
Improved Algorithms for Synchronizing
Computer Network Clocks 1,23

David L. Mills

Abstract

The Network Time Protocol (NTP) is widely deployed in the Internet to synchronize computer clocks to each
other and to international standards via telephone modem, radio and satellite. The protocols and algorithms
have evolved over more than a decade to produce the present NTP Version 3 specification and implementa-
tions. Most of the estimated deployment of 100,000 NTP servers and clients enjoy synchronization to within
a few tens of milliseconds in the Internet of today.

This paper describes specific improvements developed for NTP Version 3 which have resulted in increased
accuracy, stability and reliability in both local-area and wide-area networks. These include engineered
refinements of several algorithms used to measure time differences between a local clock and a number of
peer clocks in the network, as well as to select the best subset from among an ensemble of peer clocks and
combine their differences to produce a local clock accuracy better than any in the ensemble.

This paper also describes engineered refinements of the algorithms used to adjust the time and frequency of
the local clock, which functions as a disciplined oscillator. The refinements provide automatic adjustment of
algorithm parameters in response to prevailing network conditions, in order to minimize network traffic
between clients and busy servers while maintaining the best accuracy. Finally, this paper describes certain
enhancements to the Unix operating system kernel software in order to realize submillisecond accuracies with
fast workstations and networks.

Keywords: computer network synchronization, clock syn-
chronization, distributed protocol, disciplined oscillator.

1. Introduction

A computer clock (or simply clock) is an ensemble of hard-
ware and software components used to provide an accurate,
stable and reliable time-of-day function for the computer
operating system and its clients. In order that multiple distrib-
uted computers sharing a network can synchronize their
operations with each other, a synchronization protocol is used
to exchange time information and synchronize the clocks. In
this paper the term local clock identifies the clock in a
particular computer as distinguished from a peer clock in
another computer with which it exchanges time information.
If the clocks are to agree with Coordinated Universal Time
(UTC) (sic), a radio clock (usually a special-purpose radio or
satellite receiver) must be provided to synchronize one or
more of them to UTC as disseminated by various means [14].

Computer clocks can be synchronized typically within a few
tens of milliseconds in the global Internet of today [12].

However, as computers and networks become faster, there is
every expectation that future applications will require accura-
cies better than a millisecond. This requires in essence a
complete reexamination of all elements of the timekeeping
apparatus described originally in [9], including the protocols
which exchange timekeeping messages and the algorithms
which process the data and discipline the local clock. This
paper examines in detail the various design issues necessary
to achieve this goal and, in particular, describes a suite of
algorithms designed to exchange data with possibly many
redundant peer clocks and to select an accurate, stable and
reliable set of clocks from among them. Besides some new
results, it contains some previous work published only in
technical reports.

In this paper the Network Time Protocol (NTP) developed for
the Internet is used as an example application of the new
algorithms, but others, such as the Digital Time Synchroni-
zation Service (DTS) [2] could be used as well. After a review
of terms and notation in Section 2, Section 3 gives an over-
view of NTP. Section 4 summarizes the clock filter, clustering

1 Sponsored by: Advanced Research Projects Agency under NASA Ames Research Center contract NAG 2-638,
National Science Foundation grant NCR-93-01002 and U.S. Navy Surface Weapons Center under Northeastern
Center for Engineering Education contract A30327-93.

2 Author’s address: Electrical Engineering Department, University of Delaware, Newark, DE 19716; Internet mail:
mills@udel.edu.

3 Reprinted from: Mills, D.L. Improved Algorithms for Synchronizing Computer Network Clocks. IEEE Trans.
Networks (June 1995). This is a revision of a paper of the same name that first appeared in: Proc. ACM SIGCOMM
94 Symposium (London, U.K., September 1994), 317-327.

and combining algorithms, which select the best measure-
ment samples from among possibly several peers and com-
bine them to produce the best available time.

The main results of this paper are in Sections 5 through 7.
Section 5 describes the intersection algorithm, which is used
to separate the truechimers, which represent correct clocks,
from falsetickers, which may not. Section 6 contains an
analysis of the local clock model, including the effects of
oscillator jitter and wander. Section 7 details the local clock
discipline, which is implemented as a hybrid phase/fre-
quency-lock loop. These algorithms are primarily responsible
for the increased accuracy and reliability of the current pro-
tocol compared to previous versions.

Section 8 contains a summary of related improvements and
extensions of previous algorithms, including those utilizing
special PPS and IRIG signals generated by some radio clocks.
It also contains a description of certain modifications to four
different Unix operating system kernels which provide ex-
tremely precise control of the clock time and frequency.
Section 9 discusses the present status of NTP in the Internet,
Section 10 outlines future plans, and Section 11 is a summary
of this paper.

2. Terms and Notation

In this paper the terms epoch, timescale, oscillator, tolerance,
clock, and time are used in a technical sense. Strictly speak-
ing, the epoch of an event is an abstraction which determines
the ordering of events in some given frame of reference or
timescale. An oscillator is a generator capable of precise
frequency (relative to the given timescale) within a specified
tolerance, usually expressed in parts-per-million (ppm). A
clock is an oscillator together with a counter which records
the number of cycles since being initialized with a given value
at a given epoch. The value of the counter at epoch t defines
the time of that epoch T(t). In general, time is not continuous
and depends on the precision of the counter.

Let T(t) be the time displayed by a clock at epoch t relative
to the standard timescale:

T(t) = T(t0) + R(t0)[t − t0] + 1⁄2D(t0)[t − t0]
2 + ε(t) , (1)

where T(t0) is the time at some previous epoch t0, R(t0) is the
frequency (rate) and D(t0) is the drift (first derivative of
frequency) per unit time. In the conventional (stationary)
model used in the literature, T and R are estimated by some

disciplining process and the second-order term D is ignored.
The random nature of the clock is characterized by ε, usually
in terms of phase or frequency spectra or measurements of
variance [15].

