2C0
XH ZID ZLP @ ZTA ZKE . eee
XJ - ZID ZLP 2 ¥TA ZKE . «AB LS RS oNe eA. V. EV %k ZNFE *
/ + - = —= D = < = - £ | +EX JTH .FQ ==
~ LST Z1D ZLP @ TA ZKE oAB LS «RS oNe +2As Ve LEV *%x ¥NF %
/ + - = ~= D> >= < = - & | «EX +TH LEQ ==
ses 9
XK ZID ZLP a FAT
LSD ZID %LP a ' ZAT
PLS
STL ZID 3LP @ ETA ZKE «AB LS RS JNs JA, V. JEV %% ZINF %
/ + - = ~= D >= < = - & | +EX +TH .EQ ==
ELI %DE : 3SI 3 %C0
PGM ZLC
Figure 10. Left Terminal Derivatives.

-55-

RIGHT TERMINAL DERIVATIVES

NTC TERMINAL CHARACTERS

XL ZID ZLP)

IR 3ID ELP @)

XM ZID ZLP @ ITA ZKE)

DES ZID ZLP @ ZTA 2KE .)

X1 ZID %LP 2 ITA IKE . «AB)

X2 %ID ZLP @ ZTA ZKE o« .AB .LS RS)

X3 ZID ZLP 2 ZTA ZKE & +AB LS RS .N.)

X3U ZID ZLP @ ZTA ZKE .« .AB .LS RS oNo }

X4 ZID %LP 3 ETA ZKE o «AB LS RS N. .A.)

X5 ZID ZLP 3 ZTA ZKE . «AB +LS RS .N. «A. V. EV)

X6 ZID ZLP 2 ITA ZKE +AB LS RS .N. A, V. EV %%)

X7 ZID ZLP @ ZTA ZKE « oAB 4LS .RS oN. «Ae V. .EV #% ZNE)

X7U ZID ZLP @ ZTA ZIKE o oAB LS RS oNu oAs V. .EV ¥% ZNE)

X8 %ID ZLP 2 ZTA ZKE . «AB JLS RS N. A, V. JEV *% ZINE *
/)

X9 ZID ZLP @ ¥TA ZKE o« JAB .LS RS «N. .A. V. .EV #% ZNE %
/ + -)

XA ZID ZLP @ ZTA ZKE . oAB LS RS oNe oA. V. EV %% ZINE %
/ + - = -= D> = T4 =]

X8 ZID %LP 3 ZTA ZKE . «AB oLS RS Ne +As V. EV ¥% ZINE *
/ + - = -z > = ' = -)

XBU ZID %LP @ ¥TA ZKE o «AB oLS <RS oNe oA. V. JEV #k INE *
/ + - = -= > = 14 = -)

XC RID ZLP @ ZTA ZKE « «AB oLS oRS oNu oA. V. .EV %% ZNE %
/ + - = ~= > = < = - &)

XD ZID ZLP 2 2TA ZKE & sAB LS RS oNe +As Ve EV %% ZINE *
/ + - = = D> = < = - & | «EX)

XE %ID ZLP @ ZTA ZKE o <AB oLS oRS oNu oAs oV. .EV %% ZNE #*
/ + - = ~= > = < = - & ’ +EX JTH)

XF ZID ZLP @ ZTA ZKE o« oAB oLS «RS oNe oA. V. JEV %% ENE *
/ + - = ~= D> = < = - & | +EX «TH .EQ)

ASN %ID ZLP @ $TA ZKE & «AB LS RS Ne +Ae V. LEV *% INFE %
/ + - = -z D> = < = = & | +EX +TH .EQ ==
)

STM ZID %LP a $TA ZKE . oAB LS RS +Ne oAs Ve EV ¥% 2INE *
ses ZLI ZAT ZDE) : %S1 %EN

XH_ZID FLP @ TTA ZKE o eee) |

XJ %ID ZLP 3 ZTA ZKE . «AB LS RS «N. +As Vs LEV %% ZINE %
/ o+ - = A= > 3= < &= =~ & | .FEX .TH .EQ ==
® o0)

LST ZID LP @ ZTA ZKE « oAB LS oRS oNe. oA. V. oEV #% ZNE *
/ + - = A= > >= < = - & | «EX JTH EQ ==
ees 9)

XK %ID ZLP @ %AT)

LSD XID %LP @, %AT)

PLS)

STL ZID ZLP @ ZTA ZKE o« oAB .LS RS oNo +A. V. oEV %% ZNE #*
/ + - = ~= > >= < <= = & | «EX +TH LEQ ==
ses 9 ELT ZAT 2DE)~ = TSI 3 ZEN

PGM ZRC

Figure 11. Right Terminal Derivatives,

-56-

PRECEDENCE MATRIX

EQUIVALENCE CLASSES

CL REP MEMBERS

o1 ZID

D2 ZLP
KRERE)

04 XTA

05 ZKE

ne .

N7 .AB

DB +LS «RS
09 .N,

16 .A.

11 V. EV
12 %%k

13 2INE

14 %/
15 + -
16 = - >) >=,, < (:
17 =

18 &

19 | « EX
20 oTH

21 .EQ

22 =

23 s ee

24

25 3L1

26 ZAT

2T Z%DE

28

29)

30

31 2SI

32 3

33 %CO0

34 ZEN

35 ZLC

36 ZRC

Figure 12. Precedence Equivalence Classes.

2F ZL %R

£C

.
*

%S

)

BL ZA D (

~

27
28
29
30
32
33
34
35
36

>
>
>

<

>

> < <

+

«V X%k ZN *

‘.“A .L .N QA

N

>

>

I ZL 3 BT 2K
>

PRECEDENCE MATRIX
EQUIVALENCE MATRIX

Z1

cu PO OO T ONOCOC O WD
(SR e (ol o — — y — O\ NN NN
AA AAAA AAAA LA A
A A AANANAA
A A ANANAA
AN AANAAN
A A AAANA
AAAANA v VvV

VVIVVVVVVVVVVVVVVY VYV

VVIVVVVYVVVYVYVYVVYV \"A 4

AAAVVVIVVVVVVIVVVVVVVVVVY

<
< -
<
<
<

AAAVVVIVVVVVVIVVVVVY

VVVVVVVVVVYV

<
<
<
<
<
<

AV VvV

\4

v
VIVVVVVVVVVVVY

v v

prag

.

v Vv Vv v VVVVVYV
\VAAS VvV VVVyvVv VVVVVVIVVVVVYV

Y CUTAID>HZ e
2B o o o ¢ o DEHIP JI [W o] 0| e eDERE

2D

22 23 24 25 26 27 28 29 30 31 22 32 34 35 36

<

< € < < < <
Precedence Matrix.

