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Abstract

This paper describes the Network Time Protocol (NTP), which is designed to distribute time
information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses
a symmetric architecture in which a distributed subnet of time servers operating in a self-organizing,
hierarchical configuration synchronizes local clocks within the subnet and to national time standards
via wire, radio or calibrated atomic clock. The servers can also redistribute time information within
a network via local routing algorithms and time daemons.

This paper also discusses the architecture, protocol and algorithms, which were developed over
several years of implementation refinement and resulted in the designation of NTP as an Internet
Standard protocol. The NTP synchronization system, which has been in regular operation in the
Internet for the last several years, is described along with performance data which shows that
timekeeping accuracy throughout most portions of the Internet can be ordinarily maintained to within
a few milliseconds, even in cases of failure or disruption of clocks, time servers or networks.

Keywords: network clock synchronization, standard
time distribution, fault-tolerant architecture, maximum-
likelihood principles, disciplined oscillator, internet pro-
tocol.

1.  Introduction

Accurate, reliable time is necessary for financial and
legal transactions, transportation and distribution sys-
tems and many other applications involving widely dis-
tributed resources. How do hosts in a large, dispersed
networking community know what time it is? How ac-
curate are their clocks? In a recent survey involving
94,260 hosts of the Internet system, 20,758 provided
local time using three time-transfer protocols [24]. About
half of the replies had errors greater than two minutes,
while ten percent had errors greater than four hours. A
few had errors over two weeks. Most local clocks are set
by eyeball-and-wristwatch to within a minute or two and
rarely checked after that. Many of these are maintained
by some sort of battery-backed clock-calendar device
using a room-temperature quartz oscillator that may drift
as much as a second per day and can go for weeks
between manual corrections. For many applications, es-
pecially distributed internet applications, much greater
accuracy and reliability is required.

This paper presents an overview of the architecture,
protocol and algorithms of the Network Time Protocol
(NTP) used in the Internet system to synchronize clocks
and coordinate time distribution. The Internet consists of
over 100,000 hosts on over 1500 packet-switching net-
works interconnected by a similar number of gateways.
In this paper the capitalized Internet refers to this par-
ticular system, while the uncapitalized internet refers to
any generic system of multiple networks interconnected
by gateways. While the Internet backbone networks and
gateways are carefully engineered for good service, op-
erating speeds and service reliability vary considerably
throughout the system. This places severe demands on
NTP, which must deliver accurate and reliable time in
spite of component failures, service disruptions and pos-
sibly mis-engineered implementations.

In the remainder of this introductory Section 1, issues in
the requirements, approaches and comparisons with pre-
vious work are discussed. The architecture of the NTP
synchronization system, including the primary reference
sources and distribution mechanisms, is described in
Section 2. An overview of the NTP protocol and modes
of operation is given in Section 3. Section 4 describes the
algorithms used to improve the accuracy of measure-
ments made over Internet paths and to select the best
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from among a set of available clocks for synchronization.
Section 5 describes a local-clock design based on a type
of phase-lock loop and capable of long-term accuracies
to the order of a few milliseconds. The international NTP
synchronization system of time servers now operating in
the Internet is described and its performance assessed in
Section 6. Section 7 discusses further development and
issues for future research. This paper itself is an updated
and condensed version of [23].

1.1. Definitions

In this paper the stability of a clock is how well it can
maintain a constant frequency, the accuracy is how well
its time compares with national standards and the preci-
sion is how precisely time can be resolved in a particular
timekeeping system. The offset of two clocks is the time
difference between them, while the skew is the frequency
difference between them. The reliability of a timekeep-
ing system is the fraction of the time it can be kept
operating and connected in the network (without respect
to stability and accuracy). Local clocks are maintained
at designated time servers, which are timekeeping sys-
tems belonging to a synchronization subnet, in which
each server measures the offsets between its local clock
and the clocks of its neighbor servers or peers in the
subnet. In this paper to synchronize frequency means to
adjust the clocks in the subnet to run at the same fre-
quency, to synchronize time means to set them to agree
at a particular epoch with respect to Coordinated Univer-
sal Time (UTC), as provided by national standards, and
to synchronize clocks means to synchronize them in both
frequency and time.

