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1.  Introduction

General purpose workstation computers are becoming faster each year, with processor clocks now
operating at 300 MHz and above. Computer networks are becoming faster as well, with speeds of
622 Mbps available now and 2.4 Gbps being installed. Using available technology and existing
workstations and Internet paths, it has been demonstrated that computers can be reliably synchro-
nized to better than a millisecond in LANs and better than a few tens of milliseconds in most
places in the global Internet [3]. This technology includes the Network Time Protocol (NTP), now
used in an estimated total of over 100,000 servers and clients in the global Internet. Over 220 pri-
mary time servers are available in this network, each connected to an external source of time, such
as a GPS radio clock or ACTS telephone modem.

Reliable network synchronization requires crafted algorithms which minimize jitter on diverse
network paths between clients and servers, determine the best subset of redundant servers, and
discipline the computer clock in both time and frequency. NTP is designed to do this in Unix and
Windows operating systems. The NTP architecture, protocol and algorithms have evolved over
almost two decades, with the latest NTP Version 3 designated an Internet (draft) standard [6].
Among the goals of this design are:

1. Optimize the computer clock accuracy and stability, subject to constraints of network over-
heads and/or telephone toll charges, relative to local and/or remote sources of time.

2. Enhance the reliability by detecting and discarding misbehaving local and/or remote sources 
and reconfiguring network paths as necessary.

3. Automatically adjust algorithm parameters in response to prevailing network delay/jitter con-
ditions and the measured stability of the computer clock oscillator.

At the heart of the NTP design is the suite of algorithms that discipline the computer clock to an
external source, either an NTP server elsewhere in the Internet or a local radio clock or telephone
modem. A key feature in this design is improved accuracy to the order of a few microseconds at
the application program interface (API). The need for this becomes clear upon observing that the
time to read the computer clock via a system call routine has been reduced from 40 µs a few years
ago on a Sun Microsystems SPARC IPC to less than 1 µs today on an UltraSPARC.

The computer clock discipline algorithm, which is at the heart of the design, is the main topic of
this report. It has evolved from simple beginnings to a sophisticated algorithm which automati-
cally adapts to changes in its operating environment without manual configuration or real-time
management functions. Portions of the algorithm are implemented in the NTP software that runs
the protocol and provides the computer clock corrections. The remaining portions have been
implemented in this software and in the operating system kernel. As described elsewhere [7], for
greater accuracy, a stable oscillator and counter delivering a pulse-per-second (PPS) signal can be
used to steer the computer clock frequency, while an external NTP server or local radio provides
the UTC time. For the highest accuracy, a PPS signal synchronized to UTC can be used directly to
discipline the frequency and time within the second, while an external source, such as an NTP
server or radio, provides the UTC seconds numbering. While requiring some additional complex-
ity and per-site engineering, this combination has been shown to provide accuracies in the order of
a few tens of microseconds [7].
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The emphasis in this report is on recent developments in the clock discipline algorithm and its
error modelling and evaluation. The current NTP Version 3 design with improvements described
in [3] represent the departure point for this report. The goal is the engineering design and evalua-
tion of the algorithm intended for NTP Version 4, which is in the implementation design stage.
The performance of the new algorithm has been experimentally determined using a set of experi-
ments described in this report. The experiments include a set of Unix shell scripts which call the
NTP simulator program ntpsim with varying parameters meant to simulate normal and abnormal
conditions found in actual operations. This program produces data files suitable for processing by
Matlab programs which produce the data and figures used in this report. It can operate with raw
data files collected by the NTP daemon for Unix xntpd during regular operation with multiple
peers. In this case, it faithfully reproduces the actual NTP operations with a simulated clock disci-
pline algorithm.

This report begins with a brief overview of the NTP Version 4 architecture and algorithms. A
comprehensive description of the NTP Version 3 architecture, protocol and algorithms can be
found in [6]. Next is a detailed description of the new clock discipline algorithm, including a
mathematical analysis of its operation. Folowing this is a discussion of statistics relevant to the
analysis of errors, including measures of time accuracy, also called phase accuracy, as well as fre-
quency stability, using a statistic called Allan deviation (wrongly called Allan variance in some
literature). Next is a discussion of experiment technique and results of a series of experiments to
accurately characterize the Allan deviation statistic for typical computer clock oscillators. Statisti-
cal models are developed which characterize this statistic relative to several actual and synthetic
sources representing typical Internet peer paths and computer workstation clocks.

Following this discussion, a series of experiments is described which demonstrate the closed-loop
behavior of the NTP algorithms using real and synthetic data characteristic of LANs, “nearby”
time servers in the same geographic area, and “distant” time servers with Internet paths spanning
continents and oceans. The object is to verify the correct operation and quantify the accuracy pos-
sible using these servers. The results suggest improved means to adjust the algorithm parameters,
in particular, how to manage the selection of clock discipline mode (phase-lock or frequency-lock
or some combination of both) and how to adjust the poll interval. The report concludes with a
detailed analysis of the improved algorithm performance using sources ranging from precision
PPS sources and 64-s poll intervals to telephone modems and poll intervals ranging well over a
day.

The software distributions containing the NTP simulator and experiments described in this report
are available for distribution via FTP. The location of the distribution directory is given in the NTP
web page www.eecis.udel.edu/~ntp and/or the author’s home page
www.eecis.udel.edu/~mills.  This directory contains the NTP simulator program
ntpsim.tar.Z,  programs and data to determine the computer clock oscillatory stability
allan.tar.Z , and programs and data to evaluate NTP performance ntpeval.tar.Z.
Appendix A contains a description of the program and directions for its use.

2.  Network Time Protocol

While not in itself the subject of this report, an brief overview of the NTP design will be helpful in
understanding the algorithms involved. As described in [4], a synchronization subnet is a hierar-
chical set of time servers and clients organized by stratum, in much the same way as in digital
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telephone networks. The servers at the lowest stratum are synchronized to national standards by
radio or telephone modem. In order to provide the most accurate, reliable service, clients typically
operate with several redundant servers over diverse network paths.

The NTP software operates in each server and client as an independent process or daemon. The
architecture of the NTP daemon is illustrated in Figure 1. At designated intervals, a client sends a
request to each in a set of configured servers and expects a response at some later time. The
exchange results in four clock readings, or timestamps, one at the sending time (relative to the
sender) and another at the receiving time (relative to the receiver) for the request and the reply.
The client uses these four timestamps to calculate the clock offset and roundtrip delay relative to
each server separately. The clock filter algorithm discards offset outlyers associated with large
delays, which can result in large errors. As a byproduct, a statistical accuracy estimate called dis-
persion is produced which, combined with the delay and stratum, is used as a metric, called syn-
chronization distance, to organize the NTP subnet itself as a shortest-path spanning tree with root
at the primary server(s).

The clock offsets produced by the clock filter algorithm for each server separately are then pro-
cessed by the intersection algorithm in order to detect and discard misbehaving servers called
falsetickers. The truechimers remaining are then processed by the clustering algorithm to discard
outlyers on the basis of peer dispersion for each server as compared to the ensemble or select dis-
persion. The survivors remaining are then weighted by synchronization distance and combined to
produce the clock correction used to discipline the computer clock.

In NTP Version 3, a clock correction is produced for each round of messages between a client and
each survivor. Corrections less than 128 ms are amortized using the NTP clock discipline algo-
rithm, which is the main topic of this paper. Those greater than 128 ms cause a step change in the
computer clock, but only after a sanity period of 900 s while these large values persists. Correc-
tions of this magnitude are exceedingly rare, usually as the result of reboot, broken hardware or
missed leap-second event. 

Primary servers sometimes operate with more than one synchronization source, including multi-
ple radios and other primary servers, in order to provide reliable service under all credible failure
scenarios. The same NTP algorithms are used for all sources, so that malfunctions can be auto-
matically detected and the NTP subnet reconfigures according to the prevailing synchronization
distances.

Figure 1. NTP Architecture
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3.  NTP Version 4 Architecture and Algorithms

While a detailed discussion of the new engineering design is beyond the scope of this report, a few
details will serve to clarify the operation of the algorithms to be described. The NTP Version 4
architecture differs from Version 3 in subtle ways. For the purposes of this report, the most impor-
tant difference is the manner in which the computer clock oscillator is adjusted. In both versions,
the architecture is organized as a number of semi-autonomous cyclic processes, including a num-
ber of peer processes, the system process and the clock adjust process. Reference clocks are sup-
ported by specialized peer processes with device drivers specific to each radio or telephone
modem. The operations of the peer processes and system process are managed by state machines
with defined states, inputs, outputs and transition functions. Each process runs according to a
cyclic schedule at defined poll intervals.

In NTP Version 3, the system process is called for every received NTP message to update the sys-
tem state variables, including the clock time, frequency and error estimates. In NTP Version 4, the
system process runs at regular poll intervals determined by the ambient network jitter and clock
oscillator wander. As in NTP Version 3, the peer poll intervals are determined as the minimum of
the system poll interval and the peer poll interval specified in the latest message received from the
peer. Decoupling the system and peer poll interval in this way improves the accuracy and stability
of the clock discipline algorithm, as well as simplifies the interactions between the peer processes
and the system process. In this report, subsequent reference to poll interval should be interpreted
as the system poll interval. Furthermore, the poll interval values used in this report and in the
specification and implementation are all in powers of two. The motivation for this will become
clear in later discussion in this report.

