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Abstract

This paper introduces Wiretap, an experimental routing algorithm which computes maximum-like-
lihood diversity routes for packet-radio stations sharing a common broadcast channel, but with some
stations hidden from others. The wiretapper observes the paths (source routes) used by other stations
sending traffic on the channel and, using a heuristic set of factors and weights, constructs speculative
paths for its own traffic. The algorithm is presented as an example of maximum-likelihood routing
and database management techniques useful for richly connected networks of mobile stations. Of
particular interest are the mechanisms to compute, select, rank and cache a potentially large number
of speculative routes when only limited computational resources are available.

A prototype implementation has been constructed and tested for the AX.25 packet-radio channel now
in widespread use in the amateur-radio community. Its design is similar in many respects to the SPF
algorithm used in the ARPANET and NSFNET backbone networks, and is in fact a variation of the
Viterbi algorithm, which constructs maximum-likelihood paths on a graph according to a weighted
sum of factors assigned to the nodes and edges.

Keywords: adaptive routing, diversity routing, packet
radio, Viterbi algorithm

1.  Introduction

This paper describes the design, implementation and
initial testing of the Wiretap algorithm, which computes
maximum-likelihood diversity routes for the amateur
AX.25 packet-radio channel [3]. Wiretap operates in real
time using passive monitoring of AX.25 frames transmit-
ted on the channel and builds a dynamic database which
can be used to construct a set of paths ordered by decreas-
ing likelihood, as determined by a technique based on the
Viterbi algorithm [2]. The Wiretap algorithm is similar
in function to the shortest-path-first (SPF) routing algo-
rithms used in the ARPANET and NSFNET backbone
networks [4] and to the routing algorithms used in other
packet-radio systems [1], but is specifically intended to
produce multiple paths based on real-time measured
characteristics of the channel itself.

The principal advantage in the use of Wiretap is that
packet-repeater (digipeater) paths can be avoided when
direct paths are available, with digipeaters used only
when necessary and also to discover hidden stations. In
the present exploratory stage of evolution, the scope of

Wiretap has been intentionally restricted to passive
monitoring. In a later stage the scope may be extended
to include active probes to discover quiescent stations
and clustering techniques to manage the size of the
database.

The AX.25 channel operates in CSMA contention mode
at HF and VHF radio frequencies using AFSK/FM
modulation at 300 or 1200 bps. The AX.25 protocol itself
is similar to the X.25 link-layer protocol LAPB, but with
an extended frame header including a string of radio
callsigns, selected by the originator, designating the
complete source route between two end stations, possi-
bly via one or more intermediate digipeaters. Most
AX.25 implementations can operate simultaneously as
end stations and as digipeaters in datagram or multiple
virtual-circuit mode, but have no provisions to specify
the source route other than manually.

Since the 145.01-MHz AX.25 packet-radio channel in
the Washington, D.C., area is very active and carries a
good deal of traffic under punishing conditions, it was
considered a sufficiently heroic environment for a con-
vincing demonstration of a prototype Wiretap algorithm.
The implementation provides primary and alternate di-
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versity routes for both virtual circuits and datagrams, can
route around congested areas and can change routes
during a connection. This paper, which is an updated and
condensed version of [5], presents a status report and
overview of the prototype implementation.

The prototype implementation is part of a TCP/IP driver
for the LSI-11 processor running the Fuzzball operating
system [7] and is connected via 4800-bps serial line to a
terminal node controller (TNC) which controls the radio
equipment in both AX.25 virtual-circuit and datagram
modes. The TNC firmware produces as an option a
monitor report for each received frame of a selected type,
including AX.25 U, I and S frames. Wiretap processes
each of these to extract routing information and (option-
ally) saves them in the system log file. Following is a
typical report: 

fm KS3Q to W4CQI via WB4JFI-5* WB4APR-6
ctl I11 pid F0

The originating station is KS3Q and the destination
station is W4CQI. The frame has been repeated first by
WB4JFI-5 and then WB4APR-6, is an I frame (sequence
numbers follow the I indicator) and has protocol identi-
fier F0 (hex). The asterisk "*" indicates the report was
received from that station. If no asterisk appears, the
report was received from the originator.