1.2. Performance Requi rements

Internet transmission paths can have wide variations in
delay and reliability due to traffic load, route selection
and facility outages. Stable frequency synchronization
requires stable local-clock oscillators and multiple offset
comparisons over relatively long periods of time, while
reliable time synchronization requires carefully engi-
neered selection algorithms and the use of redundant
resources and diverse transmission paths. For instance,
while only a few offset comparisons are usually adequate
to determine local time in the Internet to within a few
tens of milliseconds, dozens of measurements over some
days are required to reliably stabilize frequency to a few
milliseconds per day. Thus, the performance require-
ments of an internet-based time synchronization system
are particularly demanding. A basic set of requirements
must include the following:

1. The primary reference source(s) must be synchro-
nized to national standards by wire, radio or cali-
brated atomic clock. The time servers must deliver
continuous local time based on UTC, even when
leap seconds are inserted in the UTC timescale.

2. The time servers must provide accurate and precise
time, even with relatively large delay variations on
the transmission paths. This requires careful design
of the filtering and combining algorithms, as well as
an extremely stable local-clock oscillator and syn-
chronization mechanism.

3. The synchronization subnet must be reliable and
survivable, even under unstable network conditions
and where connectivity may be lost for periods up
to days. This requires redundant time servers and
diverse transmission paths, as well as a dynamically
reconfigurable subnet architecture.

4. The synchronization protocol must operate continu-
ously and provide update information at rates suffi-
cient to compensate for the expected wander of the
room-temperature quartz oscillators used in ordi-
nary computer systems. It must operate efficiently
with large numbers of time servers and clients in
continuous-polled and procedure-call modes and in
multicast and point-to-point configurations.

5. The system must operate in existing internets in-
cluding a spectrum of machines ranging from per-
sonal workstations to supercomputers, but make
minimal demands on the operating system and sup-
porting services. Time-server software and espe-
cially client software must be easily installed and
configured.

In addition to the above, and in common with other
generic, promiscuously distributed services, the system
must include protection against accidental or willful
intrusion and provide a comprehensive interface for net-
work management. In NTP address filtering is used for
access control, while encrypted checksums are used for
authentication. Network management presently uses a
proprietary protocol with provisions to migrate to stand-
ard protocols where available.

1.3. Discussion of Approaches

There are many ways that time servers distributed
throughout a large geographic area can synchronize
clocks to UTC. In North America the U.S. and Canada
operate broadcast radio services with a UTC timecode
modulation which can be decoded by suitable receivers.
One approach to time synchronization is to provide
timecode receivers at every site where required. How-
ever, these receivers are specialized, moderately expen-
sive and subject to occasional gross errors due to
propagation and equipment failures. A comprehensive
summary of radio synchronization techniques can be
found in [4].

The U.S. National Institute of Standards and Technology
(NIST) (formerly National Bureau of Standards), re-
cently announced a computer time service available to
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the general public by means of a standard telephone
modem [26]. The service is intended for use by personal
workstations to set clock-calendars, for example, but
would not be suitable for a large population of clients
calling on a frequent, regular basis without further redis-
tribution.

In principle, it is possible to use special network facilities
designed for time synchronization, such as timecode
rebroadcasts on a dedicated FM or TV subcarrier or cable
system. For many years AT&T has synchronized digital
switching equipment to the Basic Synchronization Ref-
erence Frequency (BSRF), which consists of a master
oscillator synchronized to UTC and a network of dedi-
cated 2048-kHz links embedded in the transmission
plant. AT&T and other carriers are planning to use the
Global Positioning System and the LORAN-C ra-
dionavigation system to synchronize switches in various
areas of the country. However, neither of these methods
would be economically viable for widespread deploy-
ment in a large, diverse internet system.

Current network clock synchronization techniques have
evolved from both linear systems and Byzantine agree-
ment methodologies. Linear methods for digital tele-
phone network synchronization are summarized in [16],
while Byzantine methods for clock synchronization are
summarized in [15]. While reliable clock synchroniza-
tion has been studied using agreement algorithms [15],
[33], in practice it is not possible to distinguish the
truechimer clocks, which maintain timekeeping accu-
racy to a previously published (and trusted) standard,
from the falseticker clocks, which do not, on other than
a statistical basis. In addition, the algorithms discussed
in the literature do not necessarily produce the most
accurate and precise time on a statistical basis and may
produce unacceptable network overheads and instabili-
ties in a large, diverse internet system.

In an internet system involving many networks and gate-
ways a useful approach is to equip a few strategically
located hosts or gateways with timecode receivers or
calibrated atomic clocks and coordinate time distribution
using a suitable protocol. Various Internet protocols have
been used to record and transmit the time at which an
event takes place, including the Daytime protocol [28],
Time protocol [29], ICMP Timestamp message [7] and
IP Timestamp option [34]. The Unix 4.3bsd time daemon
timed uses an elected master host to measure offsets of a
number of slave hosts and send periodic corrections to
them [11]. While addressing no particular protocol archi-
tecture, the schemes proposed in [6] have features in
common with NTP, including master-slave synchroniza-
tion with provisions for failures and changing system
load. However, none of these protocols includes engi-
neered algorithms to compensate for the effects of statis-
tical delay variations encountered in wide-area networks

and are unsuitable for precision time distribution
throughout the Internet.