In this paper the stability of a clock is how well it can maintain
a constant frequency, the accuracy is how well its time
compares with UTC and the precision is to what degree time
can be resolved in a particular timekeeping system. These
terms will be given precise definitions when necessary. The
time offset of clock i relative to clock j is the time difference
between them xij(t) ≡ Ti(t) − Tj(t) at a particular epoch t, while
the frequency offset is the frequency difference between them
yij(t) ≡ Ri(t) − Rj(t). It follows that xij = −xji , yij = −yji and
xii = yii = 0 for all t. When clear from context, the subscripts
i and j will be omitted. In this paper, reference to simply
“offset” means time offset, unless indicated otherwise. The
term jitter refers to differences between the elements of a
series {yk}; similarly, wander refers to differences in {yk},
where the peers involved are understood. Finally, the reliabil-
ity of a timekeeping system is the fraction of the time it can
be kept connected to the network and operating correctly
relative to stated accuracy and stability tolerances.

In order to synchronize clocks, there must be some way to
directly or indirectly compare them in time and frequency. In
network architectures such as DECnet and Internet, local
clocks synchronize to designated time servers, which are
timekeeping systems belonging to a synchronization subnet.
At the root of the subnet are the primary servers, which
synchronize to external sources (e.g., radio clocks) and are
assigned a stratum number of 1. Secondary servers, which
synchronize to primary servers and each other, are assigned
stratum numbers equal to the minimum subnet hop count
from the root. In general, synchronization proceeds in a
hierarchical fashion from the root in increasing stratum num-
bers along the edges of a minimum spanning tree. In this paper
to synchronize frequency means to adjust the subnet clocks
to run at the same frequency, to synchronize time means to
set them to agree at a particular epoch with respect to UTC
and to synchronize clocks means to synchronize them in both
frequency and time.

3. Network Time Protocol

The Network Time Protocol (NTP) is used by Internet time
servers and their clients to synchronize clocks, as well as
automatically organize and maintain the time synchroniza-

Clock Filter

Clock Filter

Clock Filter
Clock Selection:
Intersection and

Clustering
Algorithms

Clock
Combining
Algorithm

Loop Filter

VFO

Network

Phase/Frequency-Lock Loop

Figure 1. Network Time Protocol

2

tion subnet itself. NTP and its implementations have evolved
and proliferated in the Internet over the last decade, with NTP
Version 3 adopted as a Internet Standard (Draft). A detailed
description of the architecture and service model is contained
in [9], while the current formal protocol specification is
defined in RFC-1305 [10].

Figure 1 shows the overall organization of the NTP time
server model. Timestamps are exchanged between the client
and each of possibly several other subnet peers at intervals
ranging from a few seconds to several hours. These are used
to determine individual roundtrip delays and clock offsets, as
well as provide error estimates. As shown in the figure, the
computed delays and offsets for each peer are processed by
the clock filter algorithm to reduce incidental jitter.

The clock selection algorithm determines from among all
peers a suitable subset capable of providing the most accurate
and trustworthy time. This is done using a cascade of two
subalgorithms, one based on interval intersections to cast out
falsetickers and the other based on clustering and maximum
likelihood principles to improve accuracy. The resulting off-
sets of this subset are first combined on a weighted-average
basis and then used to drive the clock-discipline algorithm,
which is implemented as a feedback loop. In this loop the
combined offset is processed by the loop filter to control the
variable frequency oscillator (VFO) frequency. The VFO is
implemented as a programmable counter using a combination
of hardware and software components. It furnishes the time
reference to produce the timestamps used in all timing calcu-
lations.

Figure 2 shows how NTP timestamps are numbered and
exchanged between peers A and B. Let T1, T2, T3, T4 be the
values of the four most recent timestamps as shown and,
without loss of generality, assume T3 > T2. Also, for the
moment assume the clocks of A and B are stable and run at
the same frequency. Let

a = T2 − T1 and b = T3 − T4 .

If the network delay difference from A to B and from B to A,
called differential delay, is small, the clock offset θ and
roundtrip delay δ of B relative to A at time T4 are close to

θ =
a + b

2
 and δ = a − b . (2)

Each NTP message includes the latest three timestamps T1,
T2 and T3, while the fourth T4 is determined upon arrival.
Thus, both peers A and B can independently calculate delay
and offset using a single bidirectional message stream. This
is a symmetric, continuously sampled, time-transfer scheme
similar to those used in some digital telephone networks [6].
Among its advantages are that errors due to missing or
duplicated messages can be avoided.

In [11] an exhaustive analysis is presented of the time and
frequency errors that can accrue as the data are processed and
refined at various levels in the subnet hierarchy. While the

analysis is too long to repeat here, the results define the
maximum error that can accrue under any operational condi-
tion, called the synchronization distance λ, and the error
expected under nominal operating conditions, called the dis-
persion ε. There are several components of ε, including:

1. The maximum error in reading the local clock and each
peer clock, which depends on the clock resolution and
method of adjustment.

2. The maximum error due to the frequency tolerance of the
local clock and each peer clock since the time either was
last set.

3. The estimated error contributed by each peer clock due
to delay variations in the network and statistical latencies
in the operating systems on the path to the primary
reference source, which depends on differences between
successive measurements for each peer clock. This is
called the peer dispersion.

4. The estimated error contributed by the combined set of
peers used to discipline the local clock, which depends
upon the differences between individual members of the
set. This is called the select dispersion.

In practice, errors due to network delays usually dominate ε.
However, it is not possible to characterize these delays as a
stationary random process, since network queues can grow
and shrink in chaotic fashion and packet arrivals are fre-
quently bursty. However, the method of calculating ε defined
in [10] represents a conservative estimate of the errors due to
each of the above causes.

In [11] it is shown that, given ε calculated as above,

λ ≡
δ
2
 + ε is a good estimate of the maximum error contribu-

tion due to all causes. In other words, if θ is the measured
offset of the local clock relative to the primary reference
source, then the true offset θ0 relative to that source must with
high probability be somewhere in the interval

θ − λ ≤ θ0 ≤ θ + λ , (3)

which is called the confidence interval.

The ε and λ are used as metrics in the various algorithms
presented in following sections. They determine the peers
selected by the intersection and clustering algorithms, the
weight factors used by the clock combining algorithm, and
the calculation of various error statistics. While the basic

θ0

T1 T4

T2 T3
B

A

Figure 2. Measuring Delay and Offset

3

design of these algorithms is developed using sound engi-
neering and statistical principles, there are a number of intri-
cate details, such as various weights used in the filter and
selection algorithms, which can only be determined using
simulation and experiment. In general, however, the metrics
used are based on the pragmatic observation that the highest
reliability is usually associated with the lowest stratum and
synchronization distance, while the highest accuracy is usu-
ally associated with the lowest stratum and dispersion.