2.  Design Principles

A path is a concatenation of directed links originating at
an end station, extending through one or more digipeat-
ers and terminating at another end station. Each link is
characterized by a set of factors such as delay, throughput
or reliability that can be computed or estimated. Wiretap
computes several intrinsic factors for each link and up-
dates the routing database, consisting of node and link
tables. The weighted sum of these factors for each link
is the distance of that link, while the sum of the distances
for each link in the path is the distance of that path.

It is the intent of the Wiretap design that the distance of
a link reflect the a-priori probability that a frame will
successfully negotiate that link relative to the other
choices possible at the sending node. Thus, the prob-
ability of a non-looping path is the product of the prob-
abilities of its links. Following the technique of Viterbi
[2], it is convenient to represent distance as a logarithmic
transformation of probability; however, in Wiretap the
underlying probabilities are not determined directly, but
estimated on a heuristic basis.

Wiretap incorporates a routing procedure which con-
structs a distance-ordered set of paths between given
stations according to the factors and weights contained
in the routing database. Such paths can be considered
maximum-likelihood routes between these stations with
respect to the given assignment of factors and weights.

In the prototype implementation one of the stations must
be the Wiretap station itself; however, in principle, the
Wiretap station can generate routes for other stations
subject to the applicability of its database information.

Note that Wiretap in effect constructs maximum-likeli-
hood paths in the direction from the destination station
to the Wiretap station, then computes the reciprocal
routes from the Wiretap station to the destination station.
The expectation is that the destination station also runs a
routing algorithm which computes its own reciprocal
routes (i.e. the direct routes from the Wiretap station).
However, the routing databases at the two stations may
diverge due to congestion or hidden stations, so that the
computed routes may not coincide.

In principle, Wiretap-computed routes can be fine-tuned
using information provided not only by its directly com-
municating stations but others that may hear them as
well. The most interesting scenario would be for all
stations to exchange Wiretap information using a suit-
able distributed protocol, but this is at the moment be-
yond the scope of the prototype implementation.
Nevertheless, suboptimal but useful paths can be ob-
tained in the traditional and simple way with one station
using a Wiretap-computed route and the other its recip-
rocal, as determined from the received frame header.
Thus, Wiretap is compatible with existing channel pro-
cedures and protocols.

3.  Implementation Overview

The prototype Wiretap implementation includes two
procedures: the wiretap procedure, which extracts infor-
mation from received monitor headers and builds the
routing database, and the routing procedure, which cal-
culates paths using the contents of the database. The
database includes two tables: the node table and link
table. The node table includes an entry for each distinct
callsign (which may be a collective or beacon identifier)
heard on the channel, together with node-related routing
information, the latest computed routes and other miscel-
laneous information. Each entry is indexed by node ID
(NID), which is used elsewhere in the database instead
of the awkward callsign string. The link table contains
an entry for each distinct (unordered) node pair observed
in a monitor header. Each entry includes the from-NID
and to-NID of the first instance found, together with
link-related routing information. Both tables are dynami-
cally managed using a cache algorithm based on a
weighted least-recently-used replacement mechanism
described later.

The example discussed in the Appendix includes candi-
date node and link tables for illustration. These tables
were constructed in real time by the prototype implemen-
tation from off-the-air monitor headers collected over a
typical 24-hour period. Each node table entry requires 26
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bytes and each link table entry four bytes. The maximum
size of the node table is presently 75 entries, while that
of the link table is 150 entries. Once the cache algorithm
has stabilized for a day or two, it is normal to have about
60 entries in the node table and 100 entries in the link
table.

The node table and link table together contain all the
information necessary to construct a network graph, as
well as calculate paths on that graph between any two
stations, not just those involving the Wiretap station.
Note, however, that the Wiretap station does not in
general hear all other stations on the channel, so may
choose suboptimal routes. However, in the Washington,
DC, area most stations use one of several digipeaters,
which are in general heard reliably by other stations in
the area. Thus, a Wiretap station can eventually capture
routes to almost all other stations using the above tables
and the routing algorithm described later.

4.  The Wiretap Procedure

The wiretap procedure is called to process each monitor
header. It extracts each callsign from the header in turn
and searches the node table for the corresponding call-
sign, making a new entry if not already there. The result
is a string of NIDs, starting at the originating station,
extending through a maximum of eight digipeaters and
ending at the destination station. For each pair of NIDs
along this string the link table is searched for either the
direct link indicated in the string or its reciprocal, making
a new entry if not already there.