Each peer process independently polls a remote server or local device driver at intervals specified
by the server/driver and system process and updates peer state variables, including clock offset,
roundtrip delay and dispersion. The clock filter algorithm for each peer process maintains a list of
the eight most recent samples of offset, delay and dispersion and normally selects the sample with
minimum delay to represent the peer offset, delay and dispersion values. The values for possibly
several peer processes are read by the system process at intervals depending on the network jitter
and clock oscillator wander and used to update system time and frequency corrections. The cor-
rections are read by the clock adjust process, which runs independently at intervals of 1 s, and
used to adjust the computer clock time using a standard Unix system call which amortizes the
adjustments evenly over the second.

This design allows each peer process to operate a polling algorithm specific to each peer type,
such as a network peer, radio clock, telephone modem or ISDN connection. Some peer types,
such as ISDN connections, incur usage charges, so an economical design must use a relatively
large poll interval. However, the NTP design is based on redundancy, diversity and error control
through the use of continuous polling. In the ISDN case, for example, an appropriate design
would make infrequent ISDN calls, but send a burst of messages at every call, in order that the
clock filter algorithm operates at maximum efficiency.

In NTP Version 3, the peer dispersion includes the weighted offset differences between the
selected sample and each of the others in order of synchronization distance, plus an increment
depending on sample age, in order to model the expected error accumulation due to frequency
instability. However, in NTP Version 4, the weighted offset differences, called the peer time dis-
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persion, are calculated for each new message and recorded separately from the accumulation due
to sample age, called the peer frequency dispersion. As will become apparent later, this is neces-
sary in order to accurately model the statistical errors due to all noise sources and use these to
control the weighting factors used by the clock discipline algorithm.

The NTP Version 4 clock filter algorithm includes a spike detector which measures the ratio
between each new clock offset sample and the time dispersion of the previous samples. If this
ratio exceeds 10, the new sample is not made visible to the clock selection algorithms of the sys-

tem process, although it is included in the dispersion calculation1. This avoids glitches due to pop-
corn noise, which is commonly found on LANs operating at moderate to heavy loads, and avoids
instability at small poll intervals in FLL mode with the clock discipline algorithm.

Another significant difference between the two versions is that the error budgets in NTP Version 4
use root-mean-square (RMS) accumulations, rather than absolute-value accumulations, as in NTP
Version 3. The reason for this is to develop accurate noise models for precise predictions of com-
puter clock time and frequency using a hybrid phase/frequency-lock adjustment process, as
described later in this report. However, the new design does violate one of the assumptions of the
original design, that an implementation not require hardware or software multiply/divide opera-
tions, since all arithmetic is done using only add, subtract and shift operations. The new design
calls for multiply/divide operations, which are now in general ubiquitous, even on embedded con-
troller systems, as well as square-root operations. It is the design intent that the square-root opera-
tion be done using a subroutine and not more than three iterations of the Newton-Raphelson
square-root algorithm.

4.  Clock Discipline Algorithm

The clock discipline algorithm adjusts the computer clock time as determined by NTP, compen-
sates for the intrinsic frequency error, and adjusts the poll interval and loop time constant dynam-
ically in response to measured network jitter and oscillator stability. In NTP Version 4, the
algorithm functions as a true hybrid of two philosophically quite different feedback control sys-
tems. In a phase-lock loop (PLL) design, the measured time errors are used to discipline a type-II
feedback loop which controls the phase and frequency of the clock oscillator. In the frequency-
lock loop (FLL) design, the measured time and frequency errors are used separately to discipline
type-I feedback loops, one controlling the phase and the other controlling the frequency. Experi-
ments described later in this report confirm a hybrid combination of both designs can significantly
improve the performance of the system under widely varying conditions of network delay varia-
tions and clock oscillator instability.

In NTP Version 4, the system process polls the peer processes at intervals from a few seconds to
over a day, depending on peer type. When a new sample of offset, delay and dispersion is avail-
able in a peer process, a bit is set in its state variables. The system process, upon noticing this bit,

1. In this report, apparently arbitrary constants are used in some cases. Some of these values
have been determined by careful simulation and modelling, others on the basis of good engi-
neering judgement tempered by experience, and still others as wild guesses. It may happen
that, as experience with the new features accumulates, the values may be changed.
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clears it and calls the clock selection, clustering and combining algorithms, as in the NTP Version
3 design. Normally, this results in a combined sample offset, which is then used by the clock dis-
cipline algorithm to control the computer time. This algorithm adjusts the clock oscillator time
and frequency with the aid of the clock adjust process, which runs at intervals of one second. A
overview of the design is given in following sections. The detailed design of the algorithm, as well
as most others used in the peer and system processes, is embodied in the NTP simulator program,
which is described in Appendix A.

The clock discipline algorithm is implemented as the feedback control loop shown in Figure 2.
The variable  represents the reference phase provided by NTP and  the control phase pro-

duced by the variable-frequency oscillator (VFO), which controls the computer clock. The phase
detector produces a signal Vd representing the instantaneous phase difference between  and .

The clock filter functions as a tapped delay line, with the output Vs taken at the sample selected by
the algorithm. The clock selection, clustering and combining algorithms (not shown) provide
additional processing, as decribed in [3]. The loop filter, with impulse response F(t), produces a
correction Vc, which controls the VFO frequency ωc and thus its phase . The characteristic

behavior of this model, which is determined by F(t) and the various gain factors, is studied in
many textbooks and summarized in [5].

As described in [6], the original NTP Version 3 clock discipline algorithm, which is based on a
conventional PLL, has been improved to include a FLL capability. The selection of which mode to
use, FLL or PLL, is made on the basis of update interval τ, which is normally equal to the poll
interval, but could be larger on occasion due to a spike, for instance. If τ is smaller than about one
kilosecond, PLL mode is used; otherwise, FLL mode is used. This improves the accuracy and sta-
bility in some modes of operation, specifically those involving toll charges, but has proved subop-
timal for reasons described later in this report. The new algorithm uses a combined approach with
a true hybrid PLL/FLL design which gives good performance with values of τ from a few seconds
to well over one day, depending on accuracy requirements and acceptable network overheads or
toll charges.

In the new design, the loop filter, shown in Figure 3, is implemented using two subalgorithms, one
based on a linear, time-invariant PLL, and the other on a nonlinear, predictive FLL. Both predict a
time correction x as a function of phase error θ, represented by Vs in the figure. The PLL predicts

Figure 2. Clock Discipline Algorithm

Clock Filter

Phase/Freq.
Prediction

Clock
Adjust

VCO

Phase
Detector

NTP Vd Vs

θr+

θc−

Vc
x

y

Loop Filter

θr θc

θr θc

θc



7

a frequency adjustment yPLL as an integral of past time offsets, while the FLL predicts a frequency
adjustment yFLL directly from the difference between the last time correction and the current one.
The two adjustments are combined and added to the current clock frequency y, as shown in the
figure. The x and y are then used by the clock adjust process to adjust the VCO frequency and
close the feedback loop, as shown in Figure 2.

In the following, the index k denotes the kth iteration of the algorithm, where xk is the time or

phase, yk the frequency or rate, and τk the interval since the last update. The notation  indi-

cates the average of the n most recent sample measurements of the statistic x, and the notation 
the values predicted for the next update of x. In the most general formulation, an algorithm that
corrects for clock time and frequency errors computes a prediction  at the k−
1th update and then a correction

(1)

at the kth update. As each correction is determined, the clock time is adjusted by x, so that it dis-
plays the correct time, and the clock frequency y is adjusted to minimize the corrections in future.
Between updates, which can range from seconds to over a day, the clock adjust process amortizes
x in small increments at adjustment intervals TA. At the beginning of each adjustment interval, the
VCO frequency is

, (2)

and x is multiplied by , where a is a constant between zero and one in Hz. In the NTP dae-
mon for Unix and Windows, TA is one second; while, in the modified kernel described elsewhere
[7], TA is one clock tick. This model provides rapid adjustment (fast convergence) when x is rela-
tively large, together with fine adjustment (low jitter) when x is relatively small. In PLL mode, the
ax term in (2) is necessary for stability; in both PLL and FLL algorithms, it is also necessary in
order to prevent monotonicity violations when the magnitude of adjustment is large
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Initially, the frequeny y is zero. At each update, the PLL and FLL algorithms independently calcu-
late a frequency adjustment yadj, which is added to yk−1 at the kth update to determine the fre-

quency  used until the next update. In the PLL algorithm, the frequency at the kth update is

determined from the current and all previous updates xi at intervals τi,

, (3)

where b is a constant between zero and one in Hz. Given the frequency at the k−1th update is
, the maximum-likelihood PLL frequency adjustment prediction at the kth update is

. (4)

In order to understand the PLL dynamics, it is useful to consider the limit as τ approaches zero.
From (2) and (3), the oscillator frequency is adjusted by

. (5)

Since phase is the integral of frequency, the integral of the right hand side represents the overall
open-loop impulse response of the feedback loop. Taking the Laplace transform,

 , (6)

where the extra pole  at the origin is due to the integration which converts the frequency f(s)
to phase θ(s). After some rearrangement, the transfer function G(s) can be written

, (7)

where  is the loop gain and  is the corner frequency. From elementary theory,

this is the transfer function of a linear, time-invariant, type-II PLL which can minimize both time
and frequency errors.