It became evident, as the algorithms used in NTP evolved
over a nine-year period of experiment and stepwise
refinement, that accurate and reliable internet time syn-
chronization can be achieved only through an integrated
approach to system design, including the primary refer-
ence sources, time servers, synchronization subnets, pro-
tocols and synchronization mechanisms which are at the
heart of this paper. From an analytical point of view the
distributed system of NTP time servers operates as a
hierarchically organized subnet of loosely coupled time
servers which exchange periodic update messages con-
taining precision timestamps to adjust local oscillator
phase and frequency. The principal features of this de-
sign, described in more detail later in this paper, can be
summarized as follows:

1. The synchronization subnet consists of a self-organ-
izing, hierarchical network of time servers config-
ured on the basis of estimated accuracy, precision
and reliability.

2. The synchronization protocol operates in connec-
tionless mode in order to minimize latencies, sim-
plify implementations and provide ubiquitous
interworking.

3. The synchronization mechanism uses a symmetric
design which tolerates packet loss, duplication and
mis-ordering, together with filtering, selection and
combining algorithms based on maximum-likeli-
hood principles.

4. The local-clock design is based on a type II, adap-
tive-parameter, phase-lock loop with corrections
computed using timestamps exchanged along the
arcs of the synchronization subnet.

5. Multiply redundant time servers and multiply di-
verse transmission paths are used in the synchroni-
zation subnet, as well as engineered algorithms
which select the most reliable synchronization
source(s) and path(s) using weighted-voting proce-
dures.

6. System overhead is reduced through the use of dy-
namic control of phase-lock loop bandwidths, poll
intervals and association management.

2.  Time Standards and Distribution

Since 1972 the time and frequency standards of the world
have been based on International Atomic Time (TAI),
which is currently maintained using multiple cesium-
beam clocks to an accuracy of a few parts in 1012 [1].
The International Bureau of Weights and Measures uses
astronomical observations provided by the U.S. Naval
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Observatory and other observatories to determine cor-
rections for small changes in the mean solar rotation
period of the Earth, which results in Coordinated Univer-
sal Time (UTC). UTC is presently slow relative to TAI
by a fraction of a second per year, so corrections in the
form of leap seconds must be inserted in TAI from time
to time in order to maintain agreement. The U.S. and
many other countries operate standard time and fre-
quency broadcast stations covering most areas of the
world, although only a few utilize a timecode modulation
suitable for computer use.

The NTP system consists of a network of primary and
secondary time servers, clients and interconnecting
transmission paths. A primary time server is directly
synchronized to a primary reference source, usually a
timecode receiver or calibrated atomic clock. A secon-
dary time server derives synchronization, possibly via
other secondary servers, from a primary server over
network paths possibly shared with other services. Under
normal circumstances clock synchronization is deter-
mined using only the most accurate and reliable servers
and transmission paths, so that the actual synchroniza-
tion paths usually assumes a hierarchical configuration
with the primary reference sources at the root and servers
of decreasing accuracy at increasing levels toward the
leaves.

Following conventions established by the telephone in-
dustry, the accuracy of each time server is defined by a
number called the stratum, with the reference level (pri-
mary servers) assigned as one and each succeeding level
towards the leaves (secondary servers) assigned as one
greater than the preceding level [2]. Using existing sta-
tions and available timecode receivers with computed
propagation-delay corrections, accuracies in the order of
a millisecond can be achieved at the network interface of
a primary server. As the stratum increases from one, the
accuracies achievable will degrade depending on the
network paths and local-clock stabilities. 

The synchronization subnet is organized using a variant
of the Bellman-Ford distributed routing algorithm to
compute the minimum-weight spanning trees rooted at
the primary reference sources [3]. The distance metric is
determined first by stratum, then by total roundtrip path
delay to the root, called the synchronization distance.
The timekeeping quality at a particular peer is deter-
mined by a sum of weighted offset differences, called the
dispersion. The total dispersion to the root due to all
causes is called the synchronization dispersion.