<

11 12 13 14 15 16 17 18 19 29 21
Figure 13.

08 09 10

04 ©5 0K C7

03

<
<

01 02

2S
5o
ZC <
ZL <
ER

-58-

TERMINAL PAIR MATRIX

EQUIVALENCE CLASSES

CL REP MEMBERS

01 %ID

02 FLP

03 @ 3AT

04 ETA . ees
05 XZKE

06 <AB .Neo INE -~
07 .LS +RS LA, oVe +EV %% %* / + - = = >
&] oEX +TH EQ == ,

08 LI
09 %DE
10

RS U
12

133SI %CO
14 ;

15 ZEN

16 %LC

17 ZRC

Figure 14. Terminal Pair Equivalence Classes.

TERMINAL PAIR MATRIX

ZI L @ BT ¥K A L ZL B0 () : S 3 ZE TL TR
21 T T 7 T T T T T 0l
2L T 02
a T T 03
ET T T 7 04
2K T T T T T T T T 05
AT T T 06
AT T T 07
T T T - 3 - 08
20T T 09
« 177 T T T T 10
) T T 7T T T 7T T T T 1
: T T T T T T 12
ST T T T T T 13
3 T 7 T T T T 14
zE T T T T 15
LT T T T 7 T 16
TR 17

01l 02 03 04 C5 06 N7 08 09 172 11 12 13 14 15 16 17

EQUIVALENCE MATRIX

-590-

Figure 15.

Terminal Pair Matrix.

-60-

*sosse[) odusareAarnby 31xsjuon TeUTWIS]

£

91 @xn8t14

-

21% 12

N3IE o2

2% 61

81

IS L1

: 91

(sl

) %1

30 €1
vz 21

1712 11

¢ o1

L 2 3 QQ

L == 8y

03°* HLI® X3° | 3

#% A3° CA° °v°® S¥* SI° L0
~ 3INE °N° gv* S0
) . 34% s

* Vi %0

e €O

dl% 20

SYd3EWIWK d3d 1D

>3SSVI3 3ONIWAINO3

XITHIVW LIX3INOD TVNIWY3 L

-61-

ze
12
o¢
61
81
L1
91

st

71
el
Zl
11
Ul

_6C

8C
Lu
G
Su
70
ey

2y

1C

ee 1¢é 0¢
. d ‘
1ld ld
d
d d
d d
d d
1d 1d
d d
d d
d d
d d
d d
d d
d d
d d
ld la
d d
d d
d d
id id
4% 1z 3%

61
1d

ld
ld
id
1d

g

3%

o

v

81

id

aa o

[

-
L1 < N ~ N W W - W W R« W W - B WY W«

"XTIJBW 3IX931UO0H TBUTWIS]

LT 91 61
id d

ld
1d d
ld d

ld d «

id d d

id 1id

ld d d

d

a

d

d

d

d

d

d

id 1d

d d

d d

d d

1d 1d

Sz = {

1T €1 21 11

1d id
1d 1d
id id
ia ld
1d 1d
id
ld d 1d
d
d
d
.v&‘
id d
ld
) 0% V% %

"L1 ean81yg

Jdl1 60 8C Lo 90

id 1d 1d 1d

-
»Q.G.TO.O.QO-Q.&Q.QQ.O-O.Q.

d

a o

SO YU €U 0 Tu

u%

d_d id d d d 1d id Tz
3%

d d1ld d d d id 1ld 3%
d d ld d d d 1ld 1d H
d d ld d d d ld id S&
¢ d 1d d d d 1id ld .
i 1 ~1d id 1id iy
d d 1d d d d 1ld 1d)
d 1d id 4%

d 1d id V&

d d id d d d ld id 1%
d d 1d d d d 1d 1id ¢
4 d d id id °*°
d d td d d d id 1ld ==
d ld d d d id 1ld 1°

d 1d d d d id 1ld Vv*

ld 1id ld 1d A&
a d d d d ld ld 1%
d d d d d1id Ild e
¢ d d d d 1%
id 1d ld 1d 1id 1%

== T}* V* & 1% € 1% 1%

X141V 3ON3TIVAIND3

XIULVW LIXIINOD TUNIWY3IL

RIGHT TERMINAL DELIMITERS

-62-

Figure 18.

NTC TERMINAL CHARACTERS

XL a 2TA EKE . LS +RS A, .V, JEV %% % / + -
> >= < = i l «+EX +TH QEQ == eese ¢ BAT ’
ZEN ZRC

IR @ ETA ZKE o .S .RS oAs Ve oEV *% %/ 4
> >= < <= & | oEX oTH EQ == <44 ZAT)
ZEN 3RC

XM %TA EKE OLS ‘RS oAu Ve EV ¥k * / + - =
>= < = & ' «EX .TH QEQ == eese 9 ’ : :

DES . «LS RS .A. WV, +EV k% * / + - = = >

%= &8 1 eEX oTH .EQ == ... ») 3 %EN ZRC

X1 oLS RS A, V. JEV %% * / + - = —“= > >=
&] oFEX JTH JEQ) : FEN ZRC

X?_ .LS .RS .Ao -V. QEV * % * / + - = -=) >:
&] «EX «TH LEQ) H ZEN ERC

X3 oAs Ve JEV %% X 4 + - = = D> >= (< <=

 JEX JTH JEQ .,) 3 ZEN ERC

X3U +As Vs JEV %X * / + - = = > >= < <=
+EX +TH LEQ) ; ZEN ZRC

X4 sAs oVe oJFV *%x % / + - = ~= > >= < <{=
«EX «TH +EQ) ; ZEN ZRC

X5 V. oEV *% % / + - = = D> >= < <= &

e .TH OEQ A) o ; Z{N 'ZQC

X6 *%x x /& - = A= > >= < <K= & | LEX
’) 5 ZEN ZRC

X7 * / + - = = D >= < <= & | +EX oTH
) ; ZEN 2RC

X7ux /4 - = ~= > D>= < <K= & | JEX .TH

) 5 TEN ZRC o) -

X8 % / + - = = D> >= < <= & | +EX oTH
) H ZEN ZRC

X9 + - = ~= > >= < <= & | +EX JTH LFQ
ZEN ERC

XA = —“= > >= < <= & | JEX JTH JEQ) H

X8 &] +EX . TH LEQ) ; ZEN %RC

XBU & | «EX oTH EQ o) 3 ZEN ZRC

XC &] «EX +TH JEQ ,) ; ZEN ZRC

xn | «EX oTH LEQ ,) H ZEN ZRC

XE o TH .EQ ,) H ZEN ZRC :

XF__JEQ ,) 3 _ FEN ZTRC

ASN ,) ; ZEN ZRC

ST™M) ; ZEN 3ZRC

XH osee) H FEN ZRC

XJd) H ZEN ZRC

LST) ; ZEN ZRC

XK 9 BAT) 3 %EN ZRC

.SD) H ZEN ZRC

PLS a ‘%TA ZKE . .LS .RS OA. ov. OEV * % * / + -
> >= < £= &] oFX +TH LEQ == +40 o ZAT)
TEN 2ZRC

STL 3 ZEN %ZRC

PGM

Left Terminal Delimiters.