The averaging interval is determined by the loop time constant Tc, which depends on the choice of
a and b; however, these constants must be chosen so that the damping factor

, in order to preserve good transient response. For good stability, Tc should

be at least eight times the total loop delay which, because of the clock filter delay, is eight times

the update interval τ. For values of a = 2−10, b = 2−12 and τ = 26 s for instance2, the PLL has a rise-
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time in response to a time step of about 53 minutes and a 63% response to a frequency step of
about 4.25 hours, which is a useful compromise between stability and network overhead on a
LAN. The value  s is near the Allan intercept point for the sources considered in the

experiments to follow, and in that sense would be considered optimum. An update interval of 26 s
is appropriate with the above values of a and b. Values of τ as small as this are necessary to
achieve the required capture range of 500 PPM; however, much larger values are appropriate on
long paths in the Internet. For other values of τ, the desired transient characteristic is preserved if
both a and b vary as .

In the FLL algorithm, the frequency at the kth update is determined directly from the differences
between the current and previous update times. In the previous design, adapted from [2], the FLL
operates is the same way as the PLL, except that yk is determined indirectly from a frequency esti-

mate  computed as the exponential average

, (8)

with w = 4 determined by experiment. The goal of the clock discipline algorithm is to adjust the
clock time and frequency so that xk = 0 for all k. To the extent this has been successful in the past,

we can assume corrections prior to xk are all zero and, in particular, . Therefore, an

appropriate prediction which minimizes future error is

. (9)

To simplify the design and to minimize the number of state variables in the NTP Version 4 design,
the  variable is eliminated and the maximum-likelihood frequency adjustment prediction is

expressed simply as

. (10)

This arrangement simplifies implementation without significantly affecting accuracy and stability.
In summary, in both FLL and PLL modes, the time correction is x at each update. In FLL mode,
yadj = yFLL is used for the frequency prediction; while, in PLL mode, yadj = yPLL is used instead.

4.1  Hybrid FLL/PLL Combining Algorithm

The NTP Version 3 design selects either the FLL or PLL mode on the basis of update interval.
PLL mode is used at intervals less than 1,024 s and FLL mode used otherwise. While this results
in a useful compromise, it does not provide for the automatic selection on the basis of prevailing

2. These numbers were originally expressed as powers of two, since multiply-divide arithmetic
was done using only left and right shifts.
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network jitter and oscillator frequency wander. It also results in a moderate transient when switch-
ing between modes.

In the NTP Version 4 design, the feedback loop is modified to operate as a true hybrid, where FLL
and PLL frequency predictions are computed separately and combined on the basis of RMS error
averaged over previous predictions. The result is that the PLL prediction is weighted more heavily
under conditions of extreme time jitter due, for example, to network congestion, while the FLL
prediction is weighted more heavily under conditions of extreme oscillator frequency wander due,
for example, to large temperature variations.

As in the original design, Tc is the loop time constant and τ the interval since the previous update.
At each update, the time correction is computed from the offset θ determined by the combining
algorithm. Recall from the previous section that x is the time correction remaining from the latest
update and diminishes at a rate depending on Tc. Also, let yadj be the frequency adjustment com-
puted from the PLL and FLL predictions, as described below. The FLL and PLL prediction errors
are computed at each update

 and . (11)

The RMS prediction errors  and  are computed from successive sample squares of xFLL

and xPLL saved in separate shift registers. The number of samples n averaged, or equivalently the
averaging time T, depends on Tc, which itself depends on the poll interval. The motivation for this
can be found in the observation, confirmed by experiments described later in this report, that the
optimal averaging time is near the Allan intercept point, which is usually in the range

 s in typical computer clock oscillators. Thus, averaging times much less than
this are likely to be contaminated by excess phase noise, while times much longer than this are
likely to be contaminated by excess frequency noise.

In the specification and implementation, it is convenient to implement poll intervals as shifts, pri-
marily to avoid multiply/divide operations, a decision proved optimal in hindsight, according to
the experiments described later. It is usually the case that the update interval τ is close to the poll

interval; thus, if poll is the variable used for this purpose, . Since a new sample is usually
produced for every poll, the RMS prediction errors include only n sample squares such that

:

 and , (12)

Next, the FLL and PLL frequency predictions are computed

 and , (13)

where w is the FLL averaging constant in (8) and b is the PLL frequency constant in (3). Finally,
the new frequency adjustment is computed
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. (14)

The averaging constant w in (13) also depends on Tc and poll interval. The intent in this design is
to match the averaging time to the Allan intercept point, as described later in this report. A useful
formulation is , where G = 10 is determined by experiment and the con-
stant 2 is necessary to avoid instability at large poll intervals.

In the hybrid mode of the clock discipline algorithm, the weight assigned the FLL and PLL pre-
dictions determines the influence of each one on the actual frequency adjustment. Figure 4 shows
the FLL weight factor (solid line) as a function of poll interval for the USNO source used in
experiments described later. The PLL weight factor (dashed line) is one minus the FLL weight
factor. Clearly, the PLL predictions dominate at small poll intervals, while the FLL predictions
dominate at large intervals, as expected. Figure 5 shows the standard error (defined later in this
report) with the USNO source as a function of poll interval using the FLL or PLL alone and where
both are combined using these weight factors. Recall that these weight factors are computed from
the RMS errors previously observed between the predicted offsets and the actual offset. From
about 100 s to 1000 s, the hybrid mode is better than either the PLL or FLL modes and above
1000 s is only a little worse than the FLL mode. Below 100 s the hybrid mode is somewhat worse
than the PLL mode and a little better than the FLL mode, but still better than the millisecond.

4.2  Poll-Adjust Algorithm

NTP Version 3 time servers and clients operate today using network paths that span the globe. In
very many cases, primary (stratum 1) servers operate with several hundred clients or more. It is
necessary to explore every means with which the poll interval used by these clients can be
increased without significantly degrading clock accuracy or stability. The NTP Version 4 clock
discipline algorithm allows a significant increase in poll interval without compromising accuracy,
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while at the same time adapting dynamically to widely varying network jitter and clock oscillator
wander.

The experiments described later in this report show that, in almost all cases, the standard error
increases as the poll interval increases using either the FLL or PLL algorithms, due primarily to
the effect of clock oscillator instability. Since the overhead decreases as the poll interval increases,
a method is needed to select the poll interval as the best compromise between highest accuracy
and lowest overhead. This is most important in configurations where a toll charge is incurred for
each poll, as in ISDN and telephone modem services.

In the NTP Version 3 design, the minimum and maximum poll intervals default to values appro-
priate for almost all network and computer configurations. For network peers these values default

to 26 = 64 s and 210 = 1,024 s, respectively, while for telephone modem peers, the values default to

210 and 214 = 16,384 s, respectively. However, in NTP Version 4, these values can be changed to

fit special circumstances to as small as 24 = 16 s and as large as 217 = 131,072 s. Within the range
between these maximum and minimum values, the clock discipline algorithm automatically man-
ages the poll interval to match prevailing network jitter and oscillator wander. A singular point to
be emphasized is that, using the new algorithm, it is not necessary to clamp the poll interval to the
minimum when switching among different synchronization sources. In cases of moderate to
severe network jitter and where multiple sources exist, frequent clockhopping in this way can be a
problem in NTP Version 3, but should no longer be a problem in NTP Version 4.

A key statistic in controlling the poll interval is the RMS error measured by the clustering algo-
rithm as it works to sift the best subset of clocks from the current peer population. Called select
dispersion εSEL, sample squares of this statistic are held in a shift register. The system dispersion
εSYS is then calculated from the RMS sum of εSEL and the peer dispersion εPEER of the selected
peer

(15)
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where n = 4 samples is chosen by experiment. If , where Y = 5 is experimentally deter-

mined, the oscillator frequency is deviating too fast for the clock discipline algorithm to follow, so
the poll interval is reduced in stages to the minimum. If the opposite case holds for some number
of updates, the poll interval is slowly increased in steps to the maximum. A hysteresis mechanism
built into the algorithm prevents unnecessary dithering of the interval when not productive. Under
typical operating conditions, the interval hovers close to the maximum; but, on occasions when
the oscillator frequency wanders more than about 1 PPM, it quickly drops to lower values until the
wander subsides.

Figure 6 shows the poll intervals of a typical workstation over a 30-day period using synthetic
data as described later in this report. In this figure, the baseline is +10 for the poll interval curve,
zero for the offset curve, and -20 for the frequency curve. Most of the time is spent at the maxi-
mum poll interval, in this case 16,384 s, with brief excursions to lower intervals not less than
1,024 s when the frequency deviates too rapidly for the discipline loop to follow. This particular
figure shows the expected behavior for a typical telephone modem, where it is important that the
poll interval remain at large values whenever possible. In particular, it is important that the initial
frequency adaptation when the clock discipline algorithm is first started be substantially complete
within only the first few samples before the poll interval starts to increase. In Figure 6, where the
initial time and frequency offsets are zero, this occurs after the eighth call.