3.  Network Time Protocol

The Network Time Protocol (NTP), now established as
an Internet Standard protocol [22], is used to organize
and maintain a set of time servers and transmission paths
as a synchronization subnet. NTP is built on the Internet

Protocol (IP) [8] and User Datagram Protocol (UDP)
[27], which provide a connectionless transport mecha-
nism; however, it is readily adaptable to other protocol
suites. It is evolved from the Time Protocol [29] and the
ICMP Timestamp Message [7], but is specifically de-
signed to maintain accuracy and reliability, even when
used over typical Internet paths involving multiple gate-
ways and unreliable networks.

There are no provisions for peer discovery, configuration
or acquisition in NTP itself, although some implementa-
tions include these features. Data integrity are provided
by the IP and UDP checksums. No circuit-management,
duplicate-detection or retransmission facilities are pro-
vided or necessary. The protocol can operate in several
modes appropriate to different scenarios involving pri-
vate workstations, public servers and various network
configurations. A lightweight association-management
capability, including dynamic reachability and variable
poll-interval mechanisms, is used to manage state infor-
mation and reduce resource requirements. Optional fea-
tures include message authentication based on
crypto-checksums and provisions for remote control and
monitoring. Since only a single NTP message format is
used, the protocol is easily implemented and can be used
in a variety of operating-system and networking environ-
ments.

In NTP one or more primary servers synchronize directly
to external reference sources such as timecode receivers.
Secondary time servers synchronize to the primary serv-
ers and others in the synchronization subnet. A typical
subnet is shown in Figure 1a, in which the nodes repre-
sent subnet servers, with normal stratum numbers deter-
mined by the hop count to the root, and the heavy lines
the active synchronization paths and direction of timing
information flow. The light lines represent backup syn-
chronization paths where timing information is ex-
changed, but not necessarily used to synchronize the
local clocks. Figure 1b shows the same subnet, but with
the line marked x out of service. The subnet has re-con-
figured itself automatically to use backup paths, with the
result that one of the servers has dropped from stratum 2
to stratum 3.

The following subsections contain an overview of the
data formats, entities, state variables and procedures used
in NTP. Further details are contained in the formal speci-
fication [22]. The specification is based on the imple-
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Figure 1. Subnet Synchronization
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mentation model illustrated below, but it is not intended
that this model be the only one upon which a specifica-
tion can be based. In particular, the specification is
intended to illustrate and clarify the intrinsic operations
of NTP and serve as a foundation for a more rigorous,
comprehensive and verifiable specification.

3.1. Determining Time and Frequency

Figure 2 shows the overall organization of the NTP
time-server model. Timestamps exchanged between the
server and possibly many other subnet peers are used to
determine individual roundtrip delays and clock offsets,
as well as provide reliable error estimates. Figure 3
shows how the timestamps are numbered and exchanged
between server A and peer B. Let Ti, Ti−1, Ti−2, Ti−3 be
the values of the four most recent timestamps as shown
and let a = Ti−2 − Ti−3 and b = Ti−1 − Ti. Then, the
roundtrip delay δi and clock offset θi of B relative to A at
time Ti are:

δi = a − b    and    θi = 
a + b

2
 .

In the present NTP version (2) errors due to local-clock
resolution and skew are minimized by the control-feed-
back design shown in Figure 2. In practice, errors due to
stochastic network delays dominate; however, it is not
usually possible to characterize network delays as a
stationary random process, since network queues can
grow and shrink in chaotic fashion and arriving customer
traffic is frequently bursty.

Nevertheless, it is a simple exercise to calculate bounds
on network errors as a function of measured delay. The
true offset of B relative to A is called θ in Figure 3. Let x

denote the actual delay between the departure of a mes-
sage from A and its arr ival  at B. Therefore,
x + θ = Ti−2 − Ti−3 ≡ a. Since x must be positive in our
universe, x = a − θ ≥ 0, which requires θ ≤ a. A similar
argument requires that b ≤ θ, so surely b ≤ θ ≤ a. This
inequality can also be expressed

b = 
a + b

2
 − 

a − b
2

 ≤ θ ≤ 
a + b

2
 + 

a − b
2

 = a ,

which is equivalent to

θi − 
δi

2
 ≤ θ ≤ θi + 

δi

2
 .

In other words, the true clock offset must lie in the
interval of size equal to the measured delay and centered
about the measured offset.

Each NTP message includes the latest three timestamps
Ti−1, Ti−2 and Ti−3, while the fourth timestamp Ti is
determined upon arrival of the message. Thus, both the
server and the peer can independently calculate delay
and offset using a single message stream. This can be
described as a symmetric, continuously sampled, time-
transfer method similar to those used in some digital
telephone networks [25]. Among its advantages are that
the transmission times and received message orders are
unimportant and that reliable delivery is not required.
Obviously, the accuracies achievable depend upon the
statistical properties of the outbound and inbound data
paths. Further analysis and experimental results bearing
on this issue can be found below and in [5], [19] and [20].