[]

-

&

&

W TH

+EQ
«EQ

.EQ

ZEN

oo i

«EX

-EQ

-

EZRC

4
[

.

LEFT TERMINAL OELIMITERS

NTC TERMINAL CHARACTERS

-63-

Figure 19.

Right Terminal Delimiters.

XL a ZTA » .AB .LS QRS .Na aAo .V. QEV %% zNE * / + -
e >7) ,>,= < {= - & ' «EX «TH LEQ == 2o 9 LT
EAT ZDE (: ZS1 3 %C0O %ZLC
IDR ¥TA . «AB LS RS .Ne JA. .V, oEﬁVW % % INE * / + - =
-= > >= < = - & ' «EX oTH .FQ == oes e 3 ZLI ZAT
IDE (H £ST 3 ZCO0 ZLC o
XM . QAB -LS -RS oNo vo oV- oEV * % ZNE * / + - = =
> >= < 7<: -~ & l .EX ITH oEQ == s o XLI (:
ZSI FCO %LC
DES .AB -LS 'RS eNa vo oV. A.V_EV %k zNE * / + - = -‘=__,>__.,,F
>= < <= - & ' .EX .TH OEQ == see 9 ZLI (: ZSI
H Z2CO0 2LC
Xl -AB .LS GRS oN, .A. oVe .EV %k ‘ZNF * / + - = = >
>= < = =~ & | +EX JTH .EQ == , L1 (: ZSI 3
ZCO 2LC
. X2 oNe osAs oV, EV %% _11NE~* ,{_‘ + - = = 7’?__ B = < _SEA__
- & | «EX JTH JEQ == , EAID | : ZSt 2C0 2LC
X3 .N. oAc -V. 'FV %* % ZNE * / + - = -~= > >= < =
- & | +EX «TH LEQ == 2Ly : 2S1 ; ¥TCO 2LC
X3U .AB oLS .RS ‘oNo eBAe oVe oFEV *% ZNE * / + - = =)
>= < = - & | +EX +TH EQ == , ALY (: ZS1T
£C0 ZLC B e
X4 Vo +FEV %% 3INE * / + - = ~= > = < <= = A
| .EX «TH .EQ == , LI (¢ TSI 5 ZCO ZLC
X5 %% ENE * / + - = a= D = < <= = & | +EX
+TH LEQ == , TLI : ZS1 3 3C0 ZLC
X6 ZINE * / + - = = > >= < {= = & | JEX oTH
JEQ == , %I (: %SL; %0 ®C -
XT %NE * / + - = ~= > >= < = = & | «EX TH
JEQ == , ZLT | : ZSI ; ZC0 ZLC ,
XTU «AB LS RS .N. +Ae Ve EV %% ENE * / + - = = >
= < <=7 il & ' eEX «TH LEQ == [‘ZLI { : ZS1 H
ZCO 2LC
X8+ = = a= > > < &= 2 & | .EX .TH .EQ ==
LT (H EST 3 %ZC0 %LC
X9 = a= > = < <= =~ & | oFX +TH JED == , ZLI |
: ZSI1 ZCO %ZLC
XA =~ & | «EX +TH LEQ == , LT | H ESI 3 ZC0O ZLC
XB - & | +EX +TH .EQ == , LI | : 2SI BCO 3LC
XBU oAB LS oRS uNo oAe oVe EV %% INE % / + - = = >
= < <= = £ | +EX JTH LEQ == , ZLT : 2SI 3
ZC0O ZLC
Xc | «EX «TH .EQ == , LI 2 ZSI ; ZCO ZLC
XD «TH EQ == , ZLT | : ZSI 3 ZC0 LC
XE LEQ == LI (: ZS1 3 2CO %LC
XF_ ==, mI .z _%SL 3 %CO 3LC
ASN == FAI G | : ZSI ;3 2C0 3LC
STM | : zSI 3 2C0 ZLC
XH , 3LI {
XJd ELT |
LST 2LT (
XK, ZDE {
LSD %DE (
PLS ZLP
STL %CO ZLC
PGM

-64-

4.2 Interpretation of the Kernel Grammar

The MAD/I language can be described on several
levels, each corresponding to a set of definitional rules,
many of which can be changed during the course of compila-
tion. At the bottom level a set of lexicographic rules
establishes the form of fhe various identifiers recognized
by the compiler. These rules are effective during both the
definition and compilation phases of operation, but are modi-
fiable in either case by means of special statements directed
to the lexicographic recognizer. Each uniquely named identi-
fier is stored as a separate entry in the symbol table; and,
in some cases, identifiers of the same name may be stored
separately in a pushdown fashion.

Each symbol table entry corresponding to an identi-
fier is given a set of attributes which establish, among other
things, the syntactic class of the entry. The syntactic class
of each entry is. established either explicitly during the
definitional phase or implicitly by default during the com-
pilation phase.. The values assigned each class are chosen
according to the interpretation desired, using Figure 9 of
Section 4.1 as a guide. By convention, certain types of
identifiers are assigned only in certain classes. For instance,
identifiers consisting of strings enclosed in primes are
usually assigned in the %SIMP, %DECL, %LIST, %COMP, and
%END classes (see Figure 9), since these correspond most

closely with the notion of statement keyword name. Further-

-65-

more, identifiers consisting of strings enclosed in periods

are usually assigned in either the unary or binary operator

classes, since those correspond most closely with the notion
of operator name as popularized in MAD/7090.

A symbol table entry in the translator is created
for each new identifier found during the scan of an input
program. By default, such an entry is assigned the syntactic
class corresponding to operand (%ID). The following lexical

structures are identified:

1. Certain characters such as "+" [, "-" ' and
so forth.

2. Certain two-character sequences (digrams)
such as '"==" , "<=" | and so forth.

3. Names constructed like MAD/7090 variable names,

that is strings of letters and numbers, beginning with a

letter.