4. Clock Filter, Combining and Clustering Algo-
rithms

The clock filter, clustering and combining algorithms shown
in Figure 1 operate essentially as described previously in [9],
however all three have been refined and defined formally in
[10]. In order to understand the other algorithms described in
this paper, it will be useful to briefly summarize the operation
of these three algorithms.

The clock filter algorithm operates on a moving window of
samples to produce three statistical estimates: peer delay,
peer offset and peer dispersion. We will use θ, δ and ε for
these quantities when their distinction from the previous use
is clear. A discussion of the design approach, implementation
and performance assessment is given in [9] and will not be
repeated here. However, the design described there, which
can be described as a minimum filter, has been enhanced to
include the peer dispersion contributions due to the frequency
tolerance of the local clock and the interval between T1 and
the present time, which must be recorded with every data
sample.

There are usually some offset variations among the peers
surviving the intersection algorithm (described later), due to
differential delays, radio clock calibration errors, etc. The
clustering algorithm is designed to select the best subset of
this population on a maximum likelihood basis. It first ranks
the peers by stratum, then by λ. For each peer it computes the
select dispersion, defined as the total weighted time offsets
of that peer relative to all the others. It then ejects the outlyer
peer with greatest select dispersion and repeats the process
until either a pre-specified minimum number of peers has
been met or the maximum select dispersion is less than or
equal to the minimum peer dispersion for all peers in the
surviving population.

The termination condition is designed to maximize the num-
ber of peers for the combining algorithm, yet to produce the
most accurate time. Since discarding more outlyers can nei-
ther increase the select dispersion nor decrease the peer
dispersion, further discards will not improve the accuracy. As
incorporated in NTP Version 3, the increase in dispersion as
samples grow old helps to reduce errors resulting from local
clock instability.

For each selected peer i the clock combining algorithm con-
structs a weight

wi =

∑εj

j

εi
 ,

where j ranges over all contributors. The algorithm then
computes ensemble averages

θ
__
 = ∑wj

j

θj and ε
_
 = ∑wj

j

εj .

5. Intersection Algorithm

When a number of peer clocks are involved as in Figure 1, it
is not clear beforehand which are truechimers and which are
falsetickers. In order to provide reliable synchronization,
NTP relies on multiple peers and disjoint peer paths whenever
possible. Crucial to the success of this approach is a robust
algorithm which finds and discards the falsetickers from
among these peers. Criteria for evaluation include a suite of
sanity checks, consistency checks and the intersection algo-
rithm described in this section.

Recall that the true offset θ0 of a correctly operating clock
relative to UTC must be contained in the confidence interval
(3). Marzullo and Owicki [7] devised an algorithm designed
to find an appropriate interval containing the correct time
given the confidence intervals of m clocks, of which no more
than f are considered incorrect. The algorithm finds the small-
est intersection interval containing points in at least m − f of
the given confidence intervals.

Figure 3 illustrates the operation of this algorithm with a
scenario involving four clocks A, B, C and D, with the peer
offset θ (shown by the ↑ symbol) along with the confidence
interval for each. For instance, any point in the A interval may
represent the actual time associated with that clock. If all
clocks are correct, there must exist a nonempty intersection
including points in all four confidence intervals; but, clearly
this is not the case in the figure. However, if it is assumed that
one of the clocks is incorrect (e.g., D), it might be possible to
find a nonempty intersection including all but one of the
intervals. If not, it might be possible to find a nonempty
intersection including all but two of the intervals and so on.

The algorithm used by DEC in DTS is based on these princi-
ples. The algorithm finds the smallest intersection containing

Correct DTS

Correct NTP

D
↑

A
↑

B
↑

C
↑

Figure 3. Confidence and Intersection Intervals

4

at least one point in each of m − f confidence intervals, where
m is the total number of clocks and f is the number of

falsetickers, as long as the f <
m
2

. For the scenario illustrated

in Figure 3, it computes the intersection for m = 4 clocks,
three of which turn out to be correct and one not. The interval
marked DTS is the smallest intersection containing points in
three confidence intervals, with one interval outside the in-
tersection considered incorrect.

There are some cases where this algorithm can produce
anomalistic results. For instance, consider the case where the
left endpoints of A and B are moved to coincide with the left
endpoint of D, so that f = 0. In this case the intersection
interval extends to the left endpoint of D, in spite of the fact
that there is a subinterval that does not contain at least one
point in all confidence intervals. Nevertheless, the assertion
that the correct time lies in the intersection interval remains
valid.

One problem is that, while the smallest interval containing
the correct time may have been found, it is not clear which
point in that interval is the best estimate of the correct time.
Simply taking the estimate as the midpoint of the interval
throws away a good deal of useful statistical data and results
in large jitter, as confirmed by experiment. Especially in cases
where the network jitter is large, some or all of the calculated
offsets (such as for C in Figure 3) may lie outside the inter-
section. For these reasons, in the NTP algorithm the DEC
algorithm is modified so as to include at least m − f of the peer
offsets. The revised algorithm finds the smallest intersection
of m − f intervals containing at least m − f peer offsets. As
shown in Figure 3, the modified algorithm produces the
intersection interval marked NTP and including the calcu-
lated time for C.

The algorithm starts with a set of peers which have passed
several sanity checks designed to detect configuration errors
and defective implementations. In the NTP Version 3 imple-
mentation, only the ten peers with the lowest λ are considered
to avoid needless computing cycles for candidates very un-
likely to be useful. For each peer the algorithm constructs a
set of three tuples of the form [offset, type]: [θ − λ, −1] for the
lower endpoint, [θ, 0] for the midpoint, and [θ + λ, +1] for the

upper endpoint. These entries are placed on a list sorted by
increasing offset.

The job of the intersection algorithm is to determine the lower
and upper endpoints of an interval containing at least m − f
peer offsets. As before, let m be the number of entries in the
sorted list and f be the number of presumed falsetickers,
initially zero. Also, let lower designate the lower limit of the
final confidence interval and upper the upper limit. The
algorithm uses endcount as a counter of endpoints and mid-
count as the number of offsets found outside the intersection
interval.