As shown in Figure 2, the computed delays and offsets
are processed in the data filters to reduce incidental
timing noise and the most accurate and reliable subset
determined by the peer-selection algorithm. The result-
ing offsets of this subset are first combined on a
weighted-average basis and then processed by a phase-
lock loop (PLL). In the PLL the combined effects of the
filtering, selection and combining operations are to pro-
duce a phase-correction term, which is processed by the
loop filter to control the local clock, which functions as
a voltage-controlled oscillator (VCO). The VCO fur-
nishes the timing (phase) reference to produce the times-
tamps used in the above calculations.

Data Filter

Data Filter

Data Filter

Peer Selection
Clock

Combining
Loop Filter

VCO

Network

Phase-Locked Oscillator

Figure 2. Network Time Protocol

θ

Ti−3 Ti

Ti−2 Ti−1

A

B

Figure 3. Measuring Delay and Offset
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3.2. Modes of Operation

NTP time servers can operate in one of three service
classes: multicast, procedure-call and symmetric. These
classes are distinguished by the number of peers in-
volved, whether synchronization is to be given or re-
ceived and whether state information is retained. The
multicast class is intended for use on high speed LANs
with numerous workstations and where the highest ac-
curacies are not required. In the typical scenario one or
more time servers operating in multicast mode send
periodic NTP broadcasts. The workstation peers operat-
ing in client mode then determine the time on the basis
of an assumed delay in the order of a few milliseconds.
By operating in multicast mode the server announces its
willingness to provide synchronization to many other
peers, but to accept NTP messages from none of them.

The procedure-call class is intended for operation with
file servers and workstations requiring the highest ac-
curacies or where multicast mode is unavailable or inap-
propriate. In the typical scenario a time server operating
in client mode sends an NTP message to a peer operating
in server mode, which then interchanges the addresses,
inserts the requested timestamps, recalculates the check-
sum and optional authenticator and returns the message
immediately. By operating in client mode a server an-
nounces its willingness to be synchronized by, but not
provide synchronization to a peer. By operating in server
mode a server announces its willingness to provide syn-
chronization to, but not be synchronized by a peer.

While the multicast and procedure-call classes may suf-
fice on LANs involving public time servers and perhaps
many private workstation clients, the full generality of
NTP requires distributed participation of a number of
time servers arranged in a dynamically reconfigurable,
hierarchically distributed configuration. This is the mo-
tivation for the symmetric modes (active and passive).
By operating in these modes a server announces its
willingness to synchronize to or be synchronized by a
peer, depending on the peer-selection algorithm. Sym-
metric active mode is designed for use by servers oper-
ating near the leaves (high stratum levels) of the
synchronization subnet and with pre-configured peer
addresses. Symmetric passive mode is designed for use
by servers operating near the root (low stratum levels)
and with a relatively large number of peers on an possibly
intermittent basis.

When a pair of servers operating in symmetric modes
first exchange messages, a loosely coupled connection
or association is created. Each server creates an instan-
tiation of the NTP protocol machine with persistent state
variables; however, the main purpose of the protocol
machine is not to assure delivery but to preserve times-
tamps and related information. In symmetric modes the

servers refresh reachability status as each message is
received and dissolve the association and recover state
storage if this status has not been refreshed for a consid-
erable time.

3.3. Data Formats

All mathematical operations assumed in the protocol are
two’s-complement arithmetic with integer or fixed-point
operands. Since NTP timestamps are cherished data and,
in fact, represent the main product of the protocol, a
special format has been established. An NTP timestamp
is a 64-bit unsigned fixed-point number, with the integer
part in the first 32 bits and the fraction part in the last 32
bits and interpreted in standard seconds relative to UTC.
When UTC began at 0h on 1 January 1972 the NTP clock
was set to 2,272,060,800.0, representing the number of
standard seconds since this time at 0h on 1 January 1900
(assuming no prior leap seconds).

This format allows convenient multiple-precision arith-
metic and conversion to other formats used by various
protocols of the Internet suite. The precision of this
representation is about 232 picoseconds, which should
be adequate for even the most exotic requirements. Note
that since some time in 1968 the most significant bit of
the 64-bit field has been set and that the field will
overflow some time in 2036. Should NTP be in use in
2036, some external means will be necessary to qualify
time relative to 1900 and subsequent 136-year cycles.
Historic timestamped data of such precision and requir-
ing such qualification will be so precious that appropriate
means should be readily conceived.