4, Names constructed as in (3)'but enclosed in
primes.

5. Names constructed as in (3) but enclosed in
periods.

6. Constants of various types.

Identifiers of Types 1 and 2 above are usually in-
terpreted as operators and grouping marks. Identifiers of

Type 3 above are usually interpreted as variable names which

are assigned modes and other attributes in the usual fashion.

-66-

Identifiers of Type 4 are usually interpreted as the names
of statements and certain constants such as 'TRUE' and
'"FALSE.' Finally, identifiers of Type 5 are usually inter-
preted as names of operators at the expression level.

An operand, either a variable or a constant, is

0,

assigned the syntactic class designated by %ID in Figure 9.
In general, a parenthesized list may be substituted for an
occurrence of an operand anywhere in the language. Since the
parsing algorithm used in the compiler does not make use of
a table or productions, it is not, in general, possible to
restrict the identification of an operand to exclude, say,
a parenthesized list or an invalid mode combination where
its use would traditionally be ruled invalid. Such distinc-
tions can be made only by the transformation machinery. With-
in the compiler, an operand is assumed to be represented by
a pointer, either actual, as in the case of a register con-
tents, or virtual, as in the case of an intermediary result
during expression evaluation.

At any occurrence of an operand in an input program,
the operand may be followed by the at sign "@" and a
parenthesized list of attribute assignments,which consist of de-

claration statements. Such a structure is called the at-

tribute notation and may be used in lieu of explicit declara-

tions. Any attribute assigned by the attribute notation is
assumed global in scope and no machine computation is

generated by its use.

-67-

The operations of subscription and of function eval-
uation are presumed to produce a pointer as a result. The
function operation maps an operand on the left and a value
on the right into an operand as the result. The value on the
right is assumed to be represented as a parenthesized list,
perhaps including a sequence of values obtained as the results
of a sequence of expressions. For purposes of consistency, the
result of a function evaluation is considered an operand, and
the code produced by the compiler might well expect a called
function to return a pointer to a value rather than the value
itself. The subscription operation is considered a special
case of the function operation. The subscription operator
%TAG is generated as the result of a terminal transformation
(see Section 3.1). The component selection operator %KEY
is used in much the same sense. Note that the parameter list
setup procedure prior to a nested function call is minimized
by expecting the function to return a pointer to its result.
Furthermore, note that the subscription operation permits
the use of indexed machine instructions when singly dimensioned
vectors are involved. In the case of multiply dimensioned
arrays, a storage mapping function is presumed to map the
set of multiple subscripts into a single subscript.

The result of any operation which is assigned a
pointer is formally a nonterminal symbol of the kernel gram-

mar and is called a designator (DES) in the productions of

Figure 7, Section 4.1. On the other hand, the result of

-68-

any expression containing a unary or binary operator or rela-
tion is assumed to be a value. A value is distinguished

from a designator by the fact that an operation other than
address computation is involved and that an intermediate re-
sult may be obtained which then must be stored in a temporary
location. It is this distinction that rules such expressions
as A(B),(C) valid, but (A+B).(C) 1invalid. The notion of
value includes that of operand and may be applied to statements
as well as expressions.

The unary and binary operators involved in a partic-
ular expression are ranked according to the traditional rules
of precedence in the same manner as that popular in 7090 MAD,
with an important exception: where in 7090 MAD c¢nly one in-
teger is assigned each operator in the ranking, in MAD/I two
integers are assigned each operator (see previous section).
One reason for this apparent complication is that some oper-
ators naturally associate from right to left (e.g., substitu-
tion and exponentiation), while other operators naturally
associate from left to right (e.g., addition). Thus the defini-
tion of new operators within the present hierarchy i1nvolves
the specification of two precedence "functions'" or, alter-
natively, the specification of one function and a statement
as’ to whether the operator associates from left-to-right or

from right-to-left.

-69-

Figure 9, Section 4.2, shows all predefined operators
in the kernel language and the precedence/class assignments
for each. All of those operators in terminal context classes
6 through 8, except the substitution operator, map a value on
the left and a value on the right into a value as the result.
The substitution operator maps an operand on the left and a
value on the right into an operand as the result. With that
interpretation, an embedded substitution statement can be
used anywhere that an operand is expected, and can lead to
some interesting and perhaps useful constructions. The result
of any expression which is assigned a value 1s formally a
nonterminal symbol of the kernel grammar and is called an

assignment (ASN) in the productions of Figure 7. An assign-

ment is also a statement and may be used anywhere that a
statement 1is valid.

The various statements in the language may be
organized into several categories on the basis of syntactic
type. All of these statements, with a single exception, can
be identified by a keyword which is assumed to occur initial-
ly. The single exception is the assignment statement and its
degeneracies discussed immediately above. Each identifying
keyword is assumed a member of an equivalence class identi-
fied by one of the metaterminal symbols %SIMP, %COMP, %LIST,
%DECL, and %COMP as appearing throughout the succeeding dis-

cussions.

-70-

A statement of any syntactic type is assumed to be
constructed of two units: the prefix, consisting of the identi-
fying keyword followed by a known number of arguments of a known
syntactic type, and the scope, consisting of an indefinite number
of arguments, all of the same known syntactic type. As used
here, the term argument is applied to the nonterminal symbols
for designator and assignment and, in addition, others which will
be introduced from time to time. Each argument, both in the
prefix and in the scope, is separated by such symbols as comma
and semicolon, and these features are used in conjunction with
context-dependent transformations in the generation of connec-
tives and binding linkages among the arguments.

A macro definition is associated with each statement-
identifying keyword in the language. Explicit calls upon the
statement-scanning algorithm emitted from such a macro cause
the arguments of the prefix to be scanned, and explicit connec-
tives are generated wherever necessary to bind these arguments
together and with the scope. No attempt is made during this
prefix scan to preserve the natural embedding structure of the
kernel language; thus, some rather messy syntactic structures
can be defined with a minimum of tricky grammatical specifica-
tion. It should be emphasized, however, that the entire
prefix is interpreted in the kernel grammar as an instance of
a metaterminal symbol which is a member of the same equivalence

class of which the identifying keyword is a member.

-71-

The scope of a statement is a list of arguments sepa-
rated by commas and semicolons. This list is terminated by
either a list separator or statement separator as established
by special transformations unique to each statement type. An
argument may be one of the following nonterminal symbols, again

depending upon statement type:

1. Executable list element (LST) - either an assign-
ment or an instance of the block notation. (The block notation,
interpreted to represent a range of elements of a vector or
array, 1s indicated by the "...'" operator in the same manner
as MAD/ 7090.)