1. Set both endcount and midcount equal to zero.

2. Starting from the beginning of the sorted list and working
toward the end, consider each entry [offset, type] in turn.
As each entry is considered, subtract type from endcount.
If endcount ≥ m − f, the lower endpoint has been found.
In this case set lower equal to offset and go to step 3.
Otherwise, if type is zero, increment midcount. Then
continue with the next entry.

3. At this point a tentative lower endpoint has been found;
however, the number of midpoints has yet to be deter-
mined. Set the endcount again to zero, leaving midcount
as is.

4. In a similar way as step 2, starting from the end of the
sorted list and working toward the beginning, add the
value of type for each entry in turn to endcount. If
endcount ≥ m − f, go to step 5. Otherwise, if type is zero,
increment midcount. Then continue with the next entry.

5. If lower ≤ upper and midcount ≤ f, then terminate the
procedure and declare success with lower equal to the
lower endpoint and upper equal the upper endpoint of the
resulting confidence interval. Otherwise, increment f. If

f ≥
m
2

, terminate the procedure and declare failure. If

neither case holds, continue in step 1.

The original (Marzullo and Owicki) algorithm produces an
intersection interval that is guaranteed to contain the correct
time as long as less than half the clocks are falsetickers. The
modified algorithm produces an interval containing the origi-

Code Server (Location) Stratum Source θ δ ε λ Lower Upper
* GPS 0 GPS 0.117 0.0 1.01 1.01 –0.89 1.13

churchy 2 pogo –1.080 0.42 1.36 4.07
+ rackety 1 GPS 0.563 3.83 0.73 2.65 –2.08 3.21
+ barnstable 1 GPS 0.618 4.04 0.60 2.62 –2.00 3.24
+ tick (USNO) 1 ATOM 0.357 49.84 3.42 28.34 –27.98 28.70
+ time (NIST) 1 ACTS 0.635 101.72 4.14 55.00 –54.37 55.64
x err (Switzerland) 1 DCF77 5.420 140.69 18.43 88.78 –83.36 94.20
x lucifer (Germany) 1 GPS 9.863 183.36 36.62 128.30 –118.44 138.16
+ time1 (Sweden) 1 ATOM 0.544 155.70 124.02 201.87 –201.33 202.41
– terss (Australia) 1 OMEGA 1.088 767.40 69.05 452.75 –451.66 453.84

Table 1. Peer Configuration for Server pogo

5

nal interval, so the correctness assertion continues to hold.
However, so long as the clock filter produces statistically
unbiased estimates for each peer, the new algorithm allows
the clustering and combining algorithms to produce unbiased
estimates as well.

Table 1 shows a typical configuration for NTP primary server
pogo. The data used to construct tables such as this are
collected by each server on a regular basis and automatically
retrieved by monitoring hosts using scripts and programs
designed for the purpose. Using these data, operators can
quickly spot trouble in either the servers or the network.

The peers located in Europe, Australia, National Institute of
Standards and Technology (NIST) in Boulder, CO, and U.S.
Naval Observatory (USNO) in Washington, DC, are identi-
fied in the table; the others are located at the University of
Delaware. The entry identified as GPS and assigned pseudo-
stratum zero is a precision timing receiver synchronized by
the Global Positioning System (GPS) and connected to pogo.
Note that this receiver is treated like any other peer, so that
possible malfunctions can be detected and avoided. The
synchronization source for each peer is shown by dissemina-
tion service if stratum 0 or 1, or by another peer if higher.
GPS, DCF77 and OMEGA use radio and satellite, ATOM is
a national standard cesium clock ensemble, and ACTS is the
Automated Computer Time Service operated by NIST [4].

The offset θ, delay δ, dispersion ε and synchronization dis-
tance λ for each peer are shown in the table, as well as the
lower and upper endpoints used in the clock selection algo-
rithm, all in milliseconds. Peer churchy is ineligible for
selection because it is operating at a stratum higher than pogo,
so would not normally provide better time, and in addition, it
is synchronized to pogo, so would cause a synchronization
loop. This peer would be considered for synchronization only
if the GPS receiver and all other stratum-1 sources were to
fail.

The remaining peers are eligible for processing by the inter-
section and clustering algorithms. The synchronization status
is shown by the Code column. Those marked “x” have been
discarded by the intersection algorithm as falsetickers, while
those marked “,,” have been discarded by the clustering
algorithm as outlyers. Note that the truechimer offsets all fall
within the smallest intersection interval, while the falseticker
offsets do not. Obviously, the ensemble average is improved
by discarding falsetickers and outlyers.

The peers marked “*” and “+” have survived both algorithms
and the one marked “*” has been identified as the pick of the
litter. All of these peers will be considered by the combining
algorithm; however, the NTP Version 3 implementation in-
cludes an option: If a designated peer has survived both
algorithms, it is the sole source for synchronization and the
combining algorithm is not used. This is useful in special
cases where known differential delays are relatively severe
or when the lowest possible jitter is required.

6. Local Clock Models

The local clock is commonly implemented using a hardware
counter and room-temperature quartz oscillator. Such oscil-
lators exhibit some degree of temperature-induced frequency
instability in the order of 1-2 ppm due to room-temperature
variations. The NTP clock discipline continuously corrects
the time and frequency of the local clock to agree with the
time as determined from the synchronization source(s).

A significant improvement in accuracy and stability is possi-
ble by modelling the local clock and its adjustment mecha-
nism as a disciplined oscillator. In this type of clock the time
and frequency are controlled by a feedback loop with a
relatively long time constant, so the frequency is “learned”
over some minutes or hours of integration. Besides improving
accuracy, a disciplined oscillator can correct for the intrinsic
frequency error of the oscillator itself, so that much longer
intervals between timestamp messages can be used without
significant accuracy degradation.