Timestamps are determined by copying the current value
of the local clock to a timestamp variable when some

LI VN Mode Precision

Synchronizing Distance 

PollStratum

Synchronizing Dispersion

Transmit Timestamp (64 bits)

Reference Timestamp (64 bits)

Originate Timestamp (64 bits)

Receive Timestamp (64 bits)

Authenticator (optional) (96 bits)

Figure 4. NTP Packet Header
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significant event occurs, such as the arrival of a message.
In some cases a particular variable may not be available,
such as when the server is rebooted or the protocol is
restarted. In these cases the 64-bit field is set to zero,
indicating an invalid or undefined value. There exists a
232-picosecond interval, henceforth ignored, every 136
years when the 64-bit field will naturally become zero
and thus be considered invalid.

3.4. State Variables

Following is a summary description of the important
variables and parameters used by the protocol. In the
symmetric modes a set of state variables is maintained
for each association. In other modes these variables have
a fleeting persistence lasting only until the reply message
has been formulated and sent. Further discussion on
some of these variables is given later in this paper. A
complete description is given in [22].

Figure 4 shows the NTP packet-header format, which
follows the IP and UDP headers. Following is a short
description of the various fields.

Leap Indicator (LI). Warns of an impending leap second
to be inserted or deleted in the UTC timescale at the
end of the current day.

Version Number (VN). Identifies the present NTP ver-
sion (2).

Mode, Stratum, Precision. Indicate the current operating
mode, stratum and local-clock precision.

Poll Interval (Poll). The current desired interval between
NTP messages sent. Each server uses the minimum
of its own poll interval and that of the peer.

Synchronization Distance, Synchronization Dispersion.
Indicates the total roundtrip delay and total disper-
sion, respectively, to the primary reference source.

Reference Clock Identifier, Reference Timestamp. Iden-
tifies the type of reference clock and the time of its
last update; intended primarily for management
functions.

Originate Timestamp. The peer time when the last re-
ceived NTP message was originated, copied from its
transmit timestamp field upon arrival (Ti−3 above).

Receive Timestamp. The local time when the latest NTP
message was received (Ti−2 above).

Transmit Timestamp. The local time when this NTP
message was transmitted (Ti−1 above).

Authenticator (optional). The key identifier and en-
crypted checksum of the message contents.

The NTP protocol machine maintains state variables for
each of the above quantities and, in addition, other state
variables, including the following:

Addresses and Ports. The 32-bit Internet addresses and
16-bit port numbers of the server and peer, which
serve to identify the association.

Peer Timer. A counter used to control the intervals
between transmitted NTP messages.

Reachability Register. A shift register used to determine
the reachability status of a peer.

Filter Register. A shift register used by the data-filtering
algorithm, where each stage stores a tuple consisting
of the measured delay and offset associated with a
single delay/offset sample.

Delay, Offset, Dispersion. Indicate the current roundtrip
delay, clock offset and filter dispersion produced by
the data-filtering algorithm.

Synchronization Source. Identifies the peer currently
used to synchronize the local clock, as determined
by the peer-selection algorithm.

Local Clock. The current local time as derived from the
local clock.

3.5. Procedures

The significant events of interest in NTP occur upon
expiration of a peer timer, one of which is dedicated to
each association, and upon arrival of an NTP message.
An event can also occur as the result of an operator
command or detected system fault, such as a primary
reference source failure. This subsection briefly summa-
rizes the procedures invoked when these events occur.

The transmit procedure is called when a peer timer
decrements to zero. When this occurs the peer timer is
reset and an NTP message is sent including the addresses,
variables and timestamps described above. The value
used to reset the timer is called the poll interval and is
adjusted dynamically to reflect dispersive delays and
reachability failures.

The receive procedure is called upon arrival of an NTP
message, which is then matched with the association
indicated by its addresses and ports. This results in the
creation of a persistent association for a symmetric mode
or a transient one for the other modes. Following a set of
sanity checks the raw roundtrip delay and raw clock
offset sample are calculated as described previously. A
weighted voting procedure described in Section 4 deter-
mines the best in a sequence of raw samples and also an
error estimator called the filter dispersion. The final
values of roundtrip delay, clock offset and filter disper-
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sion are determined using the minimum-filter algorithm
described in Section 4.