The operations that occur at this point can be illustrated

by the following diagram, which represents a monitor
header with apparent path from station 4 to station 6 via
stations 7, 2 and 9 in sequence. It happens the header was
heard by the Wiretap station (0) from station 2.

Presumably, the fact that the header was heard from
station 2 indicates the path from station 4 to station 2 and
then to station 0 is viable, so that each link along this path
can be marked "heard" in that direction. However, the
viability of the path from station 2 to station 6 can only
be presumed, unless additional evidence is available. If
in fact the header is from an AX.25 I or S frame (but not
a U frame), an AX.25 virtual circuit has apparently been
previously established between the stations and the pre-
sumption is strengthened. In this case each link from 4
to 6 is marked "synchronized" (but not the link from 2 to

0). Not all stations can both originate frames and repeat
them. Station 4 is observed to originate frames and
station 7 to repeat them, but station 9 is only a presump-
tive repeater and no evidence is available that the remain-
ing stations can originate frames. Thus, the link from
station 4 to station 7 is marked "source" and from station
7 to station 2 is marked "repeated."

Depending on the presence of congestion and hidden
stations, it may happen that the reciprocal path in the
direction from station 6 to station 4 has quite different
link characteristics; therefore, a link can be recognized
as heard in each direction independently. In the above
diagram the link between 2 and 7 has been heard in both
directions and is marked "reciprocal". However, there is
only one synchronized mark, which can be set in either
direction. If a particular link is not marked either heard
or synchronized, any presumption on its viability to carry
traffic is highly speculative (the traffic is probably a
beacon or "CQ"). If later marked synchronized the pre-
sumption is strengthened and if later marked heard in the
reciprocal direction the presumption is confirmed.

Experience shows that a successful routing algorithm for
any packet-radio channel must have provisions for con-
gestion avoidance. There are two straightforward ways
to cope with this. The first is a static measure of node
congestion based on the number of links in the network
graph incident at each node. This number is computed
by the wiretap procedure and stored in the node table as
it adds entries to the link table. The second, not yet
completely implemented, is a dynamic measure of node
congestion which tallies the number of NID references
during the most recent time interval of specified length.

5.  Factor Computations and Weights

The data items produced by the wiretap procedure are
processed to produce a set of factors that can be used by
the routing procedure to develop maximum-likelihood
routes. In order to insure a stable and reliable conver-
gence as the routing algorithm constructs and discards
candidate paths leading to these routes, the factor com-
putations must have the following properties:

1. All link and node factors must be positive, monotone
functions which increase in value as system per-
formance degrades from optimum.

2. The criteria used to determine link factors must be
symmetric; that is, their values should not depend
on the particular direction the link is used.

3. The criteria used to determine node factors must not
depend on the particular links that traffic enters or
leaves the node.

Each factor is associated with a weight assignment which
reflects the contribution of the factor in the distance
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calculation, with larger weights indicating greater impor-
tance. For comparison with other common routing algo-
rithms, as well as for effective control of the
computational resources required, it may be necessary to
impose additional restrictions on these computations,
which may be a topic for further study. Obviously, the
success of this routing algorithm depends on cleverly
(i.e. experimentally) determined factor computations
and weight assignments.

The particular choices used in the prototype implemen-
tation should be considered educated first guesses that
might be changed, perhaps in dramatic ways, in later
implementations. Nevertheless, the operation of the al-
gorithm in finding maximum-likelihood routes over all
choices in factor computations and weights is un-

changed. Recall that the wiretap procedure generates
data items for each node and link heard and saves them
in the node and link tables. These items are processed by
the routing procedure to generate the factors shown
below in Table 1 and Table 2

In the case of link factors the "hop" factor is assigned as
one for each link and represents the bias found in other
routing algorithms of this type. The intent is that the
routing mechanism degenerate to minimum-hop in the
absence of any other information. The "unverified" fac-
tor is assigned as one if the link is not marked "heard"
(heard in either direction), while the "non-reciprocal"

factor is assigned as one if the link is not marked "recip-
rocal" (heard in both directions). The "unsynchronized"
factor is assigned as one if the link is not marked "syn-
chronized" is (no I or S frames observed in either direc-
tion).