2. Declarative list element (LSD) - either a desig-
nator or a special notation developed from the subscript nota-
tion and used in connection with certain transformations.

3. Statement (STM) - any of the statements described

below and in addition the assignment (ASN).

Using the notions developed here, each of the several
statement types can be described in terms of the type of its
prefix and the type of list element in its scope.

An assignment statement consists of precisely the

assignment itself, which may occur alone as a statement. In the
typical case this statement will include the substitution
operator "==" and will result in the assignment of a value

to a variable. In fact, however, any expression, designator,

or even a single identifier can stand alone as a statement., In

-72-

the most advanced case of degeneracy the statement is null and
no operation is implied except perhaps the assignment of an
entry point or statement label (viz., the old CONTINUE state-
ment of MAD/7090). A special transformation is available to
detect this condition.

A simple statement consists of a prefix of the %SIMP

class and a single STM argument in its scope. A common degener-
acy of the simple statement is a statement type consisting only
of a prefix. In this case, the scope is null and a special
transformation is available to establish the fact.

A compound statement consists of a prefix of the

%COMP class followed by a scope of STM arguments separated by
semicolons ";'" , and terminated by a keyword belonging to the
%END equivalence class. A particularly useful convention has
been adopted in the MAD/I syntax which provides for two forms

of the "compound" statement. But here the term "compound"
refers to traditional MAD/7090 usage, and not to the more formal
nomenclature used here. Of the two "compound" forms, the former,
called the compound form of the "compound" statement, consists
of a prefix terminated by a semicolon and followed by a scope

as described above. The latter, called the simple form of the
"compound" statement, consists of a prefix terminated by a com-
ma and followed by a single STM argument. In point of fact, the
former is formally a compound statement 1identified by a keyword
of the %COMP <class, while the latter is formally a simple

statement identified by a keyword of the %SIMP class. Never-

-73%-

theless, 1t is possible to make contextual distinctions depending
upon the nature of the arguments within the prefix and to reas-
sign the metaterminal symbol class of the statement prefix during
the prefix scan, so that one macro definition serves ”compoﬁnd”
statements of both forms.

A list statement consists of a prefix of the %LIST

class followed by a scope of LST arguments separated by commas.
Such statements most often are models of input/output statements
in the language. For the purpose of scanning a statement pre-
fix of any class, 1t is convenient to assign the metaterminal
symbol class of the prefix to the %LIST <class; and, when the
prefix scan is terminated, to reassign the prefix to that class
appropriate for the scope scan.

A declarative statement consists of a prefix of the

%DECL class followed by a scope of LSD arguments. Such state-
ments are most often models of the common declarations in the
language. The arguments of the scope are constrained to exclude
most arithmetic and logical operators; but, in particular, are
permitted to contain those operations implied by subscription.
Since the subscription operator (%TAG) <can occur also in an
executable list element, the macro transformation associated
with its name must be replaced during the scan of a declarative
list element. The mechanism for implementing this involves

use of a pushdown stack which saves and restores these defini-

tions as necessary.

-74-

A program consists of a prefix of the %LC class fol-

lowed by a scope of STM arguments separated by semicolons ";"

3

0,

and terminated by a keyword of the %RC class. The program
represents, of course, the largest structure identified during
the compilation process and corresponds to a sentence in the
kernel language. According to the usual interpretation, only

one sfatement will occur in the scope, that is, the outermost
function definition of the source program. Any additional state-
ments in the scope represent an error condition. Note that the

%RC can be created explicitly as the re-

metaterminal symbol
sult of a transformation or implicitly as the result of an end-

of-file condition representing the end of the input text.

V. STRUCTURE OF THE COMPILER

The basic element in any MAD source program is the
identifier, used to stand for a program variable, constant, key-
word, operator, or punctuation mark. An identifier is extracted
from the input text using a set of lexicographic rules which
are independent of 1ts membership in these syntactic categories.
Using these identifiers as atomic elements, strings representing
expressions and statements can be constructed using the set of
syntactic rules described in previous sections. Each of these
expressions and statements, and ultimately the program itself,
has a semantic interpretation rule which assigns to each identi-

fied syntactic construct a sequence of machine instructions and

-75-

procedure calls., In this connection it is proper to say that
the lexicographic recognition rules, the syntactic combinatorial
rules, and the semantic interpretation rules are each indepen-
dent of the others.

The function of the major structural components of the
MAD/I compiler parallel this lexical-syntactic-semantic hier-
archy. Corresponding to the lexical recognition rules 1s a
processor called ICODE which assembles sequences of input char-
acters into identifiers Corresponding to the syntactic recogni-
tion rules 1s a processor called JSCAN which assembles each
sequence of identifiers 1nto a substitution instance of one of the
rules of the kernel grammar. Associated with each rule of this
grammar 1s a hierarchy of macro definitions which represents the
semantic interpretation of the rule. A processor called INTERP
interprets these macros and generates calls upon other dependent
processors as well. Each macro is written as a sequence of
statements of a definitional metalanguage. The collection of
all those macro definitions which define MAD/I becomes in fact
a specification of a dialect of the language; and in this sense,
each different collection of macro definitions represents a
different dialect of MAD/TI.

The principal components of the MAD compilef inter-
connect as shown in Figure 20. All of these components share
a common data structure, or symbol table, into which the source
program symbols are coded along with macro definitions, trans-

lator variables, and certain intermediate parses. Each

-76-

xortdwo) I/dVW. JOo uorieztuedxp 0z °2IndTyg
”
J
TT9V.L ! 49V40LS 1xal
TOGWXS | OMDVI LNdLno
]
|
¢— NOILVYOIW ¥0Ld1¥D0Sdd /
€ — — QT1VD TYNAID0Yd
. e —
NVOSF S dYALNI

d4d001

LXdL LNdNI

-77-

component of the translator and, in principle, a significant
fraction of the rather large symbol table can be shared among
several concurrent jobs in the timeshared system.

Compilation of a source program requires two passes.
In the first pass,, each identifier is extracted in turn from
the source text, inserted in the symbol table along with default
attributes, and assembled by INTERP either into statements of
the definitional metalanguage or by JSCAN into sequences of macro
calls . During the first pass, attributes are collected and as-
signed to the various identifiers, and storage allocation in-
formation is collected.