A disciplined oscillator can be implemented as the feedback
loop shown in Figure 4. The variable ωr represents the refer-
ence signal and ωc the variable frequency oscillator (VFO)
signal, which controls the local clock. The phase detector
(PD) produces a signal θd representing the instantaneous
phase difference between ωr and ωc. The clock filter func-
tions as a tapped delay line, with the output θs taken at the
sample selected by the clock filter algorithm. The loop filter,
with impulse response F(t), produces a VFO correction θc,
which controls the oscillator frequency ωc and thus its phase.
The characteristic behavior of this model, which is deter-
mined by the F(t), is studied in many textbooks and summa-
rized in [11].

As reported in [12], the major source of error in most con-
figurations is the stability of the local clock oscillator. The
stability of a free-running frequency source is commonly
characterized by a statistic called Allan variance [1], which
is defined as follows. Consider a series of time offsets meas-
ured between a local clock and some external standard. Let
xk be the kth measurement and τk be the interval since the
previous measurement. Define the fractional frequency

yk ≡
xk − xk−1

τk
 , (4)

VFO

ωr

Clock Filter

Loop Filter F(t)

θs
PD

+

–
ωc

θd

θc

Figure 4. Disciplined Oscillator Model

6

Which is a dimensionless quantity. Now, consider a sequence
of N independent fract ional frequency samples
yk (k = 0, 1, ..., N − 1). If the averaging interval τ = τk is the
same as the interval between measurements, the 2-sample
Allan variance is defined

σy
2(τ) ≡

1
2
 <(yk − yk−1)2> =

1

2(N − 2)τ2
 ∑
k=2

N−1

(xk − 2xk−1 + xk−2)2

.

The Allan variance σy
2(τ) (or Allan deviation σy(τ)) is particu-

larly useful when designing the clock discipline, since it
determines the optimum impulse response F(t), time con-
stants and update intervals. Figure 5 shows the results of an
experiment designed to determine the Allan deviation of a
typical workstation under normal room-temperature condi-
tions. For the experiment, the local clock was first synchro-
nized to a primary server on the same LAN using NTP to
allow the frequency to stabilize, then uncoupled from NTP
and allowed to free-run for about seven days. The local clock
offsets during this interval were measured at the primary
server using NTP. This model is designed to closely duplicate
actual operating conditions, including the jitter of the LAN
and operating systems involved.

It is important to note that both the x and y scales of Figure 5
are logarithmic, but the axes are labelled in actual values.
Starting from the left at τ = 16 s, the plot tends to a straight
line with slope near -1, which is characteristic of white phase
noise [15]. In this region, increasing τ increases the frequency
stability in direct proportion. At about τ = 1000 s the plot has
an upward inflection, indicating that the white phase noise
becomes dominated first by white frequency noise (slope
-0.5), then by flicker frequency noise (flat slope), and finally
by random-walk frequency noise (slope +0.5). In other words,
as τ is increased, there is less and less correlation between one
averaging interval and the next.

The Allan deviation can be used to determine the best clock
discipline method to use over the range of τ likely to be useful
in practice. At the lowest τ the errors due to phase noise
dominate those due to frequency stability. A phase-lock loop
(PLL) clock discipline provides the best performance in such
cases. As the PLL time constant increases and with it τ, the
PLL low-pass filter characteristic tends to reduce the phase
noise, as well as compensate for any systematic (constant)
local clock frequency error. However, while the phase aver-
aging interval in a PLL increases directly as the time constant,
the frequency averaging interval increases as the square. The
price paid for this at the longer τ is an extremely sluggish
adaptation to oscillator frequency wander.

On the other hand, at the highest τ, the errors due to frequency
stability dominate those due to phase noise. A frequency-lock
loop (FLL) clock discipline provides the best performance in
such cases. In order to provide the most rapid adaptation to
frequency wander, while avoiding spurious disruptions due
to phase noise, the best τ would seem from Figure 1 to be

about 1000 sec. However, it is apparent from (4) that the FLL
can become seriously vulnerable to phase spikes at τ much
below this. These conclusions were verified In a series of
experiments and simulations using the algorithms developed
in the next section.

7. The NTP Clock Discipline

The Unix 4.3bsd timekeeping functions are implemented
using a hardware timer interrupt produced by an oscillator in
the 100-1000 Hz range. Each interrupt causes an increment
tick to be added to the kernel time variable. The value of tick
is chosen so that time, once properly initialized, is equal to
the present time of day in seconds and microseconds relative
to a given epoch. When tick does not evenly divide 1 sec
(1000000 µs), an additional increment fixtick is added to time
once each second to make up the difference.

The oscillator can actually run at three different frequencies,
one at the intrinsic oscillator frequency, a second slightly
higher and a third slightly lower . The adjtime() system call
is used to select one of the three frequencies and how long
∆t to run, in order to amortize the specified offset. The NTP
clock discipline uses the adjtime() mechanism to control the
VFO and implements the impulse response F(t) using the
algorithm described below.

The new clock discipline differs from the one described in the
NTP specification and previous reports. It is based on an
adaptive-parameter, hybrid PLL/FLL design which gives
good performance with update intervals from a few seconds
to tens of kiloseconds, depending on accuracy requirements
and acceptable costs. As before, let xk be the time and yk be
the frequency at the kth update. Let y

_
k be the mean oscillator

frequency determined from past offsets {xi} and intervals {τi}.
In the most general formulation, an algorithm that corrects
for clock time and frequency errors computes a prediction

x̂k = xk−1 + y
_

k−1τ . (5)

The clock discipline operates as a negative-feedback loop to
minimize x̂k for all k. As each update xk is measured, the clock
time is adjusted by −xk, so that it displays the correct time. In
addition, the mean frequency y

_
k is adjusted to minimize the

*

*

*

*

*

*

* *
* *

*
*

*
*

Time (s)

A
lla

n
D

ev
ia

tio
n

(p
pm

)

100 1000 10000 100000

0.
1

0.
2

0.
5

1.
0

2.
0

Figure 5. Allan Variance of Typical Local Oscillator

7

time adjustments in future. Subsequently, the oscillator runs
at this frequency until the next update.