In the case of intermediate-node factors, the "complex-
ity" factor is computed as the number of links incident at
the node plus one, while the "congestion" factor will be
computed as the number of frames heard in the last

minute. The "repeated" factor is assigned as one if the
node is only a source (i.e. no repeated frames have been
heard from it). For the purposes of path-distance calcu-
lations, the end-node factors are taken as zero, since their
contribution to any path would be the same.

6.  The Routing Procedure

The dynamic database built by the wiretap procedure is
used by the routing procedure to compute routes as
required. Ordinarily, this needs to be done only when the
first frame to a new destination is sent and at regular
intervals thereafter (in future the intervals may be modu-
lated by congestion thresholds, etc.). The technique used
is a variation of the Viterbi algorithm [2], which operates
by constructing a set of candidate paths (survivors) on
the network graph from the destination to the source in
increasing number of hops. Construction continues until
all the complete paths satisfying a specified condition are
found, following which as in [1] the primary route is
selected from among the minimum-distance paths and
the alternate routes selected in order of increasing dis-
tance of the remaining paths.

The routing procedure operates using a linked list of
entries derived from the link table. Each list entry in-
cludes the NID of the current node, a pointer to the
preceding node on the path to the root plus the total hop
count and distance from the node to the root:

[NID, pointer, hop, distance].

The procedure starts with the list containing only the root
entry [root-NID, 0, 0, 0], where root-NID represents the
final destination station, and then scans the list starting
at this entry. For each such entry it scans the link table
for all links with either to-NID or from-NID matching
NID and for each one found inserts a new entry:

[new-NID, new-pointer, hop+1, distance+link-dis-
tance],

where the new-NID is the to-NID of the link if its
from-NID matches the old NID and the from-NID of the
link otherwise. The new-pointer points to the old entry,
while the link-distance is computed from the factors and
weights as described previously. The procedure contin-
ues to generate new entries until no further entries remain
to be processed or the maximum hop count or distance
are exceeded, as explained below.

In the Viterbi algorithm when survivors merge at a node,
all but one of the survivors are abandoned. If only one of
the minimum-distance paths is required, the wiretap
procedure does the same; however, in the more general
case where alternate paths are required, all non-looping
paths are potential survivors and must be retained. In
order to prevent a size explosion in the list, as well as to
suppress loops, new list entries with new-NID matching

Factor Weight Name How determined
f0 3 hop 1 for each link
f1 50 unverified 1 if not heard

either direction
f2 5 non-reciprocal 1 if not heard

both directions

Table 1. Link Factors

Factor Weight Name How determined

f4 5 complexity 1 for each
incident link

f5 20 repeated 1 if station does
not repeat

f6 - congestion (see text)

Table 2. Node Factors
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the NID of an existing entry on the path to the root are
suppressed and paths with hop counts exceeding (cur-
rently) eight or distances exceeding 255 are abandoned
(pruned).

If the Wiretap station NID is found in the from-NID of
an entry inserted in the list, a complete path has been
found. The routing procedure remembers the minimum
distance and minimum hop count of the complete paths
found as it proceeds. When only the primary route is
required, a survivor is pruned if the distance exceeds the
minimum distance or the hop count exceeds the mini-
mum hop count plus one. When alternate routes are
required the hop-count test is used, but the minimum-dis-
tance test is not. The assignment of factor computations
and weights is intended to favor minimum-hop paths
under most conditions, but to allow a survivor to grow
by no more than one additional hop under conditions of
extreme congestion. Thus, the minimum-distance path
may not be a minimum-hop path. Obviously, the re-
sources required can escalate dramatically, unless an
effective pruning technique such as this are used.

Some idea of the time and space required by the proto-
type implementation can be gathered from the primary
and secondary routes for the example in the Appendix
with 58 nodes and 98 links. The linked list uses about 30
entries on average, but occasionally exceeds 100 entries.
The prototype procedure requires 316 milliseconds on an
LSI-11/73 to calculate the 58 primary routes to all nodes
and 1416 milliseconds to calculate the 201 combined
primary and alternate routes to all nodes.