4.3  Clock State Machine

The clock discipline algorithm operates over an extremely wide range of network jitter and oscil-
lator wander characteristics. As determined by past experience and experiment, the various algo-
rithms work well to sift good data from bad, especially under conditions of light to moderate
network and server loads. However, under conditions of extreme network or server congestion,
operating system latencies, and oscillator wander, linear, time-invariant systems (PLL) and even
predictive systems (FLL) may fail to cope with the induced time and/or frequency transients. The
results can be frequent time step changes and very large time and frequency errors.
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In order to deal with very large transients at and after startup, the clock discipline algorithm is
managed by the state machine shown in Figure 7. Each of the four states has defined inputs,
outputs and transition functions. Initially, the machine is unsynchronized and in UNSET state.
If the minimum poll interval is 1,024 s or greater, the first update received sets the clock and
transitions to HOLD state. This behavior is designed for toll services with long intervals
between calls. If the interval is less than 1,024 s, these actions will not occur until after several
updates, to allow the synchronization distance to be reduced below 1 s, and allow the various
algorithms to accumulate reliable error estimates.

In HOLD state, the various sanity checks, spike detectors and tolerance clamps are disabled, in
order to provide rapid adaptation to possibly very large frequency errors up to 500 PPM. In
addition, the clock discipline algorithm is forced to operate in FLL mode only, which allows the
fastest adaptation to the particular oscillator frequency. Once entering HOLD state, the machine
remains in this state for at least five updates, in order to complete, as far as possible, the fre-
quency adaptation process. After this and the nominal clock offset has decreased below 128 ms,
the machine transitions to SYNC state and remains there pending unusual conditions.

In SYNC state, the sanity checks, spike detectors and tolerance clamps are operative. To protect
against frequency spikes that might occur in FLL predictions at small update intervals, the fre-
quency adjustments are clamped at 1 PPM. To protect against runaway frequency offsets that
might occur in FLL predictions at very large update intervals, the frequency estimate is
clamped at 500 PPM. To protect against disruptions due to severe network congestion, fre-
quency adjustments are disabled if the system dispersion exceeds 128 ms. These sanity checks
are in both the NTP Version 3 and NTP Version 4 algorithms, although the former has no state
machine and so cannot react quickly to large frequency excursions.

In NTP Vrsion 4, several mechanisms are built into the various algorithms to cope with less
traumatic disruptions. One of these is the spike detector in the clock filter algorithm mentioned
previously. A similar spike detector is used by the clock discipline algorithm in SYNC state. If

Figure 7. Clock State Macnine
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the magnitude of an offset exceeds 10 times the system dispersion, the spike is discarded as if it
never existed. However, the increased dispersion due the spike is calculated and included in the
dispersion budget. Thus, if a true time step were to occur, the first one or two samples, depending
on the magnitude, may be discarded, but eventually the step will be recognized and corrections
made.

Special provisions are made in SYNC state if the time offset exceeds 128 ms, which may happen
occasionally when the network is congested or when some minor disruption occurs. It can also
happen upon the occasion of a leap second, when the local clock has been automatically stepped,
but for some reason the remote peer or local radio clock has not implemented the step. In both
cases, the optimum response is probably to ignore the spike, unless it persists for some time.
Accordingly, if succeeding offsets are less than 128 ms, this behavior is justified. However, if off-
sets greater than 128 ms persist for a watchdog interval of 900 s, the eventual response should be
to believe them. This is the intended behavior of both the NTP Version 3 and NTP Version 4 algo-
rithms.

In the NTP Version 4 algorithm, when the watchdog interval has been exceeded and an update
arrives with greater than 128 ms offset, the state machine transitions to SPIKE state, but does not
set the clock. If the next update after that has offset less than 128 ms, the machine transitions to
SYNC state and adjusts the clock phase and frequency as if in that state. In this case the prior
update is considered a spike and ignored. If the next update in SPIKE state has offset greater than
128 ms, the machine transitions to HOLD state and sets the clock. Since the sanity checks are dis-
abled in HOLD state, the clock discipline algorithm can quickly adapt to the new time and fre-
quency as described previously.

Figure 8 shows an extreme example, where the initial time offset is 100 ms and initial frequency
offset is 500 PPM. Most of the frequency adaptation occurs during the five-sample HOLD inter-
val, as the FLL wrangles the frequency to approximate agreement. The initial time offset is pur-
posely chosen so that the residual offset after this initial adaptation results in the state machine
first transitioning to SYNC state, but with residual frequency offset beyond the loop capture range
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in that state. This eventually causes the offset to exceed 128 ms and, after the watchdog interval,
the state machine transitions to HOLD state. This process may repeat a time or two, until the
residual frequency offset is sufficiently reduced. In Figure 8, after about six hours, the adaptation
is complete and the poll interval starts to ramp up from 64 s to 1,024 s. In the original NTP Ver-
sion 3 design, the loop capture range was only 100 PPM and adaptation to even that unambitious
value took well over a day.

A critical factor in the case of toll services is the speed with which the initial time and frequency
can be adapted and the poll interval increased to the maximum. Figure 8 shows the behavior using
network peers, where the minimum poll interval is usually 64 s. Figure 9 shows the behavior using
telephone modem services, where the minimum poll interval is usually 1,024 s. Here, the initial
time and frequency offsets are as in Figure 8, but the clock reading error has been increased to 1
ms, which is typical of telephone modem services. Even under these extreme conditions, the
adaptation is mostly complete and the poll interval begins to increase after 15 calls.

5.  Performance Evaluation

The performance of the new clock discipline algorithm is best evaluated using a simulation
approach. There are two reasons for this, rather than building and testing the algorithms in the
context of the existing NTP Version 3 implementation. First, evaluation of these algorithms can
take long wallclock times, since the intrinsic time constants are often quite long - several hours to
days. Simulation time runs much faster than real time, in fact by several orders of magnitude. Sec-
ond, the simulator environment is not burdened by the system infrastructure in which the daemon
must operate, such as I/O code and monitoring code. Most of the development and debugging
done to develop the simulator uses Microsoft C++, which includes a comprehensive debugging
capability far superior to the ordinary Unix development tools. Third, the actual code developed in
this way represents a model for the development of the eventual formal specification and imple-
mentation, as well as a documentation and specification aid. This is the same approach used in the
development of the original NTP Version 3 specification and implementation.
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While intended primarily to verify the correct operation of the NTP algorithms under normal and
abnormal conditions, the simulator has also been used to explore new algorithms and methods to
discipline the computer clock. This includes means to automatically adjust algorithm parameters
to match current conditions of phase and frequency noise, which may vary from time to time and
place to place. In this way and using real and synthetic data, the parameters can be varied during a
series of simulation runs and compromise values can be selected which remain valid over a wide
range of conditions. The parameters include architecture constants, such as maximum time and
frequency tolerances, outlyer removal and adaptive-parameter estimators. In addition, the experi-
ments have suggested a number of design improvements over the original NTP Version 3 algo-
rithms and identified a few shortcomings. These have resulted in the changes documented in this
report and in the eventual NTP Version 4 specification and implementation.

The simulator program operates using real data collected by the existing NTP daemon for Unix
and Windows, as well as data synthesized by internal phase and frequency noise generators, or a
combination of real and synthetic data. The generators produce white phase noise and random-
walk frequency noise, both using zero-mean Gaussian processes. As shown in subsequent discus-
sion, these generators can quite closely emulate the real data for most statistical purposes. The
general philosophy is to evolve the algorithms using repeatable, synthetic noise streams and, once
the design is stabilized, verify the expected operation using real data.

The most visible statistic in evaluating the performance of a timekeeping system is the time error,
either in the form of mean absolute error, as in NTP Version 3, or the RMS error, as in NTP Ver-
sion 4. The original reason for the NTP Version 3 design was to avoid the need to compute squares
and square roots, which in most embedded systems would be considered an implementation bur-
den. Whether or not mean absolute error or RMS error is used, the only difference between the
two statistics is the arithmetic oprations involved; the statistic is used the same way in both veri-
ons. While the RMS error calculations can be a burden in some implementations, it is necessary in
order to develop accurate predictions and determine weight factors used by the clock discipline
algorithm.

An important strategy in the following experiments is the use of primary (stratum 1) time servers.
Since primary servers are independently synchronized to external references, such as GPS receiv-
ers or ACTS telephone modems, their time bases are stabilized with presumed zero time and fre-
quency error. This allows the errors due to the network jitter to be separated from the errors due to
oscillator stability and for the one-way delays on the outbound and return paths to be measured
separately. Since the time offset between primary servers is effectively zero, it is convenient to
evaluate the performance using a statistic of RMS error about zero, called in this report standard
error. The clock stability model is separately derived from a series of measurements involving a
free-running clock oscillator and a precision time source. The frequency offset measurements are
then collected in a file which is read by the simulation program and integrated with the real or
synthetic time offset data.

There are three sets of experiments described in the following. In the first set, the Allan deviation
characteristics of typical workstations and network paths is investigated to develop profiles which
characterize common client-server configurations. In the second set, the behavior of the clock dis-
cipline algorithm is explored using synthetic noise sources, in order to determine how the
expected errors due to network jitter and oscillator stability scale relative to poll interval. These
provide the basis and justification for the new fully hybrid approach in the design. In the third set,
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the response of the algorithm to real data is investigated with emphasis on the behavior of the
automatic poll-adjust scheme to different combinations of network jitter and frequency wander.