Between updates, which can range from seconds to hours, the
clock discipline amortizes xk in small increments at adjust-
ment intervals tA = 1 s, in order to prevent timescale discon-
tinuities and to conform to monotonic requirements. At each
interval the value

ax + y
_

ktA (6)

is added to the clock time, where a is a constant between zero

and one (a = 2−6 in the current implementation) and x is a
variable defined below. In the NTP daemon for Unix, these
adjustments are implemented by the adjtime() system call;
while, in the modified kernel described in [13], correspond-
ingly scaled adjustments are performed at each timer inter-
rupt. The constant a is used as a gain factor in the following
way. Let the value x be the residual in the adjustment whose
initial value is xk. At each interval the time is adjusted by ax
and the residual by −ax. This provides a rapid adjustment
when x is relatively large, together with a fine adjustment
(low jitter) when x is relatively small.

In the original type-II PLL design of [9], the frequency is
determined as past accumulations of time. In this case,

y
_

k = b ∑
i=1

k

xiτi ,
(7)

where b is a constant between zero and one (b = 2−16 in the
current implementation). In order to understand the dynam-
ics, it is useful to consider the limit as τ approaches zero. In
a type-II PLL, the oscillator frequency y(t) is determined by
the measured offset x(t):

y(t) = ax(t) + b∫ x(t)
0

t
dt .

Since phase is the integral of frequency, the integral of the
right hand side represents the overall open-loop impulse
response of the feedback loop. Taking the Laplace transform,
we get

θ(s) =
x(s)
s

(a +
b
s
) ,

where the extra pole
1
s
 at the origin is due to the integration

which converts the frequency y(s) to phase θ(s). After some
rearrangement, the magnitude of the right hand side can be
written

ωc
2

s2

1 +

s
ωz

 ,

where ωz =
b
a

 and ωc
2 = b. From elementary theory, this is the

transfer function of a type-II PLL which can control both time

and frequency. In practice, the damping factor η =
ωc

2ωz
 = 4

for good transient response. In order to simplify the presen-
tation, this model does not include the time constant, which
is used to control the loop response. The detailed design and
behavior of the PLL is treated in great detail in [11] and will
not be repeated here.

The new clock discipline is a hybrid PLL/FLL design in
which the original PLL is used for τ <=1024 s and the FLL
used otherwise. The FLL design, adapted from [5], operates
in a manner identical to the PLL, except that the mean
frequency y

_
(t) is determined as an average, rather than an

integral. In the FLL, y
_
(t) is directly adjusted in order to

minimize the time error x(t). While a number of methods
could be used to compute y

_
k, a convenient one is the weighted

average

y
_

k = y
_

k−1 + w(yk − y
_

k−1) , (8)

where w = 0.25 is a weight factor determined by experiment.
The goal of the clock discipline is to adjust the clock time and
frequency so that x̂k = 0 for all k. To the extent this has been
successful in the past, we can assume corrections prior to xk

are all zero and, in particular, xk−1 = 0. Therefore, from (4)
and (8) we have

y
_

k = y
_

k−1 + w
xk

τ . (9)

It may seem strange that the coefficient a in (6) is used in both
the FLL and PLL modes. The primary reason is to avoid
discontinuities when the offset xk is very large, e.g., over 100
ms. A secondary reason is to reduce the effects of phase noise,
since in the NTP model the local clock of one stratum can be
used to discipline clocks at the next higher stratum. While in
the PLL a < 1 is necessary for stability, its affect on dynamics
when the FLL is in use is minor.

A key feature of the NTP design is the selection of τ in
response to measured local clock stability. When the PLL is
in use, the time constant is directly proportional to τ. At
τ = 64s, this results in a 90-percent time response of about
900 sec and a 63-percent frequency response of about 3600
sec, which is a useful compromise under most operating
conditions. The time constant is not used when the FLL is in
use.

The sum of the peer dispersion and select dispersion is used
as a measure of oscillator instability in both the PLL and FLL
modes. If |θ| exceeds this sum, the oscillator frequency is
deviating too fast for the clock discipline to follow, so τ is
reduced. In the opposite case holds for some number of
updates, τ is increased. Under typical network conditions, τ
hovers close to the maximum; but, on occasions when the
oscillator frequency wanders more than about 1 ppm, τ
quickly drops to lower values until the wander subsides.

8

8. Additional Improvements

In a perfect world, the NTP clock discipline would be imple-
mented as an intrinsic feature of the kernel with standardized
interfaces for the user and daemon processes and with a
precision oscillator available as a standard option. However,
during the development and deployment of NTP technology,
there was considerable reluctance to intrude on kernel hard-
ware or nonstandard software features, since this would im-
pede portability, maintainability and perhaps reliability. In
addition, manufacturers were understandably reluctant to
provide a precision oscillator option, since there were not
many customers to justify the development expense.

We have explored both the kernel discipline and external
oscillator options. A Unix kernel implementation of the dis-
cipline has been developed for four popular workstations, the
Ultrix kernel for the DEC 5000 series, the OSF/1 kernel for
the DEC 3000 series, the SunOS kernel for the Sun
SPARCstation series, and the HP-UX kernel for the Hewlett
Packard 9000 series. As described in [12], the kernel disci-
pline provides a time resolution of 1 µs and a frequency
resolution of parts in 1011 (with an appropriately stable ex-
ternal oscillator). In addition, the modified kernels provide
new system calls so that applications can learn the local clock
status and error estimates determined by the daemon.

A special pulse-per-second (PPS) signal is available from
sources such as cesium clocks and precision timing receivers.
It generally provides much better accuracy than the serial
ASCII timecode produced by an ordinary radio clock. The
new kernel software uses a modem control lead of a serial
port to produce an interrupt at each PPS pulse. The interrupt
captures a timestamp from the local clock and computes the
offset modulo 1 sec. Assuming the seconds numbering of the
clock counter has been determined by a reliable source, such
as the ASCII timecode or even other NTP peers, the PPS
offset is used to discipline the local clock. Using this feature
on a typical workstation with a PPS signal from a GPS
receiver, jitter is reduced to few tens of microseconds [12].

Some radio clocks can produce a special IRIG signal, which
encodes the day and time as a modulated audio signal com-
patible with the audio codec native to some workstations. A
particularly interesting feature of the NTP design described
in [12] is an algorithm that processes codec samples to
demodulate the signal, extract the time information and dis-
cipline the local clock. The scheme requires very few external
components, but achieves a jitter comparable to the PPS
signal.