The update procedure is called when a new set of esti-
mates becomes available. A weighted voting procedure
described in Section 4 determines the best peer, which
may result in a new synchronization source, and also an
error estimator called the select dispersion. If the syn-
chronization source is the peer for which the estimates
have just been produced, the estimated offset is used to
adjust the local clock as described in Section 5. If due to
a significant discrepancy the local clock is reset, rather
than gradually slewed to its final value, the procedure
expunges all timing information, resets the poll intervals
and re-selects the synchronization source, if necessary.
A new synchronization source will be determined when
the data filters fill up again and the dispersions settle
down.

3.6. Robustness Issues

It has been the experience of the Internet community that
something somewhere in the system is broken at any
given time. This caveat applies to timecode receivers,
time servers and synchronization paths, any of which can
misbehave to produce a bogus timestamp popularly
known as a timewarp. The very nature of time synchro-
nization requires that it be extremely robust against time-
warps and capable of operation even when major
breakdowns or attempted break-ins occur. This subsec-
tion describes some of the measures taken to deal with
these problems, including reachability, authentication
and poll control.

As shown previously, reliable time synchronization does
not require reliable message delivery; however, in order
to minimize resource requirements, resist using very old
data and manage the memory resources required, a sim-
ple reachability protocol is used in which a peer is
considered unreachable if no messages are received dur-
ing eight consecutive poll intervals. In the active modes
the peer is marked unreachable, but polls continue;
while, in the passive modes the association is dissolved
and its resources reclaimed for subsequent use.

Special sanity checks are provided to avoid disruptions
due to system reboot, protocol restart or malfunction. For
instance, if the transmit timestamp of a message is iden-
tical to one previously received, the message is a dupli-
cate or replay and may contain bogus data. Since
precision timestamps are difficult to spoof, the originate
timestamp makes a fairly effective one-time pad. If a
message contains an originate timestamp that does not
match the transmit timestamp of the last message trans-
mitted, the message is either out of order, from a previous
association or bogus. Additional checks protect against
using very old time information and from associations
not completely synchronized.

Where security considerations require the highest level
of protection against message modification, replay and
other overt attacks, the NTP specification includes op-
tional cryptographic authentication procedures. The pro-
cedures are used to insure an unbroken chain of
authenticated associations within the synchronization
subnet to the primary servers. An authenticator, consist-
ing of a key identifier and encrypted checksum, is com-
puted using the DES encryption algorithm [9] and DES
cipher block-chaining method [10]. Some implementa-
tions incorporate special provisions to compensate for
the delays inherent in the encryption computations.

Careful consideration was given during design to factors
affecting network overheads. Some of the present In-
ternet time servers operate with over 100 peers and a few
operate with many more than that. Therefore, it is impor-
tant that the longest poll intervals consistent with the
required accuracy and stability be used. When reachabil-
ity is first confirmed and when dispersions are high it is
necessary to use a relatively wide PLL bandwidth, which
requires a poll interval no greater than about a minute.
When the association has stabilized and dispersions are
low, the PLL bandwidth can be reduced to improve
stability, which allows the poll interval to be increased
substantially. In the present design the poll interval is
increased gradually from about one minute to about 17
minutes as long as the filter dispersion is below an
experimentally determined threshold; otherwise, it is
decreased gradually to its original value.

4.  Filtering, Selection and Combining Opera-
tions

At the very heart of the NTP design are the algorithms
used to improve the accuracy of the estimated delays and
offsets between the various servers, as well as those used
to select a particular peer for synchronization. The com-
plexity of these algorithms depends on the statistical
properties of the transmission path, as well as the accura-
cies and precisions required. Since Internet paths often
involve multiple hops over networks of widely varying
characteristics, it is not possible to design one set of
algorithms optimized for a particular path. Another fac-
tor considered is to avoid the use of multiply/divide
operations in favor of simple shifts in order to facilitate
implementation on dedicated microprocessors.

A good deal of research has gone into mechanisms to
synchronize clocks in a community where some clocks
cannot be trusted. Determining whether a particular
clock can be trusted is an interesting abstract problem
which can be attacked using methods such as described
in [14], [15], [18] and [31]. A number of algorithms for
filtering, smoothing and classifying timekeeping data
have been described in the literature [1], [6], [12], [13],
[19], including convergence algorithms, which attempt
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to reduce errors by repeatedly casting out statistical
outlyers, and consistency algorithms, which attempt to
classify subsets of clocks as trusted or not by comparing
statistics such as mean and variance. The NTP data-fil-
tering algorithm, which attempts to improve the offset
estimate for a single clock, given a series of observations,
belongs to the former class. The NTP peer-selection
algorithm, which attempts to find the best (i.e., the most
reliable) clocks from a population, belongs to the latter
class.