5.1  Allan Deviation Experiments

The stability characteristics of typical computer clock oscillators can be experimentally deter-
mined through a set of experiments, such as described in this section. The experiments are
designed to calculate the Allan deviation for a typical computer clock oscillator synchronized via
Internet paths to as many as 19 remote time servers in North and South America, Europe and
Asia. Each experiment in the set involves measured one-way delays between NTP primary (stra-
tum 1) time servers synchronized to external sources, such as GPS receivers or cesium oscillators.
The experiments are designed to do two things: (a) evaluate the Allan deviation characteristic for
typical computer clock oscillators and Internet paths between selected NTP time servers, and (b)
validate that the synthetic random noise generators incorporated in the simulator program realisti-
cally emulate the real data on a statistical basis.

The time-of-day (TOD) function in modern workstations is commonly implemented using an
uncompensated quartz crystal oscillator and counter, which delivers a pulse train with period
ranging from 10 ms to about 1 ms. Each pulse causes a timer interrupt, which increments a soft-
ware logical clock variable by a fixed value tick scaled in microseconds or nanoseconds. Conven-
tional Unix systems represent the TOD as two 32-bit words in seconds and microseconds or
nanoseconds from UTC midnight, 1 January 1970, with no provision for leap seconds. Thus, the
clock reading precision is limited to the tick interval; however, many systems provide an auxiliary
counter with reading precision of a microsecond or less, which can be used to interpolate between
timer interrupts.

That typical computer clocks behave in ways quite counterproductive to good timekeeping should
come as no surprise. There are no explicit means to control crystal ambient temperature, power
level, voltage regulation or mechanical stability. For instance, in a survey of about 20,000 Internet
hosts synchronized by NTP, the median intrinsic frequency error was 78 PPM, with some hosts
showing errors over ±500 PPM. Since the clock oscillator is not temperature stabilized, its fre-
quency may vary over a few PPM in the normal course of the day.

In order to correct for an intrinsic frequency error, adjustments are made at intervals of TA = 1 s. as
described previously. At a typical clock period of 10 ms and a frequency tolerance of 500 PPM,
for example, the TOD function must add or subtract 5 µs at each timer interrupt and complete the
entire 500-µs adjustment within the 1-s adjustment interval. The residual error thus has a sawtooth
characteristic with maximum amplitude 500 µs, which can be reduced only by reducing the intrin-
sic frequency error or by reducing the adjustment interval as described elsewhere [3].

Assuming the clock discipline algorithm can learn the nominal frequency error of each clock
oscillator separately and correct for it, the primary characteristic affecting the clock accuracy is
the oscillator stability. The traditional characterization of oscillator stability is a plot of Allan vari-
ance [1], which is defined as follows. Consider a series of time offsets measured between a com-
puter clock and some external standard. Let xk be the kth measurement and τ be the interval since
the last measurement. Define the fractional frequency
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, , (16)

which is a dimensionless quantity. Now, consider a sequence of N independent fractional fre-
quency samples yk (k = 0, 1,... , N − 1). If the interval between measurements τ is the same as the
averaging interval, the 2-sample Allan variance is defined

(17)

and the Allan deviation as the square root of this quantity. The results are commonly displayed as
a curve plotted in log-log coordinates as described below.

Two experiments were designed to establish reference Allan deviation profiles for common work-
station quartz crystal oscillators under typical room-temperature conditions. The Sun SPARC IPC
workstations used in the experiments, and most others like them, have rather poor oscillator stabil-
ity characteristics, compared to some others, such as the Digital Alpha, but are useful indicators of
typical performance.

The PPS experiment measured the free-running clock offsets relative to an external precision PPS
source. This experiment used data collected over about five days for a SPARC IPC and monitored
using the ppsclock line discipline [7] connected via a level converter and pulse regenerator to the
PPS signal from a cesium oscillator. A special test program measured the PPS offsets at 2-s inter-
vals and recorded them in a data file. The LAN experiment measured the free-running clock off-
sets relative to a primary (stratum-1) time server on the same network wire. This experiment used
data collected over about fifteen days for a SPARC IPC and monitored using NTP. The NTP dae-
mon measured the primary clock offset at 16-s intervals and recorded them in a data file.
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The oscillator frequency characteristic in the PPS experiment is shown in Figure 10 over the five-
day period. The oscillator frequency varies over about a 0.25 PPM range, which would normally
be considered very minor and characteristic of a closely regulated room temperature. The oscilla-
tor characteristic in the LAN experiment is shown in Figure 11 over the fifteen-day period. Here,
the oscillator frequency varies over a 3-PPM range, sometimes abruptly, which is characteristic of
room temperature changes of a few degrees. The PPS experiment was conducted in winter, when
the room temperature was thermostatically controlled, and is typical of “good” conditions. The
LAN experiment was conducted in spring, when the laboratory windows were open and the tem-
perature allowed to follow the weather, and is typical of “poor” conditions. 

The results of the PPS and LAN experiments were processed by Matlab programs to produce
graphs plotting Allan deviation σ in parts-per-million (PPM) with respect to time interval τ in sec-
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onds in log-log coordinates. The results for the PPS and LAN data are shown in solid-line curves
in Figure 12. The shape of each curve depends on the phase and frequency variations specific to
the particular clock oscillator and network path involved. The phase variations, which are domi-
nated by white phase noise, produce straight lines with slope −1 on the plots [8]. The frequency
variations, which are dominated by random-walk frequency noise, produce straight lines with
slope +0.5 on the plots. The intersection of these two lines, called here the Allan intercept point,
characterizes each particular clock oscillator and network path. Note that, as the phase noise
decreases, the white-phase line is lowered in direct proportion and, as the frequency noise
decreases, the random-walk frequency line is lowered in direct proportion.

The primary contributions to the phase noise evident in the results for the PPS and LAN data are
jitter due to the clock precision and reading errors, operating system latencies and, for the LAN
experiment, jitter within the network, which is a lightly loaded 10-Mbps Ethernet. In both the PPS
and LAN experiments, the frequency variations are due to nondeterministic wobbles of the oscil-
lator frequency, which is affected primarily by ambient temperature variations. As apparent from
Figure 12, the frequency noise of the LAN experiment is about ten times that of the PPS experi-
ment.

Shown superimposed on Figure 12 as dashed lines are Allan deviation characteristics determined
from synthetic noise generated internally by the simulator program. Synthetic noise is generated
as the sum of two Gaussian noise processes, a white phase component and a random-walk fre-
quency component, each with specified standard deviation. The synthetic PPS noise use a phase

parameter of 5.7x10−6 and frequency parameter 3.5x10−9 calculated at 64-s intervals. The LAN

parameters are 3.1x10−5 and 2.6x10−8, respectively. For comparison, the NOISE curve on the fig-
ure was generated by the simulator using a phase parameter of zero and frequency parameter of

3.5x10−9. Ordinarily, it would be expected that the curve continue downwards toward the left;

however, the curve inflects upwards with apparent phase parameter of 2.9x10-7. This is due to the
simulated clock precision of 1 µs, which models the common Unix microsecond clock. The ulti-
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mate phase noise in any case is limited by the clock hardware, which is 1 µs for the SPARC IPC,

0.5 µs for the UltraSPARC, and a few nanoseconds for the Digital Alpha kernel3.

The PPS and LAN data are considered representative of timekeeping accuracy expectations when
using directly connected external sources, such as radio clocks or PPS sources. However, the char-
acteristic curves shown in Figure 12 are not representative of accuracy expectations when using
remote time sources at considerable distances as the Internet packet flies. Accordingly, experi-
ments were done to evaluate the Allan deviation using the NTP algorithms and paths to 19 remote
primary time servers located in North and South America and in Europe, Japan and Australia. In
all experiments, the NTP clock discipline algorithm was logically disconnected, so that the simu-
lated local clock free-runs at constant frequency. Since all peers used were primary time servers
and their local clocks were disciplined to external sources, this allows direct measurement of one-
way network delays and separation of phase and frequency noise.

The data were collected over a ten-day period in fall, 1996, using the filegen facility of the NTP
daemon for Unix and NTP primary time server pogo.udel.edu, which is connected via a lightly
loaded T1 tail circuit to the Internet service provider point of presence at College Park, MD. The
clock offset and one-way delay data are derived from messages exchanged between pogo and
each of its peers at 64-s intervals. Each exchange results in four timestamps, one at the times of
transmission and reception for each outbound and return message. The four raw timestamps col-
lected for each exchange, as well as a host identifier, were recorded in the raw data file, henceforth
identified as the rawstats data.