The Wiretap routing algorithm can be compared to the
Tier algorithm developed for the DARPA Survivable
Radio Network (SURAN) program [1], which is a vari-
ant of the Bellman-Ford algorithm described in [6]. The
Tier algorithm is designed to operate in a distributed
manner where each station broadcasts a routing vector to
its neighbors on a periodic or event-triggered basis. The
routing metric is based on hop count and station number
(to avoid loops), and with primary and alternate routes
ranked as in Wiretap. As described in [1] the Tier metric
includes neither the link factor computations and weights
nor the pruning techniques to control computational
overheads as mentioned above. On the other hand, the
Tier algorithm is designed to avoid loops caused by
database inconsistencies due to hidden stations and un-
reliable links, while Wiretap has no overt provisions to
avoid this.

The most important difference between the Tier and
Wiretap approach is that the Tier algorithm assumes all
stations will cooperate to broadcast routing vectors,
which can consume considerable channel overhead and
be heard by potential jammers. On the other hand, Wire-
tap stations operate independently in receive-only mode

and do not reveal the database except indirectly by the
routes they use.

7.  Database Housekeeping

In normal operation Wiretap tends to pick up a good deal
of errors and random junk, since it can happen that a
station may call any other station using ad-hoc heuristics
and often counterproductive strategies. The result is that
Wiretap may add speculative and erroneous links to the
database. In practice, this happens reasonably often as
operators manually try various paths to stations that may
be shut down, busy or blocked by congestion. Neverthe-
less, since Wiretap operates entirely by passive monitor-
ing, speculative links may represent the principal means
for discovery of new paths.

The number of nodes and links, speculative or not, can
grow without limit as the Wiretap station continues to
monitor the channel. As the size of the node table or link
table approaches the maximum, a garbage-collection
procedure is automatically invoked. The procedure used
in the prototype implementation was suggested by vir-
tual-memory storage-management techniques in which
the oldest unreferenced page is replaced when a new
page frame is required. Every link table entry includes
an age field, which is incremented once each minute if
its value is less than 60, once each hour otherwise and
reset to zero when the link is found in a monitor header.
When new space is required in the link table, the link
with the largest product of age and distance, as deter-
mined by the factor computations and weights, is re-
moved first.

Every node table entry includes the "congestion" factor
mentioned above, which is a count of the number of links
plus one incident at that node. As links are removed from
the link table, these counts are decremented. If the count
for some node decrements to one, that node is removed.
Thus, if new space is required in the node table, links are
removed as described above until the required space is
reclaimed.

In addition to the above, and in order to avoid capture of
the tables by occasional speculative spasms on one hand
and stagnation due to excessively stale information on
the other, if the age counter exceeds a predetermined
threshold, currently fifteen minutes for a speculative link
and 24 hours for other links, the link is removed from the
database regardless of distance. It is expected that these
procedures will be improved as experience with the
implementation matures.

8.  Summary and Directions for Further Devel-
opment

Wiretap represents an initial experiment and evaluation
of passive monitoring in the management of the AX.25
packet-radio channel. While the experience using the
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prototype implementation is encouraging, considerable
work needs to be done in the optimization of factor
computations and weight assignments. For this to be
done effectively, more experience needs to be gained in
the day-to-day operation of the prototype during which
various combinations of weight assignments can be
evaluated.

As described in the Appendix, when attempting to com-
pute a route to a previously unknown destination station,
a simple but effective heuristic is to generate speculative
paths by adding synthetic links between the destination
and the Wiretap station and between the destination and
the known digipeaters. This heuristic is used in the
datagram mode to generate primary routes and in the
initial-connection phase of virtual-circuit mode to gen-
erate both primary and alternate routes. While in practice
this heuristic works very well, it requires significant
computational resources, due to the large number of
possible paths ranging from reasonable to outrageous, so
that the pruning strategy outlined previously can be a
critical performance determinant in both modes.

While there is a mechanism for the TNC provide notifi-
cation that an AX.25 virtual circuit has failed, so that an
alternate route can be tried, there is no intrinsic mecha-
nism to signal the failure of an upper-level TCP connec-
tion, which uses IP datagrams wrapped in AX.25 I
frames (connection mode) or UI frames (connectionless
mode). This is a generic problem with any end-system
protocol where the peers are located physically distant
from the link-level entities. Experience indicates the
value of providing a two-way conduit to share control
information between protocol layers may be seriously
underestimated.