However, neither the PPS or IRIG signals improve the stabil-
ity of the local clock oscillator itself, since wander-induced
time errors usually dominate the error budget. We have
experimented with external oscillators, both using commer-
cial bus peripherals and bus peripherals of our own design.

An external clock for the Sun SBus has been constructed
using FPGA technology. It includes a pair of counters that
can be read directly in Unix timeval format and an oven-com-
pensated precision oscillator with stability of a few parts in
109. In experiments where a host equipped with this device
was synchronized to a primary server using NTP, the wander
was measured at a few parts in 108, about two orders of
magnitude better than the original undisciplined oscillator.

Perhaps the most useful and inexpensive approach is an
auxiliary feedback loop designed to discipline the oscillator
frequency directly to an external PPS signal. In this design,
the PPS timestamps are used at intervals τ from 4 to 256 sec
to calculate a vernier frequency adjustment as in (9). This
adjustment is added to the mean frequency y

_
k in (6). The result

is that the oscillator frequency is disciplined to the PPS signal
and the wander considerably reduced. However, the external
corrections provided by NTP continue to function as usual.
Measurements show that, using this scheme with a typical
workstation and PPS signal from a GPS receiver results in
performance comparable to the precision external oscillator.

Figure 6 shows the performance using the native oscillator,
kernel discipline and PPS signal over the Modified Julian Day
(MJD) 49437. 4 In this experiment, measurements were made
about every 64 sec of the local clock offset relative to the PPS
signal of a cesium clock and the results graphed. The server
involved, a SPARCstation IPC, had about 400 NTP clients
on the day of the experiment. The maximum jitter over the
day is about 45 µs, primarily due to collisions between the
timer interrupt and PPS signal interrupt. This represents prob-
ably the best performance possible with this generation of
machines.

9. Present Status and Deployment

Software support for NTP is available for a wide variety of
workstations and mainframe computers manufactured by
DEC, IBM, Hewlett Packard, Sun Microsystems, Silicon
Graphics, Cray Research and many others. One manufacturer
(Bancomm) markets a dedicated NTP server integrated with
a GPS receiver and another (Cisco) markets a router with

MJD 49437 Time (s)

P
LL

 O
ffs

et
 (

us
)

0 20000 40000 60000 80000-1
00

-5
0

0
50

10
0

Figure 6. Offset with Kernel PLL and PPS signal

9

4 MJD is derived from a scheme invented in the 16th century to number the days since an historically eclectic epoch
at noon on the first day of the year 4713 BC.

integrated NTP support. The software is available for public
access or as a standard option in some software products. A
client running this software can synchronize to one or more
NTP servers or radio timecode receivers and at the same time
provide synchronization to a number of dependent clients, in
some cases in excess of 500, while requiring only a small
fraction of available processor and memory resources.

In the most cherished of Internet traditions, the worldwide
NTP synchronization subnet is not engineered in any specific
way other than informal, voluntary compliance to a set of
configuration rules. To protect the primary servers, potential
stratum-2 peers are invited only if they serve a sizable popu-
lation of stratum-3 and higher peers. Operators are cautioned
that reliable service is possible only through the use of redun-
dant servers and diverse network paths. A typical configura-
tion for a campus serving several hundred clients includes
three stratum-2 servers, each operating with two different
primary servers, each of the other campus servers and at least
one stratum-2 server at another institution. Department serv-
ers then operate with all three campus servers and each other,
which simplifies configuration table management. Depart-
ment servers offer service to client hosts, either individually
or using the NTP broadcast mode.

In a previous paper [8] the number of NTP-synchronized
peers was estimated at 1,000 on the basis of an systematic
survey of all known Internet hosts. Today, such a survey
would be very difficult and probably be considered rude at
best. However, it is known that there are at the time of writing
about 100 NTP primary servers located in North America,
Europe and the Pacific, almost half of which are advertised
for public access. These peers are synchronized to national
time standards using all known computer-readable time-dis-
semination services in the world, including the U.S. (ACTS,
WWVB, WWV and WWVH), Canada (CHU), U.K. (MSF),
Germany (DCF77) and France (TDF), as well as the GPS,
OMEGA and LORAN navigation systems, and the GOES
environmental satellite. In addition, NTP primary servers at
NIST and USNO, as well as the national time standards
laboratories of Norway and Australia, are directly synchro-
nized to national standard clock ensembles.

It is difficult to estimate the number of NTP secondary
(stratum-2 and higher) peers in the global Internet. A recent
informal estimate puts the total number of Internet hosts over
1.7 million. An intricate check of the monitoring information
maintained by some public NTP servers reveals about 8,000
stratum-2 and stratum-3 dependents; however, this survey
grossly undercounts the population, since only a fraction of
the servers retain this information and many thousands of
known dependents are hidden deep inside corporate net-
works, either independently synchronized or carefully peek-
ing out through access-controlled gateways. Informal
estimates based on anecdotal information provided by vari-
ous network operators suggest the total number of hosts
running NTP is probably in excess of 100,000.

The earlier survey presented error measurements for various
paths between NTP primary servers in the U.S. and concluded
reliable time synchronization could be obtained “...in the
order of a few tens of milliseconds over most paths in the
Internet of today.” As reported in [12], while there are excep-
tions, this claim remains generally valid in the much larger
worldwide Internet of today. With the software and hardware
improvements described herein for the NTP Version 3 speci-
fication and implementations, and with suitable allowance for
differential delays, most places in the worldwide Internet are
able to maintain an accuracy better than 10 ms and those on
LANs and high speed WANs better than 1 ms.

10. Current Work and Future Plans

As time moves on, so do NTP versions. A summary of current
work and future plans for Version 4 of the protocol are given
in [13]. They include refinement of the broadcast/multicast
protocol modes, automated peer discovery and implementa-
tion of a new feature called distributed mode.

In cases where a moderate loss in accuracy can be tolerated,
such as most workstations on a LAN subnet, the NTP broad-
cast mode greatly simplifies client configuration and network
management. In this mode, client workstations automatically
survey their environment and configure themselves without
requiring pre-engineered configuration files. After joining
the subnet, a client listens for broadcasts from one or more
servers on the LAN. Upon hearing one, the client exchanges
messages with the server in order to determine the best time
and calibrate the broadcast propagation delay. When calibra-
tion is complete, generally after a few message exchanges,
the client again resumes listening for broadcasts. In broadcast
mode the NTP filter, selection and combining algorithms
operate as in the client/server modes, with resulting accuracy
usually in the order of a few milliseconds on an Ethernet.