The Allan deviation characteristics for all sources considered are shown in Figure 13. The
NOISE, PPS and LAN results duplicate the data of Figure 12 for comparison. The BARN,

3. Prior to Digital Unix 4.0, the kernel clock resolution was limited to about 1 ms. Digital Unix
4.0 incorporates the author’s kernel modifications [7], which provide a resolution of 1 µs. In
principle, the kernel clock resolution is limited only by the CPU clock period.
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PEERS, USNO and IEN results use the rawstats data collected from a selected subset of the 19
remote time servers. The BARN data represent a “local” server, in this case on the same network
wire as pogo, while the USNO data represent a “nearby” server, in this case at the U.S. Naval
Observatory, in Washington, DC. The IEN data represent a “distant” server, in this case at the IEN
Galileo Ferraris, in Torino, Italy. The USNO data fairly well represent a path between two servers
in the U.S., where the path is only lightly congested, while the IEN data represent moderate to
heavy congestion typical of paths spanning the Atlantic.

Since all the peers in these experiment are synchronized to external sources, the phase noise of
each remote source can be determined independent of the frequency noise. All the curves appear
as slightly wiggly straight lines with slope −1 at low τ values, which is indicative of white phase
noise, as described previously. On the other hand, the NOISE, PPS and LAN curves, which repre-
sent free-running clock oscillators, inflect upward, as expected with random-walk frequency
noise. Note that the PEERS curve, which represents the combination of all remote peers, includ-
ing USNO and IEN, is actually lower (better quality) than any of the other remote peers sepa-
rately. Of all the remote peers, USNO is the “best” in the sense of lowest phase noise. This
confirms that the NTP intersection, clustering and combining algorithms do in fact deliver time
more accurate than available from any single peer separately.

Figure 14 shows the phase noise of the USNO source under two conditions, one using the raw
data from the rawstats file (dashed line) and the other using the data processed by the clock filter
algorithm (solid line). As described in the protocol specification, this algorithm measures the
clock offset and roundtrip delay for the last eight message volleys and selects the measurement
with the lowest delay as representing the best offset sample. Fitting straight lines with slope −1 to
the two curves and measuring the difference on the y axis shows a noise reduction of over ten
times due to the clock filter algorithm.

So far, synthetic-noise models for only the NOISE, PPS and LAN sources have been shown to
closely approximate the real noise characteristics. As the data shown in Figure 13 were measured
using the NTP algorithms and open-loop conditions, the question remains as to how faithfully the
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white-phase/random-walk frequency model applies to the remaining peers. The solid lines in Fig-
ure 15 show the measured phase noise for each source, while the dashed lines show the synthetic
noise generated by the NTP simulator program. For this purpose, the frequency parameter was set
to zero, while the phase parameter was set to agree with the actual phase noise at τ = 64 s. The
results show general agreement in all cases at the lower values of τ, but some disagreement at the
larger values for some peers. Since the phase modelling is most important at small values of τ, the
disagreement at large values is not considered significant.

The results demonstrated here suggest that a useful predictive model for ordinary computer clock
oscillators and real networks can be specified by determining the Allan intercept point (τ, σ) and
assuming white phase noise at τ less than the x-intercept and random-walk frequency noise above
that point. Furthermore, a working approximation for the frequency noise for a “poor” clock oscil-
lator is a straight line with slope +0.5 passing through the point (1000 s, 0.1 PPM), which corre-

sponds to a frequency parameter of about 2.6x10−8 in the synthetic noise generator. A working
approximation for a “good” clock oscillator is the line passing through the point (1000 s, .01

PPM), which corresponds to a frequency parameter of 3.5x10−9.

In this model, the Allan variance is completely determined by the white phase noise characteristic
of the network and operating system and the assumption of “good” or “poor” clock oscillators.
This can be determined directly from plots similar to Figure 13 or determined by direct measure-
ment. A convenient x intercept for graphical analysis is τ = 64 s, which can be used to predict the
y intercept point at any other τ by simply multiplying by the ratio of the selected value to 64. The
value τ = 64 s is particularly useful, since this is the standard minimum poll interval used in the
NTP protocol. Figure 16 shows the y intercept at this value and the equivalent phase noise genera-
tor parameter. In this table, the y intercept is determined directly from the Allan deviation plots.
The p parameter of the synthetic PPS data is varied until the y intercept matches that of the mea-
sured PPS data. In a similar manner, the p parameter of the synthetic LAN data is varied until the
y intercept matches that of the measured LAN data. The remaining p parameters are determined
by scaling proportionally to the PPS value.
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5.2  Performance Using Synthetic Noise Sources

The primary emphasis in the Allan deviation experiments is on the characterization of the noise
sources contributing to the time and frequency errors of the clock discipline algorithm. In particu-
lar, the experiments provide a basis for an accurate modelling of the noise sources relative to real
network peers, in particular, the characterization of each configuration using only two parameters
corresponding to the amplitude of the prevailing phase and frequency noise. 

As described previously, the algorithm can operate in three modes, phase-lock loop (PLL), fre-
quency-lock loop (FLL) and a hybrid combination of both modes. In hybrid mode, the weight fac-
tors used in combining the FLL and PLL predictions are determined from the prediction errors,
which normally change in response to the prevailing phase and frequency noise and poll interval.
The following experiments are designed to explore the response of the algorithm as these parame-
ters are varied over normal and abnormal ranges. In each experiment, the NTP simulator program
is presented with varying combinations of phase and frequency noise parameters and the standard
error determined as a function of poll interval. In all experiments, the simulator is operated in
closed-loop mode with all sanity checks, spike detectors and tolerance clamps in place.

The experiments were performed using each of the sources identified in the Allan deviation exper-
iment and selected poll intervals from 64 s to 131,072 s. Each experiment run used 30 days of syn-
thetic phase and frequency noise with parameters for each source determined as in the Allan
deviation experiments. The first experiment uses the USNO data to determine the standard error
as a function of synthetic phase and frequency noise and poll interval. This is done first using syn-
thetic phase noise only, then using synthetic frequency noise only, in order to determine how the
standard error scales relative first to the noise amplitude and then to the poll interval. Figure 17
shows the phase and frequency noise characteristics for both PLL mode (solid lines) and FLL
mode (dashed lines) as a function of poll interval. When the poll interval is varied with phase
noise only, the standard error is approximated by the two nearly horizontal lines, as shown in the
figure. In this case, the PLL outperforms the FLL by a factor up to ten times. When the poll inter-
val is varied with frequency noise only, the standard error is approximated by the two lines with
slope near 1.4, as shown in the figure. In this case, the FLL outperforms the PLL by a factor of

Source y Intercept p Parameter
NOISE 8.09x10−3 2.93x10−7

PPS 0.179 5.70x10−6

LAN 0.955 3.10x10−5

BARN 6.04 2.19x10−4

PEERS 15.2 5.50x10−4

USNO 23.1 8.38x10−4

IEN 110 4.00x10−3

USNO raw 480 1.74x10−2

Figure 16. Allan Deviation Phase Noise Parameters
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about ten. In fact, the PLL becomes unstable at poll intervals above 4,096 s, as evidenced by the
absence of plotted points in the figure. In this and other cases, the criterion for instability is the
occurrence of one or more step corrections of 128 ms or more during the simulation run.

As evident from Figure 17, the PLL alone usually performs better under conditions of high phase
noise and low frequency noise, while the FLL alone usually performs better under conditions of
high frequency noise and low phase noise. While the generator parameters used in constructing
the figure are typical of a peer path consisting of two LANs connected by a relatively uncongested
T1 network, the y coordinates of the lines scale directly as the noise parameters, but retain the
slopes shown. Thus, since the frequency noise is assumed fixed for the clock oscillators consid-
ered in the experiment, the selection of which clock discipline mode to use depends only on the
phase noise characteristics of the particular network path involved.

It may seem that a simple measurement of phase noise would suffice to determine the optimum
point to switch between FLL and PLL modes, as suggested in the Allan deviation experiments. As
in [2], the phase noise could be measured prior to regular operation and the optimum intercept
determined. However, as determined by experiment, this is not practical in the current Internet.
Figure 18 shows the absolute phase noise in log-y coordinates measured for the IEN path, which
is typically congested during working hours in Europe and the US. The phase noise amplitude
varies over three decades during the hours and days represented in the figure. An NTP client syn-
chronized via this path would have to periodically measure the phase noise and recompute the
optimum intersection point. In principle, this could be done at intervals throughout the working
day and a profile developed. This is still only an approximate solution and does not allow for
minute-by-minute adjustment of the optimum point. This is in fact the motivation for the hybrid
mode, in which the weight factors for the FLL and PLL predictions are determined in real time
from the measured prediction errors.

Figure 19 shows the standard error in PLL mode with the various sources used in the Allan devia-
tion experiments as a function of poll interval. In this case, the data for each source was simulated
using the parameters developed in the Allan deviation experiments. Except for the extreme phase
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noise represented by the IEN and raw-USNO data, the results scale very near the same asymptote
line. This is a reflection on the fact that the PLL has in effect a highly integrative response that
deals with phase noise by massive averaging. Note that the curves corresponding to the USNO,
IEN and raw-USNO sources do not extend above 4,096 s, for the reasons explained in conjunction
with Figure 17.

Figure 20 shows a composite of the standard errors using hybrid mode and synthetic noise param-
eters for each source (solid lines). Overlaying these lines are the composite PLL from Figure 19.
For most sources over most of the poll-interval range, the errors in hybrid mode are about ten
times less than in PLL mode. As expected, the exceptions are the regimes where the phase noise
overwhelms the frequency noise. Ideally, the hybrid mode should weight the PLL mode more than
the FLL mode as the poll interval becomes smaller, in which case none of the hybrid curves for
each source should exceed the corresponding PLL curve. According to the figure, as the phase

Figure 18. IEN Phase Noise
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Figure 19. PLL Mode Standard Error by Source - Synthetic Noise
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noise increases to exceptional levels, as in the IEN case, this is not always the case and the errors
in hybrid mode can exceed those in PLL mode by up to four times.