The prototype implementation manages processor and
storage demands in relatively simple ways, which can
result in considerable inefficiencies. It is apparent that in
any widely distributed version of Wiretap these demands
will have to be carefully managed. As suggested above,
effective provisions to purge old information, especially
speculative links, are vital, as well as provisions to con-
trol the intervals between route computations, for in-
stance as a function of link state and traffic mode.

The next step in the evolution towards a fully distributed
routing algorithm is the introduction of active probing
techniques. This should considerably improve the capa-
bility to discover new paths, as well as to fine-tune
existing ones. It should be possible to implement an
active probing mechanism while maintaining backward
compatibility, with previous algorithms or no routing
algorithms at all. It does seem that judicious use of
beacons to discover and renew paths in the absence of
traffic will be required, as well as some kind of echo/re-
ply mechanism. 

In order to take advantage of the flexibility provided by
routing algorithms like Wiretap, it will be necessary to
revise the AX.25 specification to include "loose" source
routing in addition to the present "strict" source routing.
Strict source routing requires every forwarding node
(digipeater) to be explicitly declared, while loose source
routing would allow some or all forwarding nodes to be
selected dynamically as the frame progresses along the
route. One suggestion is to devise a special collective
indicator or callsign that would signal a designated
digipeater to insert a computed source route following its
callsign in the AX.25 frame header.

A particularly difficult issue for any routing algorithm is
the detection and response to congestion. Some hints on
how the existing Wiretap mechanism can be improved
are indicated in this paper. Additional work, especially
with respect to the hidden-station problem, is necessary.
Perhaps the most useful feature of all would be a link-
quality indication derived from the radio, modem or
frame-level procedures (checksum failures). Conceiv-
ably, this information could be included in beacon mes-
sages broadcast occasionally by designated digipeaters.

It is quite likely that the most effective application of
routing algorithms in general will be at the local-area
digipeater sites. One reason for this is that these stations
may have off-channel trunking facilities that connect
different areas and may exchange wide-area routing
information via these facilities. The routing information
collected by the local-area Wiretap stations could then
be exchanged directly with the wide-area sites.
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10.Appendix. An Example

An example will illustrate how Wiretap constructs pri-
mary and alternate routes given candidate node and link
tables resulting from normal traffic monitoring on the
145.01-MHz AX.25 packet-radio channel in the Wash-
ington, D.C., area during a typical 24-hour period.

Figure 1 illustrates a node table showing the node ID
(NID), callsign and related information for each station.
The bits in the Flags field (octal) are interpreted starting
from the rightmost: "originating station," "repeater sta-
tion," "station heard" and "station synchronized connec-
tion." The Links field shows the "complexity factor,"
which is the number of links incident at that node (plus
one), the Last Rec field shows the time (UTC) the station

was last heard, directly or indirectly and the Weight field
shows the total distance of the primary route. Finally, the
Route field shows the primary route (minimum-distance
path), as a string of NIDs from the origination station
W3HCF (NID 0) via the route shown to the destination
station NID. The absence of a route indicates the station
is directly reachable without the assistance of a
digipeater.

Among the 58 stations shown in Figure 1 are eleven
digipeaters, all but three of which also originate traffic.
All but twelve stations have either originated or repeated
a synchronized connection and only one (DPTRID, ac-
tually a beacon), has not been heard to either originate or
repeat traffic.

Figure 2 illustrates a node table of 98 links showing the
from-NID, to-NID, Flags and Age information for each
link as collected. The bits in the Flags field (octal) are
interpreted starting from the rightmost: "source," "re-