During the interlude between the first and second pas-
ses, the storage allocation information is processed and the
object program storage requirements calculated. Conversion of
constants from the external to the internal form is also per-
formed at this time. Finally, the default attributes are assigned
all variables and constants which have not been specifically
ekcepted by declaration statements during the first pass.

In the second pass, the macro calls generated during
the first pass are expanded and the corresponding object code is
generated. Much of the strategy used in the production of the
object code from a macro call is established by the macro defi-
nition itself, although certain often-used functions such as
mode conversions and working register assignments are provided

in assembly code rather than in interpreted macro code.

-78-

5.1 The Symbol Table

The symbol table is the binding structure through
which all the translator components exchange information.
Every symbolic variable name expressed in the source program is
represented in this table along with the symbolic representation
of source program constants. In addition, all those internal
symbols used in the various macro definitions are also represented
in the symbol table. In particular, certain pre-constructed tables
and macro definitions are assumed to be resident in the symbol
table before a source program translation can begin. These tables
and definitions are created during the definitional phase of
translator preparation, and in fact establish the MAD/I language
structure.

The symbol table consists of a large binary tree struc-
ture, each node of which is represented by a unique symbolic
name. In some cases a node may not be in fact named, so in
these cases the node is identified by its ordinal position re-
lative to another node. A symbolic representation of nodal
position in this tree has been established by ad-hoc convention
in the following way: A path from a particular node to its left
son is called its link (LNK) while the path to its right son 1is
called its extended attribute pointer (XAP). A path between a
node and any of its descendants can be established as the tra-
verse of these links and extended attribute pointers indicated
by successive applications of the two operators (© (1ink left)

and GD (link right) expressed in postfix form. For example,

-79-

P OOO®E L.

represents the path from the node named A to the node

named B in the tree:

This simple notion can be expressed in a pseudo-algebraic man-
ner in the following way: For each (:> to the right of an
expression such as 1, write a set of matching parens in their
place. Count the number of (:) terms between an QD on the
left and the next (:) on the right and place this number within
the parens representing the (:) on the left. Thus, the expres-
sion A(2) (1) stands for the Expression 1. Alternatively, in-
stead of ordinal numeral identification, a node can be identified
by name relative to another node. Thus, if C is the name of

a node as shown, then the notation A(C)(B) would designate the

same node as 1. This pseudo-algebraic notation, called in the

-80-

sequel simply the attribute notation, will be used henceforth.

This notation is rather more compact than the previous for the
kind of structures used here and is considerably easier to
parse in definitions.

Each node in the tree-structured symbol table is

represented by a block of information including

a. the link pointer,
b. the extended attribute pointer,
c. a four-entry class-code field (discussed presently),
d. a field containing an interpreted value assigned
the node, and

e. the name of the node (possibly null).

The descriptor assigned each such node is the address of its
link pointer, so that each link pointer on the left-son chain is
in fact a descriptor to the next element on that chain, and
each extended attribute pointer on the right-son chain is in fact
a descriptor to the next element on that chain.

The class code establishes whether the entry belongs
to the class of variables or constants, macro names, or trans-
lator variables, and so forth. The values assigned some of these
codes are conditioned by the syntactic class to which the symbol
belongs (as described previously in Section 2.3); the values of
the remaining are chosen arbitrarily. In particular, it is pos-
sible to differentiate that symbol table entry which contains a

name as a value from that entry which contains a self-defining

-81-

(numerical) constant, so that the uses of the remaining fields
in connection with the attribute notation do not conflict.

The entries in the class code field are interpreted
as a function of the class code value. If the class code de-
signates an operand (e.g., variable name) in the source program,
then these entries are interpreted as local attributes; that
is, as one-byte attributes which themselves have no dependent
attribute structure. These are referenced in the attribute
notation as 1if they were standard symbol table entries with the
"value'" assigned such entries interpreted as the value of the
entry itself. If the class code designates an operator (e.g.,

a keyword, operator, punctuation or grouping mark) in the source
program, then these entries are interpreted as the syntactic
type and left- and right-precedence functions respectively.

The value field is designed to,among other things,
contain a descriptor. A useful ad-hoc notation designating this
value as opposed to the node itself takes the form of subscript
notation: VAL(A(2)(l)) 1identifies that descriptor which is
resident in the value field of the node identified by A(2)(1).
However, a value field can contain either a name or an ordinal
number, and these can be used in attribute notation expressions
as well. Thus, A(VAL(B(1l))) designates that node found by
considering the contents of the value field of B(l) as either
the name or the ordinal number of a node on the extended at-
tribut chain of A , depending upon the class code assigned to
B(l1) . Similar notations can be developed for the other local

attributes of the entry.

-82-

5.2 Lexical Recognizer

All symbolic input to the translator is processed by
ICODE, which assembles characters into symbolic names and con-
stant representations. As part of this process, each unique
symbol is assigned space in the symbol table along with default
attribute assignments. Associated with each such symbol is its
descriptor, which is used as its referent in all internal opera-
tions. For these purposes, not only the usual variables and con-
stants are considered as symbol table entries, but grouping
marks, keywords, and punctuation marks as well. The principal
function of ICODE then is to identify each occurrence of a
symbol in the input stream and to replace this symbol by its
descriptor for use in subsequent operations. The recognition
rules used by ICODE in these functions are mostly embedded with-
in the processor itself, although some of these are table-driven
and can be set at translation time.

Each identifier used in a source program must be used
in only one function. Therefore, obviously, the names assigned
to elements in the classes of variables, constants, keywords,
operators, and punctuation marks must not overlap. In addition,
the names of source program identifiers cannot overlap those
used in statement definitions, including those used to define
the source language itself. To avoid the naturally occurring
conflicts, certain naming conventions have been established
which represent sufficient conditions for uniqueness. Thus,

variables by convention start with a letter, constants with a

-83%-

digit, keywords with a prime, and so forth. These conventions
are not necessary conditions however, and it is readily possible
to assign any identifier to any syntactic class as long as
uniqueness criteria are observed.

The lexicographic identification rules used by ICODE
can be summarized as follows: The set of available characters
is partitioned into subsets of alphabetic, numeric, and special
characters. Certain special characters stand alone as 1identi-
fiers, including those normally used as arithmetic operators
and punctuation marks. Certain other two-character sequences
(digrams), including some of the relational operators such
as >=, <= and the substitution operator == , stand only 1in
juxtaposition as identifiers. A name consisting of a string
of alphabetic and numeric characters, the first of which is an
alphabetic character, stands as an identifier and is normally
interpreted as a variable name. A name consisting of a string
of alphabetic and numeric characters enclosed in either periods
"." or primes "'" stands for an identifier. In the former
case, such an identifier normally stands for a special operator
such as .ABS. , the absolute-value operator; and in the latter
case, such an identifier normally stands for a keyword such as
'GO TO' , the name of the MAD/I branch statement.