Comparing Figure 20 with Figure 13, it is apparent the inflection point where the curves corre-
sponding to each source depart the asymptote on Figure 20 are about a factor of ten below the
Allan intercept point on Figure 13. This is an interesting comparison, in spite of the fact that the
former shows standard error, which is a measure of time differences, while the latter shows Allan
deviation, which is a measure of frequency differences. In addition, Figure 20 shows data col-
lected under closed-loop conditions, while Figure 13 shows data collected under open-loop condi-
tions. Nevertheless, the results suggest that an Allan deviation characterization of each network
path and clock oscillator can be an accurate predictor of clock discipline algorithm performance.

5.3  Performance Using Real Data

The next series of experiments is designed to test the clock discipline algorithm performance
using real data corresponding to each source in the Allan deviation experiments. In this case, the
clock offsets are computed from the rawstats file mentioned previously, while the frequency off-
sets are determined at 64-s intervals using the data for the LAN curve shown on Figure 11. Figure
21 shows the standard error for the IEN, USNO, PEERS and BARN sources considered in the
synthetic data experiments and using PLL mode. The asymptote, considered as the BARN curve,
is nearly the same as with the synthetic data shown in Figure 19; however, as with synthetic data,
the PLL mode with real data and some sources becomes unstable above 4,096 s, so only the data
at smaller poll intervals are comparable. In addition, the PLL does not converge with real USNO
raw data for any poll interval, so this does not appear on the figure. Remember that the criterion
for convergence is that no step-change adjustments occur over the lifetime of the experiment. This
may be unfair in some applications, as there may be only one or two step changes of 128 ms over
the ten-day duration of the experiment, and this may be acceptable in some applications. Also,
note from Figure 11 that there are relatively large frequency discontinuities in the LAN data,
which could very likely create a step change, unless the poll interval is allowed to decrease and

Figure 20. Hybrid Mode Standard Error by Source - Synthetic Noise
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the PLL frequency to quickly adapt. As shown in other experiments, the behavior in PLL mode,
where the poll interval adapts to prevailing conditions, is stable with all sources.

The major difference between the real and synthetic data in PLL mode is that the standard errors
with real data become up to five times worse than with synthetic data in the regime for which PLL
mode would naturally be favored. In Figure 21, this only occurs with USNO and IEN data and
then only with poll intervals of 128 s and 64 s. Figure 22 shows the same sources using hybrid
mode and should be compared with Figure 20, which shows the same sources using synthetic
noise. As in the Figure 20, Figure 22 shows the data for PLL mode superimposed with dashed
lines for comparison. As expected, the curves for real data are somewhat jagged, due to the spiky
frequency characteristicshown in Figure 11, but in general follow the same characteristic as the
synthetic data. As evident in the figures, the performance with real data is not quite as good as
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Figure 21. PLL Mode Standard Error by Source - Real Data
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Figure 22. Hybrid Mode Standard Error by Source - Real Data
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with synthetic data; however, the performance in hybrid mode is almost always better than PLL
mode, which represents the NTP Version 3 algorithms. 

5.4  Performance with Real Data over Time

An important design goal in the development of the NTP Version 4 algorithms is to attain the
smallest standard error and largest poll interval consistent with the machine architecture, network
paths and synchronization sources. As demonstrated previously, this requires a compromise
between poll interval and error margin. Figure 23 illustrates typical cases involving a PPS signal
with suitable interface, as described in [7]. Each of the four curves is labelled with three numbers,
reading from the top: mean poll interval, standard error in milliseconds and maximum absolute
error in milliseconds. For the top curve, the poll interval is clamped at 64 s, representing a typical
configuration with a cesium oscillator or GPS receiver connected via the DCD line of a serial port
to a SPARC IPC workstation with assumed clock reading error of 40 µs. The standard error in this
case is 6 µs, which is in the order of the interrupt latency of this machine. Modern workstations
have clock reading errors in the order of one microsecond, in which case presumably the standard
error could be reduced to the order of nanoseconds.

The second curve from the top in Figure 23 represents the case with a GPS receiver connected via
a serial port, but with the poll interval allowed to vary according to the algorithm described earlier.
In this case, the mean poll interval 931 s is close to the maximum 1,024 s, but the standard error
has increased to 130 µs. For most purposes, this degree of accuracy would be acceptable in all but
the most demanding applications. For comparison purposes, the third curve from the top repre-
sents the performance with the poll interval clamped at 1,024 s. As expected, the performance is
about the same. The bottom curve in the figure shows the performance with the poll interval
clamped to the range 1,024 s to 32,768 s, which is representative of telephone modem services.
Here, the clock precision is assumed 1 ms, in order to model modern microprocessor-based
modems, which can present considerable delay variations between calls. In this case, the maxi-
mum error is about 23 ms at a mean call interval of 21,275 s. In another experiment, the maximum
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poll interval was set at 131,072, or about 1.5 days. Over the 30-day simulation period, 43 calls
were made, resulting in standard error about 24 ms and maximum error about 59 ms. 

6.  Conclusion

The results demonstrated in this report show a substantial improvement in the performance of the
NTP Version 4 algorithms over the previous NTP Version 3 algorithms of roughly a factor of ten
in most cases. Perhaps the most striking result is that the new clock discipline algorithm is effec-
tive with poll intervals well over one day, which is an attractive feature when telephone toll
charges are involved. In addition, the new algorithm can automatically select the optimum combi-
nation of FLL and PLL data and the poll interval over a wide range of network jitter and oscillator
wander while in regular operation and not requiring initial calibration.

While only minor changes are required in the NTP specification and reference implementation, a
major difference between the NTP Version 3 and 4 architecture is the process decomposition,
where the clock update process operates on a polling basis, rather than being called directly, as in
the Version 3 algorithms. Besides simplifying the interactions with the peer processes and the
clock adjust process, this allows the polling strategies of the peer processes to adapt to sources of
varying types, such as network peers, radio clocks or telephone modems.

As the complexity represented by the suite of crafted NTP algorithms have grown, it has become
necessary to test and validate their performance by analysis and simulation. A good deal of the
discussion in this report has focussed on the nature of the simulation process, design and analysis
of the synthetic noise models and validation of the algorithm performance in systematic simula-
tion exercises. Many times during these exercises interesting things happened which resulted in
significant improvements in the algorithm design. While this report has not dwelled on them,
there were in fact a number of fruitless experiments and dead ends which gave some insight into
the relative merit of some design features, in particular the sanity checks, spike detectors and tol-
erance clamps. In addition, the insights gained allowed some simplifications which would not
ordinarily be considered, like the elimination of the frequency estimator variable in the original
FLL algorithm.

Finally, the refinement of the NTP simulator program, while guiding the development of the vari-
ous algorithms, may be most valuable as a specification vehicle, implementation tool and docu-
mentation aid for actual NTP Version 4 implementation. It should be mentioned in passing that
the simulations demonstrated in this report require a good deal of machine time. A full suite of all
simulations, including the simulator program itself and Matlab programs, requires an hour or two
on a Sun UltraSPARC, which is by comparison one of the fastest workstations available today.
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Appendix A. NTP Simulator

The programs and data in the ntpsim.tar.Z distribution operate as a simulator for the Network
Time Protocol (NTP) protocol and algorithms. The file ntpsim.c is a portable C program designed
to faithfully simulate the clock filtering, selection and discipline algorithms. It compiles and runs
in Unix and Windows environments with generic C or C++ compilers. The program reads history
files in two formats created using the “filegen” facility of the xntpd daemon for Unix and Win-
dows/NT. It then simulates the behavior of the NTP algorithms and produces traces and summary
statistics as directed.

The program operates in one of four modes, as specified by the -i command-line option (com-
mand-line options are not available when compiled for Windows). The input data file is specified
by the -f option or the first argument of the command line. The default mode 0 uses the “rawstats”
file produced by xntpd from the four timestamps determined at the transmit and receive times of
the outbound and return messages at each NTP measurement volley. The timestamps are deter-
mined before processing by the engineered algorithms defined in the specification. Mode 1 uses
the “loopstats” file produced by the daemon from the final corrections used to adjust the local
clock. The formats of the rawstats and loopstats files are described in the comments in the pro-
gram text.

Modes 2 and 3 can be used to generate random phase and frequency variations characteristic of
real data. Mode 2 is used to produce the actual simulation, while mode 3 is used to generate data
files which are later processed by a Matlab program in the allan.tar.Z distribution to verify the
generators faithfully replicate the statistics of real data. The generators can also be used in modes
0 and 1 to introduce synthetic phase and frequency variations to the real data files. Alternately, a
frequency history file can be specified with the -W option. The file, which can be produced by
another program or experiment, contains frequency-offset samples at 64-s intervals. A maximum
of about ten days of samples can be read, after which the simulator starts over from the beginning.  