NID CallsignFlags Links Last
Rec

Weight Route

0 W3HCF05 26 15:00:19255

1 WB4AP
R-5

17 18 16:10:3830

2 DPTRID00 3 00:00:00210 1

3 W9BVD05 3 23:24:3340

4 W3IWI15 5 16:15:3035

5 WB4JFI
-5

17 34 16:15:3035

6 W3TMZ15 2 01:00:49150 1 

7 WB4AP
R-6

17 14 14:56:0635

8 WB4FQ
R-4

17 4 06:35:1540

9 WD9AR
W

15 3 14:56:04115 11 

10 WA4TS
C

15 3 15:08:53115 11 

11 WA4TS
C-1

17 9 15:49:1535

12 KJ3E 15 4 15:57:26155 1 

13 WB2RV
X

17 3 09:19:46135 7 

14 AK3P 15 2 12:57:53185 7 15 

15 AK3P-
5

16 4 12:57:53135 7 

16 KC2TN17 3 04:01:17135 7 

17 WA4ZA
J

15 2 21:41:24240 5 

18 KB3DE15 3 23:38:1635

19 K4CG 15 3 13:29:1435

20 WB2MN
F

15 2 04:01:17180 7 16 

21 K4NGC15 3 14:57:4490 8 

22 K3SLV05 2 03:40:01160 1 

23 KA4US
E-1

17 6 14:57:4435

24 K4AF 05 3 12:46:3840

25 WB4UN
B

15 2 06:45:09240 5 

26 PK64 05 3 02:50:5440

27 N4JOG-
2

15 3 13:24:5335

28 KX3C 15 4 02:57:2935

29 W3CSG15 4 06:10:17115 11 

30 WD4SK
Q

15 3 16:00:3335

Figure 1. Node Table
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peated," "heard on at least one direction," "synchro-
nized" and "heard on both directions." The Age field
increments in minutes until reaching 60, then in hours
after that.

The following tables illustrate the operation of the rout-
ing algorithm in several typical scenarios. Each line in
the table represents the step where an entry is extracted
from the path list and new entries are determined. The
Step column indexes each step, while the Pointer column
indexes the preceding step along the path to the root. The
NID column identifies the station at each step, while the
Hop and Distance columns show the total hop count and
computed distance along the path to the root.

Following is a typical example where the destination
station is not directly reachable, but several multiple-hop
paths exist via various digipeaters. The algorithm finds
four digipeaters: 1, 5, 11 and 39, all but the last of which
are directly reachable from the originating station, and
generates two routes of two hops and two of three hops,
as shown below. Note that only the steps leading to
complete paths are shown.

Step NID Ptr Hop Dist Comments
0 29 0 0 0 Destination: W3CSG
1 5 0 1 30
2 11 0 1 35
3 39 0 1 35
4 0 1 2 235 Complete path: 0
35 0 2 2 115 Complete path: 0
37 9 2 2 115
38 10 2 2 115
39 1 2 2 120
40 45 2 2 115
41 39 2 2 110
42 11 3 2 85
43 10 3 2 85
46 0 39 3 240 Complete path: 0
63 0 42 3 165 Complete path: 0

The algorithm ranks these routes first by distance and
then by order in the list, so that the two-hop route at step
35 would be chosen first, followed by the three-hop route
at step 63, the two-hop route at step 4 and, finally the
three-hop route at step 46. The reason why the second
choice is a three-hop route and the third a two-hop route
is because of the extreme congestion at the digipeater
station 5, which has 34 incident links in Figure 1.

From To Flags Age
5 0 17 0
1 0 37 5
4 0 15 0
5 4 35 0 
4 1 15 28
7 0 17 60 
9 5 15 60
1 5 06 56 
4 7 15 60
11 0 17 24 
7 15 36 62
7 13 37 60 
12 1 15 71
15 14 35 62 
7 16 37 70
12 5 15 71 
19 0 15 61
16 20 35 70 
5 11 36 60
23 0 17 60 
5 24 35 73
30 0 15 71 
29 11 15 69
5 29 35 73 

8 21 35 67
8 5 17 67 
31 0 15 72
31 5 15 72 
32 0 15 74
32 5 15 69 
40 5 15 17
40 0 15 19 
34 7 15 70
35 5 15 62 
1 40 35 74
38 7 15 71 
5 36 35 72
45 5 15 0 
36 0 15 72
5 30 35 14 
37 1 15 70
44 5 16 14 
12 44 15 17
46 1 15 69 
34 1 15 72
44 1 16 70 
5 23 36 60
9 11 15 79 
10 11 15 60

1 6 35 72 
27 5 15 61
11 1 06 83 
45 11 15 76
52 1 15 71 
5 2 00 14
8 0 05 76 
57 5 15 75
17 5 15 75 
3 0 05 74
3 5 05 74 
26 5 05 71
26 0 05 74 
18 5 15 74
18 0 15 74 
55 5 05 73
24 0 05 62 
61 0 15 63
55 23 05 73 
54 5 15 71
61 5 15 63 
59 0 05 71
56 0 05 71 
5 7 06 71
7 60 35 72 