A constant is identified as a string of alphabetic
and numeric characters, the first of which is a numeric char-
acter. The alphabetic characters in such an i1dentifier are

interpreted in such functions as scale factor and radix conversions.

-84-

Character constants, that is, those constants that stand for
themselves,are delimited by quotation marks "'"'" , between which
the quotation mark is identified by two juxtaposed quotation
marks in the conventional fashion. Although some default con-
version attributes of constants are apparent in their explicit
form, no attempt is made in the present MAD/I compiler to con-
vert censtants from the external form to the internal represen-
tation until the entire source program has been scanned and all
global declarations have been collected.

By convention, all symbols used in the definitional
process are prefixed with percent signs "%'" and all source
program symbols are constrained so that the percent sign may
not occur first, Normally, the translator can be described as
being either in the definitional or translational state: in the
former, operator and statement macros are defined, and in the
latter the source program is translated. A switch is set in

ICODE in the definitional state so that

a. all constants are assumed to be of self-defined
type, and
b. all symbols beginning with an alphabetic char-

acter are prefixed by a percent sign.

Nevertheless, if a constant is prefixed with a special keyword,
then it is assumed to be a source program literal; and, if a
variable name is prefixed with a percent sign, then the normal-
ly occurring percent sign prefixing process is disabled for that

symbol.

-85-

5.3 Syntactic Recognizer

The syntactic recognition algorithm (JSCAN) reads des-
criptors from an input stream via ICODE and calls upon the macro
interpreter (INTERP) with substitution instances of productions
as arguments. Some of these productions represent calls on
macros which in turn generate connectives—floating addresses and
local branches—and may call recursively on JSCAN. Other produc-
tions represent calls on macros which have as their primary ob-
jective the production of machine code. The first kind of produc-
tions may loosely be described as statement macro calls and the
second kind as operator macro calls, although the same INTERP
machinery is used in both cases.

The term prefiple is used as a generalization of MAD/
7090 triple. A prefiple is composed of an operator followed by
a list of its operands. The operand list may be of indefinite
length, as in the case of the function and subscription oper-
ator macro calls, and the operator will be one of those sum-
marized in Figure 9, Section 4.1. Some of the punctuation
marks in the source program language are given the class of
macro name for the purpose of JSCAN's operations. Two of these
currently treated in this manner are the colon and semicolon.

In addition, certain operators are invented by terminal trans-
formations detected by JSCAN. Two of these are %NEG and
%TAG, neither of which can occur in a source program.

JSCAN is built around an operator-precedence syntax

analyzer to which is added a considerable number of contextual

transformations. These transformations (see Sections 3.1 and

-86-

3.2) are of two classes: one involving an input stream context
of two adjacent descriptors, the other involving a context of
the two descriptors compared in the precedence relation. Some
transformations of each of these two classes are coded in the
JSCAN algorithm itself; others are coded as macro definitions.

The classical algorithm (cf. Floyd) which decomposes a
stream of text into instances of productions uses a push-down
stack in which both terminal and nonterminal characters are
temporarily stored. During the analysis, segments of this stack
are identified as a production, processed, and deleted by some
sort of transformational machinery. In the JSCAN case, each
instance of a production is a prefiple and is processed by INTERP.
The processing involves the replacement of the production by a
nonterminal character which occurs on the left of the equal signs
in the table of productions (Figure 7, Section 4.1)

In the particular algorithm used in JSCAN, the nonter-
minal used to replace a production on the stack is always of
operand class, so that, in general, no error checking is possible
to differentiate among different productions which involve the
same operators. However, if different nonterminals are associated
with different mode classes, then the normal mode-context machin-
ery will filter out syntax errors of this type. Note that no-
where in JSCAN itself does the mode of an operand play any part.

The state of JSCAN at any time during compilation of a
source program is determined by three descriptions: NXTDSX,

LSTDSX, and STKDSX. The first of these, NXTDSX, is the current

-87-

descriptor under scan, presumably supplied by ICODE. The
second, LSTDSX, is the descriptor read immediately prior to
NXTDSX. The third, STKDSX, is the first terminal descriptor
found in the stack on a last-in to first-in search.

The pair NXTDSX-LSTDSX represents a context which
controls the terminal transformations. Botn NXTDSX and LSTDSX
are members of equivalence classes of descriptors classified
as described in Section 4.2. The class numbers assigned to
NXTDSX and LSTDSX are used as coordinates in the terminal con-
text matrix; and the intersection of these coordinates gives
access to an integer which is an index in a dspatch table which
in turn leads to segments of machine code.

The pair NXTDSX-STKDSX represents the context which
drives the precedence algorithm, which is the nucleus of JSCAN.
As in the previous case, the class codes of NXTDSX and STKDSX
are used as coordinates in the terminal context matrix which gives
access to an integer which is an index into a dispatch table.
The precedence relations themselves are established by two
local attributes of NXTDSX and STKDSX. The terminal context
table in this case serves as a convenient handle to invoke

precedence transformations.

5.4 The Macro Interpreter

The operation of all the translator processors re-
volves about INTERP, the internal macro interpreter. This
processor interprets commands of a highly stylized definitional

metalanguage used to control the decomposition of each source

-88-

statement in the program. Some of the commands of this meta-
language are used to manipulate symbol table entries, create
attribute structures, and assign values of each attribute.

Others are used to invoke the other processors of the trans-
lator, in particular ICODE and JSCAN. Still others are used
within INTERP itself for the control of macro interpetation flow
and the defnition of new macros.

The principal definitional structure processed by INTERP
is the macro, consisting of from two to half-a-hundred command
lines. Each macro is named and may contain instances of para-
metric substitutions. A macro is invoked when a command of that
name is interpreted, and in such a case the parametric substitu-
tions 1mplied are executed. INTERP is so designed that a call
can be made by another processor for the purpose of interpreting
a single command line passed as an argument. INTERP will inter-
pret this line and then return immediaely to the calling proces-
sor. If the command involved happens to be a macro name, then
that macro 1s interpreted; and, if the macro contains a call on
the calling processor itself, then the whole interpretation
process recur ses .