The generated phase and frequency variations use samples from a Gaussian distribution with stan-
dard deviations specified by the -p and -w command-line options, respectively. A random phase
sample is used directly or added to the clock offset determined from the data file, depending on
input mode. A random frequency sample is multiplied by the time since the last sample and added
to a frequency adjustment. The adjustment is then used directly or added to the simulated fre-
quency determined from the data file, depending on input mode.

In all modes, the initial phase and frequency of the local clock are specified with the -T and -F
command-line options, repectively. The number of days to include in the simulation is limited to
the duration of the data file or the number of days specified by the -D command-line option
(default 30), whichever is smaller. Some experiments may require the clock-discipline loop be
opened and the clock allowed to free-run. The -u option is provided for this purpose. The clock
reading error can be specified by the -R option, which is useful for evaluating the FLL/PLL
weighting and poll interval adjustment algorithms.

Example rawstats and loopstats files are included for testing and evaluation. The rawstats data
were collected over a ten-day period involving NTP primary server pogo.udel.edu and two dozen
NTP primary servers located in the US, Europe, Asia and South America. At the present time,
they probably represent the most extreme cases of dispersive network delays and congestion on
existing Internet paths. Since these data involve only primary servers, which are controlled by
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external means, frequency errors should be very small. These data are most useful in evaluating
phase-lock loop (PLL) clock discipline algorithms. 

The loopstats data were collected over about 15 days using a SPARC IPC with free-running local
clock compared to a precision pulse-per-second (PPS) signal using the ppsclock line discipline.
These data demonstrate clock oscillator variations due to temperature changes, etc., but have very
low phase variations. These data are most useful in evaluating frequency-lock loop (FLL) clock
discipline algorithms.

In the case of rawstats data, the selection of which peers to use in the simulation is determined by
two command-line options. The -l option suppresses peers on the same IP network as the host
generating the rawstats data. The -r option adds an IP address to a restriction list. As each rawstats
sample is processed, the source address is compared to each entry in the list. If the source address
is not in the list, the sample is discarded. If no -r options are present, all peers are used, except
those excluded by the -l option. In any case, updates from a local discipline source, such as a
pulse-per-second (PPS) signal, are suppressed.

The program produces output in three formats, as specified by the -o command-line option. The
default format 0 includes variables useful for processing by various statistics and plotting pack-
ages, such as S and Matlab. Format 1 consists of a trace which gives details of the various simu-
lated events, as well as the values of state variables at each local clock update. A sample of a
typical trace is as follows:

7 22059.554 192.5.41.40 3 ff 88 1024 0.562 0.076 0.667 1.454 10
7 22995.567 192.5.41.40 7 source outlyer 0.014439 0.002824 0.000624
7 22995.567 18.145.0.30 3 new clock source 0.000624 0.000568 0.000624
7 22995.567 8.145.0.30 3 ff 936 1024 0.531 0.076 1.193 1.467 20
7 23868.680 frequency 0.005
7 24019.620 18.145.0.30 3 spike -0.000584 0.023787 0.001193
7 24403.747 frequency -0.032
7 25043.573 18.145.0.30 3 ff 2048 1024 0.652 0.050 5.838 1.466 30

The first number on each line is the day number, which begins at 0, followed by the seconds and
fraction past midnight of that day. For all but frequency changes, the third field is the IP address of
the currently selected peer, while the fourth is the number of peers surviving the selection and
clustering algorithms. As per specification, these are combined in order to generate the actual
clock update. For frequency changes, the value following the “frequency” string is in parts-per-
million (PPM). The above trace shows a source change due to the current source being discarded
by the clustering algorithm, followed by a switch to a new source. Later a spike was detected in an
update, which was then discarded. As the example rawstats file contains a relatively large number
of peers, most with large dispersive delays, the example data shows a rather large number of these
events. 

If the remainder of the line consists of an alpha string followed by other data, the line is one of
many informative messages about events internal to the simulator. The best way to decode these is
to grep the program source and read the comments in the text. The remaining fields represent the
actual clock update. The first field following the number of survivors is the reachability register
for the given peer in hex format followed by the actual interval since the previous update followed
by the poll interval determined by the local discipline algorithm. 
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If the remainder of the line is not an alpha string, the next four numbers following the poll interval
show the local clock offset (ms) and frequency (PPM), followed by the noise and phase error esti-
mates, both in ms. The next shows the standard deviation of the first-order frequency differences,
originally intended as an aid in the local clock algorithm. The last number is the poll-update
counter, which is used to determines the poll interval.

In output format 1, when the data file is completely processed, the program produces summary
statistics similar to:

ID IP Src IP Dst Samples Mean StdDev Max
Local Clock 1277 0.258 1.444 4.850
0 192.43.244.18 128.4.1.20 1497 -5.338 8.105 31.780
1 129.132.2.21 128.4.1.20 1473 2.750 80.690 1110.294
2 192.36.143.150128.4.1.20 1560 0.056 4.625 44.778
3 131.107.1.10 128.4.1.20 1503 47.949 129.488 321.024
4 18.145.0.30 128.4.1.20 1557 0.050 3.735 23.666
5 128.252.19.1 128.4.1.20 1536 1.061 4.450 32.398
6 204.123.2.5 128.4.1.20 1535 -7.566 9.098 50.951
7 192.5.5.245 128.4.1.20 1531 0.362 8.194 64.464
8 128.115.14.97 128.4.1.20 1469 -38.083 24.929 81.723
9 192.67.12.101 128.4.1.20 1464 24.400 64.070 414.240
10 128.250.36.2 128.4.1.20 1505 -17.308 65.031 14874.870
11 133.100.9.2 128.4.1.20 1362 -2.671 5.744 36.539
12 192.5.41.40     128.4.1.20 1520 0.019 4.643 28.403
13 204.34.198.41 128.4.1.20 1400 -9.291 7.309 41.659
14 131.188.2.75 128.4.1.20 1488 17.104 16.494 72.309
15 129.20.128.2 128.4.1.20 1521 13.000 23.308 65.790
16 193.204.114.1 128.4.1.20 1515 19.761 29.983 86.775
17 132.163.135.130 128.4.1.20 1525 -10.856 8.153 34.198
18 146.83.8.200 128.4.1.20 1366 -18.543 34.829 120.607

The mean, standard deviation and maximum are all in milliseconds. The first line after the header
line represents the actual local clock, with the mean relative to the actual time. In other words, if
this were a real scenario and the local clock was controlled by the given peers using the same
algorithms, the local clock would have a mean error of 0.258 us relative to the actual time. The
remaining lines represent the individual peer data as collected and displayed with the ntpq pro-
gram in real life. Obviously, some of these critters are doubtful as providers of precision time, but
these are real data for the real Internet where congestion is a fact of life. The results invite the con-
clusion that the algorithms are doing an excellent job under very demanding conditions.

The minimum and maximum poll intervals are specified in powers of two seconds by the -M and -
M command-line options, respectively. The -P option is used to specify the method used to select
how the FLL and PLL frequency predictions affect the acutal frequency adjustment. A nonzero
value specifies the poll interval at or above which the FLL is used, rather than the FLL. If the
value is zero, the FLL and PLL prediction errors control the weighting of the FLL/PLL frequency
predictions. When automatic poll-interval adjustment is in effect, the summary information
includes a table showing for each value of poll interval the number of polls at that interval and the
total time (seconds) spent at that value. A summary line shows the number of clock updates in
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phase-lock mode, the number of clock updates in frequency-lock mode, the number of spikes dis-
carded and the number of step phase-change adjustments.

The third output format is produced only in mode 3. It designed for processing by Matlab pro-
grams which construct an Allan deviation plot used to verify the random generators operate as
intended. The format of the file produced in this mode is documented in the program text.

Command-Line Format

There is one optional argument, which is the filename to use for input.

The options, which work only in Unix, are as follows:

-d Select debug output format.

-D<days> Set maximum number of days in simulation run, with default 30.

-f<filename> Read input from specified file.

-F<frequency> Set the initial frequency offset, with default 0.

-i<mode> Select input mode_0 rawstats_1 loopstats_2 synthetic phase and frequency
variations_3 data for Allan deviation

-l Suppress peers on the same LAN as the host generating the rawstats data.

-m<interval> Set minimum poll interval specified in log2 units from 4 (16 s) to 14
(16384 s), with default 6 (64 s).

-M<interval> Set maximum poll interval specified in log2 units from 4 (16 s) to 14
(16384 s), with default 10 (1024 s).

-o<format> Set output format_0 Matlab_1 Trace_2 Summary

-p<parameter> Set the phase noise parameter, represented as the standard deviation of a
Gaussian distribution, with default 0.

-P<interval> Set PLL/FLL mode switch poll interval, specified in log2 units from 4 (16
s) to 14 (16384 s). The value 0, which is the default, specifies automatic
weight.

-r<address> Add an IP address to the restriction list.

-R<parameter> Set clock reading error, with default 40e-6.

-T<time> Set the initial time offset, with default 0.

-u Open the clock discipline loop; that is, disconnect the simulated local clock
from control by NTP and allow it to free-run. This is useful for testing.

-w<parameter> Set the frequency noise parameter, represented as the standard deviation of
a random-walk Gaussian distribution, with default 0.

-W<filename> Read frequency data from specifed file.