28 0 15 71
62 5 15 69 
1 7 36 70
28 5 15 71 
7 41 35 70
28 1 15 71 
58 0 05 62
1 22 05 70 
33 7 05 70
33 0 05 70 
64 15 15 69
25 5 15 67 
39 10 35 68
11 39 36 68 
43 13 15 65
29 39 15 68 
40 7 15 62
47 5 05 62 
19 23 15 61
27 0 15 61 
42 1 05 23
23 21 35 60 
1 2 00 5
42 44 15 14

Figure 2. Link Table
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Following is an example showing how the path-pruning
mechanisms operate to limit the scope of exploration to
those paths most likely to lead to useful routes. The
algorithm finds one two-hop route and four three-hop
routes. In this example the complete list is shown, includ-
ing all the steps which are abandoned for the reasons
given in the Comments column.

Step NID Ptr Hop Dist Comments
0 13 0 0 0 Destination: WB2RVX
1 7 0 1 30
2 43 0 1 35 No path
3 0 1 2 135 Complete path: 0
4 4 1 2 135
5 15 1 2 130
6 16 1 2 130
7 34 1 2 135
8 38 1 2 135 No path
9 60 1 2 130 No path
10 5 1 2 140 Max distance 310
11 1 1 2 130
12 41 1 2 130 No path
13 33 1 2 140
14 40 1 2 135
15 5 4 3 210 Max distance 380
16 0 4 3 215 Complete path: 0
17 1 4 3 215 Max distance
18 14 5 3 180 Max hops 4
19 64 5 3 185 Max hops 4
20 20 6 3 175 Max hops 4
21 1 7 3 205 Max distance 295
22 0 11 3 250 Complete
23 4 11 3 255 Max distance 300
24 12 11 3 255 Max distance 295
25 40 11 3 250 Max distance 295
26 37 11 3 255 Max distance 285
27 46 11 3 255 Max distance 285
28 44 11 3 255 Max distance 280
29 34 11 3 255 Max distance 290
30 6 11 3 250 Max distance 280
31 52 11 3 255 Max distance 285
32 28 11 3 255 Max distance 295
33 0 13 3 215 Complete path: 0
34 0 14 3 215 Complete
35 5 14 3 215 Max distance 385
36 1 14 3 210 Max distance 300

The steps labelled "No path" are abandoned because no
links could be found in Figure 2 with one end matching
NID and the other end matching a NID not already on

the path to the root. The steps labelled "Max distance"
are abandoned because the total distance shown, com-
puted as the sum of the Distance value plus the weighted
node factors, exceeds 256. The steps labelled "Max
hops" are abandoned because the total hop count shown
exceeds the minimum hop count plus one.

Although this example shows the computations for all
alternate routes, if only the primary route is required all
steps with total distance greater than the minimum dis-
tance (135) can be abandoned. In this particular case path
exploration would then terminate after only 14 steps.

The following example shows a typical scenario involv-
ing a previously unknown station; that is, one not already
in the database. Although not strictly part of the algo-
rithm itself, the strategy in the present implementation is
to generate speculative paths consisting of a synthetic
link between the originating station and the destination
station, together with synthetic links between each
digipeater in the database and the destination station. The
new links created will time out according to the cache-
management mechanism in about fifteen minutes.

For instance, in the case of Figure 1, the following links
to a new station (NID 74) would be added to Figure 2: 0,
1, 5, 7, 8, 11, 13, 15, 16, 23, 39 and 44. The resulting
primary route and five alternate routes are shown below
(only the steps leading to complete paths are shown).
Note that only five of the eleven digipeaters are used,
since the remainder were either too distant or too heavily
congested.

Step NID Ptr Hop Dist Comments
0 74 0 0 0 Destination: CQ
1 0 0 1 90 Complete path: 0 74
2 1 0 1 90
4 7 0 1 90
5 8 0 1 90
6 11 0 1 90
7 13 0 1 90
8 15 0 1 90
9 16 0 1 90
10 23 0 1 90
11 39 0 1 90
12 44 0 1 90
13 0 2 2 210 Complete path: 0, 1, 74
29 0 4 2 195 Complete path: 0, 7, 74
44 0 5 2 150 Complete path: 0, 8, 74
45 0 6 2 170 Complete path: 0, 11, 74
60 0 10 2 155 Complete path: 0, 23, 74
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