We have recently extended the NTP broadcast mode to use
IP multicast facilities [3] for wide-area time distribution. The
NTP multicast mode operates in the same way as the broad-
cast mode, so that clients can discover servers wherever IP
multicast facilities and connectivity to the Internet MBONE
are available. At the present time, experimental servers have
been established in the U.S., U.K. and Germany, with clients
in these and other countries. The accuracies that have been
achieved vary widely, depending on the particular server and
path. For instance, with typical U.K. servers and clients in the
U.S., the accuracies vary from 10 to 100 ms, depending on
particular server configuration and ambient network traffic
levels.

While we have proof of concept that time distribution using
IP multicast is practical, there are many remaining problems
to be resolved, such as how to avoid sending messages all
over the world from possibly many multicast servers, how to
authenticate and select which ones a particular client or client
population chooses to believe, and how to allocate and man-
age possibly many multicast group addresses.

10

In other future plans, we expect to make use of IP multicast
to maintain timekeeping data not only between peers, but
between other members of the synchronization subnet as
well. This scheme, called distributed mode, will allow addi-
tional opportunities to discover potential peers, as well as
reduce errors due to differential delays. In addition, we expect
to participate in a comprehensive design exercise involving
the Domain Name System to discover domain-based time
servers and to distribute authentication information.

11. Summary

This paper has presented an in-depth analysis of certain issues
important to achieve accurate, stable and reliable time syn-
chronization in a computer network. These issues include the
design of the synchronization protocol, the local clock, and
the algorithms used to filter, select and combine the reading
of possibly many peer clocks. The intersection algorithm
presented in this paper is designed to distinguish truechimers
from among a population possibly including falsetickers. The
local clock is modelled as a disciplined oscillator and imple-
mented as a hybrid PLL/FLL feedback loop. The behavior of
the model is controlled automatically for oscillators of vary-
ing stability and network paths of widely varying charac-
teristics.

The NTP Version 3 implementations have been widely de-
ployed to probably over 100,000 installations in the Internet
of today. Surveys using previous versions of NTP have found
synchronization to UTC can be generally maintained to
within a few tens of milliseconds. With NTP Version 3 and
the hardware and software improvements described in this
paper, synchronization can be generally maintained with
some exceptions to within 10 ms on typical Internet paths and
within 1 ms on LANs and WANs with high speed (over 1
Mbps) transmission paths. The exceptions are in all known
cases due to either severe network congestion or differential
path delays, which in principle can be calibrated out.

12. References 5

1. Allan, D.W. Time and frequency (time-domain) estima-
tion and prediction of precision clocks and oscillators.
IEEE Trans. on Ultrasound, Ferroelectrics, and Fre-
quency Control UFFC-34, 6 (November 1987), 647-654.
Also in: Sullivan, D.B., D.W. Allan, D.A. Howe and F.L.
Walls (Eds.). Characterization of Clocks and Oscilla-
tors. NIST Technical Note 1337, U.S. Department of
Commerce, 1990, 121-128.

2. Digital Time Service Functional Specification Version
T.1.0.5. Digital Equipment Corporation, 1989.

3. Deering, S.E., and D.R. Cheriton. Multicast routing in
datagram internetworks and extended LANs. ACM
Trans. Computing Systems 8, 2 (May 1990), 85-100.

4. Levine, J., M. Weiss, D.D. Davis, D.W. Allan, and D.B.
Sullivan. The NIST automated computer time service. J.
Research National Institute of Standards and Technol-
ogy 94, 5 (September-October 1989), 311-321.

5. Levine, J. An algorithm to synchronize the time of a
computer to universal time. IEEE Trans. Networks 3, 1
(February 1995), 42-50.

6. Lindsay, W.C., and A.V. Kantak. Network synchroni-
zation of random signals. IEEE Trans. Communications
COM-28, 8 (August 1980), 1260-1266.

7. Marzullo, K., and S. Owicki. Maintaining the time in a
distributed system. ACM Operating Systems Review 19,
3 (July 1985), 44-54.

8. Mills, D.L. Measured performance of the Network Time
Protocol in the Internet system. ACM Computer Commu-
nication Review 20, 1 (January 1990), 65-75.

9. Mills, D.L. Internet time synchronization: the Network
Time Protocol. IEEE Trans. Communications COM-39,
10 (October 1991), 1482-1493. Also in: Yang, Z., and
T.A. Marsland (Eds.). Global States and Time in Distrib-
uted Systems, IEEE Press, Los Alamitos, CA, 91-102.

10. Mills, D.L. Network Time Protocol (Version 3) specifi-
cation, implementation and analysis. DARPA Network
Working Group Report RFC-1305, University of Dela-
ware, March 1992, 113 pp.

11. Mills, D.L. Modelling and analysis of computer network
clocks. Electrical Engineering Department Report 92-5-
2, University of Delaware, May 1992, 29 pp.

12. Mills, D.L. Precision synchronization of computer net-
work clocks. ACM Computer Communication Review
24, 2 (April 1994). 16 pp.

13. Mills, D.L. Network time protocol version 4 proposed
changes. Electrical Engineering Department Report 94-
10-2, University of Delaware, October 1994, 46 pp.

14. NIST Time and Frequency Dissemination Services. NBS
Special Publication 432 (Revised 1990), National Insti-
tute of Science and Technology, U.S. Department of
Commerce, 1990.

15. Stein, S.R. Frequency and time - their measurement and
characterization (Chapter 12). In: E.A. Gerber and A.
Ballato (Eds.). Precision Frequency Control, Vol. 2,
Academic Press, New York 1985, 191-232, 399-416.
Also in: Sullivan, D.B., D.W. Allan, D.A. Howe and F.L.
Walls (Eds.). Characterization of Clocks and Oscilla-
tors. National Institute of Standards and Technology
Technical Note 1337, U.S. Government Printing Office
(January, 1990), TN61-TN119.

11

5 References 10-14 are available from Internet archives in PostScript format. Contact the author for location and
availability.