A single macro definition is associated with each
operator which may occur in a compiler source input expression;
and, in addition, other macro transformations may be recursively
dependent upon such operator macro definitions. The set of
transformations so defined are equivalent in scope to the de-

finition facility built into MAD/7090. Each set of macro

-89-

definitions deriving from an expressional operator name cor-
responds to a define sequence of MAD/7090 deriving from the
same operator name. Machinery for the specification of oper-
ator precedence and mode context is provided.

In addition to the class of operator macro trans-
formations, a class of keyword macro transformations is included
in the resident MAD/I compiler. These macro definitions may
call upon the same machinery and pseudo-operation pool as do
the operator macro definitions, but, in addition, may call on
those pseudo commands which control the operator-precedence
grammar-parsing algorithm. A single keyword macro definition
is associated with each statement keyword available in the
language. The invocation of a keyword macro is in general con-
text-dependent, however, and is designed for convenience in
the production of connectives, which consist of floating-address
assignments and branches.

A command line consists of a macro operator followed
by a list of macro operands. Both the operator and each of its
operands are represented by descriptor expresssions, consisting
of algebraic-like structures in which the various operators
are interpreted as operations upon symbol table entries. The
result of the interpretation of either an operator or operand
is a descriptor, which in turn points to a symbol table entry.
If an operator designates a macro name, then the symbol table
entry represents a type of line directory which indexes each

command line in the macro definition. If the operator

-90-

designates a machine instruction name, then the symbol table
entry represents an intricately coded driving table for OCODE,

a dependent processor which emits the object program byte by
byte. Finally, if the operator designates a pseudo-command name
recognized by INTERP, then the symbol table entry represents a
pointer to the processor entry in INTERP itself,

The class of pseudo commands processed by INTERP in-
cludes those which create elements of the attribute structure
assigned to each symbol table entry and define the value as-
signed to each of the components of this structure, those which
invoke the other translator processors, such as JSCAN and ICODE,
those which provide for the definition of new macros, and final-
ly, those which provide a conditional interpretation capability.

Each descriptor of each operand points to a symbol
table entry. The symbol table entries may be of any class, and
some are allocated and deallocated dynamically by INTERP. Each
operand 1is represented by an expression structured in much the
same way as a source program expression, although the operators
and punctuation marks have different interpretations. In par-
ticular, the attribute notation (see Section 5.1) 1s subsumed
bodily, and the various arithmetic and logical operators are
presumed to operate upon the descriptors themselves. Certain
special-purpose functions are defined to streamline some of

the common operations.

REFERENCES

The MAD Manual, Computing Center, The University of Michigan,
Ann Arbor, 1967, 130 pp.

Floyd, R.W., "Syntactic Analysis and Operator Precedence,"

J. ACM, Vol. 10, No. 3, 1963, pp. 316-333.

Floyd, R.W., "Bounded Context Syntactic Analysis," Comm. ACM,
Vol. 7, No. 2, 1964, pp. 62-65.

Arden, B.W., and Graham, R.M., "On GAT and the Construction
of Translators," Comm. ACM, Vol. 2, No. 7, 1959, pp. 24-26;
correction, ibid., No. 11, 1959, pp. 10-11.

Arden, B.W., Galler, B.A., and Graham, R.M., "The Internal
Organization of the MAD Translator," Comm. ACM, Vol. 4, No. 1,
1961, pp. 28-31.

Graham, R.M., "Translator Construction,'" Notes of the Summer
Conference on Automatic Programming, Engineering Summer Con-
ferences, The University of Michigan, Ann Arbor, June 1963.

Arden, B.W., Galler, B.A., and Graham, R.M., "An Algorithm
for Translating Boolean Expressions," J. ACM, Vol. 9, No. 2,
1962, pp. 222-239.

Bauer, F.L., and Samelson, K., "Sequential Formula Transla-
tion," Comm. ACM, Vol. 3, No. 2, 1960, pp. 76-83.

Floyd, R.W., "A Descriptive Language for Symbol Manipulation,"
J. ACM, Vol. 8, No. 4, 1961, pp. 579-584.

Organick, E.I., A Computer Primer for the MAD Language,
Computing Center, The University of Michigan, Ann Arbor,

1961, 183 pp.

Graham, R.M., "Bounded Context Translation,'" Proceedings of
the 1964 Spring Joint Computer Conference, pp. 17-29.

-91-

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall teport ia classified)

1. ORIGINATIN G ACTIVITY (Corporate author)

THE UNIVERSITY OF MICHIGAN Unclassifie

2a. REPORT SECURITY C LASSIFICATION

CONCOMP PROJECT 2b. GROUP

-§ 3. REPORT TITLE

THE SYNTACTIC STRUCTURE OF MAD/I

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report

S. AUTHOR(S) (Last name, first name, initial)

David L. Mills

d.

b. PROJECT NO.

6. REPORT DATE 7@ TOTAL NO. OF PAGES | 7b. NO. OF REFS
June 1968 91
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

DA-49-083 OSA-3050

Technical Report 7

this report,

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13. ABSTRACT

This report describes the formal linguistic structure of MAD/I,
an ALGOL-1ike language proposed for residence in the Michigan
Terminal System (MTS). The MAD/I language is designed for
general use for all algebraic and many symbol manipulation ap-
plications and in particular is designed for extensibility
through the definition of new statement structures. This
report, presented in a tutorial format, outlines the develop-
ment of a set of productions which describe the syntax of this
language and the derivation of a set of matrices and tables
which drive the syntax analysis procedures of the compiler.

In particular, a set of syntax transformations is presented
which provide a simple but effective means for statement
definition. A brief description of the compiler is also
given.

DD

e 1473

Unclassified

9b. OTHER pron'r NO(S) (Any other numbers that may be assigned

Security Classification

Unclassified

Security Classification

14.
KEY WORDS

LINK A LINK B LINK C

ROLE wT ROLE wT ROLE wT

Syntactic Description
Production System
Precedence Language
Context-Free Grammar
Compiler

Translator

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address

of the contractor, subcontractor, grantee, Department of De~
fense activity or other organization (corporate author) issuing.
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘“Restricted Data’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in ail capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial,
If military, show rank and branch of service. The name of
the principal aathor is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified

and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

impgsed by security classification, using standard statements
such as:

(1) *“*Qualified requesters may obtain copies of this
report from DDC.”’

(2) *“Foreign announcement and dissemination of this
report by DDC is not authorized.”’

(3) *““U. 8. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

2
.

(4) ““U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

-
.

(5) “*All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes. :

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual

" summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re- .
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation cn the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886-551

Unclassified

Security Classification

IINIIillfll!llIIIIIIIHHIIIN!IIII!IIININININNIIlIilllNI

9015 03483 8345