4.1. Data-Filtering Algorithm

Interactive convergence algorithms use statistical clus-
tering techniques such as the fault-tolerant average
(FAT) algorithm of [12], the CNV algorithm of [17], the
majority-subset algorithm of [19], the non-Byzantine
algorithm of [30] and the egocentric algorithm of [31].
A variation on the FAT algorithm suggested in a recent
paper [6] attempts to bound the offset errors when read-
ing a remote clock by casting out readings where the
measured roundtrip delay is above a specified value. This
algorithm has features in common with the NTP data-fil-
tering algorithm, but does not take advantage of the
improved accuracy possible using a statistical analysis
such as described in this section.

The NTP data-filtering algorithm, which has been
evolved over several years of experimentation and expe-
rience with Internet paths, is designed specifically to
provide high accuracy together with low computational
burden. Recall that the roundtrip delay δ and clock offset
θ are computed from the four most recent timestamps.
Without making any assumptions about the delay distri-
butions due to packet queueing in either direction along
the path, but assuming the skew between the server and
peer clocks is relatively small, let (δ, θ) represent the
delay and offset when the path is otherwise idle and thus
the true values. The problem is to produce an accurate
estimator (δ̂, θ̂) from a sample population (δi, θi) col-
lected for the path over an appropriate interval under
normal traffic conditions.

The approach used in the design of the data-filtering
algorithm was suggested by the observation that packet-
switching networks are most often operated well below
the knee of the throughput-delay curve, which means that
packet queues are mostly small with relatively infrequent
surges. In addition, the routing algorithm most often
operates to minimize the number of packet-switch hops
and thus the number of queues. Thus, not only is the
probability that an NTP packet finds a busy queue in one
direction relatively low, but the probability of packets
from a single exchange finding busy queues in both
directions is even lower. Therefore, the best offset sam-
ples should occur at the lowest delays,

This observation suggests the design of a minimum filter,
which selects from the n most recent samples (δi, θi),
(δi−1, θi−1), ..., (δi−n+1, θi−n+1) the sample with lowest
delay δj and produces (δj, θj) as the estimator (δ̂, θ̂).
Several experiments were made to evaluate this design
using measurements between NTP primary servers, so
that delays and offsets could be determined inde-
pendently of the measurement procedure itself [24]. The
experiments were performed over several paths involv-
ing ARPANET, NSFNET and various LANs and using
minimum filters and various other algorithms based on
median and trimmed-mean statistics. The results show
consistently lower errors for the minimum filter when
compared the other algorithms. Perhaps the most dra-
matic result with the minimum filter is the greatly re-
duced maximum error under conditions of high levels of
network traffic.

The delay/offset characteristics of a typical Internet path
are illustrated in Figure 5, which is a scatter diagram
plotting θ versus δ points for a path between primary
servers on the east and west coasts over an interval of
about a week. This particular path involves seven net-
works and twelve gateways and is among the most
complex in the NTP synchronization subnet. Under low-
traffic conditions the points are concentrated about the
apex of the wedge and begin to extend rightward along
the extrema lines as the network traffic increases. As the
traffic continues to increase, the points begin to fill in the
wedge as it expands even further rightward. This behav-
ior is characteristic of typical Internet paths involving
ARPANET, NSFNET and regional networks. From
these data it is obvious that good estimators (δ̂, θ̂) are
points near the apex, which is exactly what the minimum
filter is designed to produce.

In the reference implementation, samples (δi, θi) are
shifted into an eight-stage shift register from one end,
causing old samples to shift off the other. Then, all eight
samples are placed on a temporary list and sorted in order
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of increasing δ. The first sample on the list (δ0, θ0)
represents the estimators (δ̂, θ̂), which are recorded for
each peer separately for later processing by the selection
and combining algorithms.

The filter dispersion is interpreted as a quality indicator,
with increasing values associated with decreasing qual-
ity and weight in the selection and combining algorithms.
A good estimator which counts samples near the apex of
the wedge most heavily and is easily computable is the
weighted differences of the θi in the sorted temporary list
relative to θ0. Assume the list has n > 1 entries (n = 8 in
this case) with (δj, θj) (j = 0, 1, ..., n − 1) samples in order
of increasing δi. The filter dispersion ε is defined

ε = ∑ 
j = 0

n − 1

|θj − θ0| v
 j ,

where v is an experimentally adjusted weight factor,
v = 0.5 in the reference implementation. The filter dis-
persion is recorded for each peer separately for later
processing by the selection and combining algorithms.

4.2. Peer-Selection and Combining Algorithms

The single most important contributing factor in main-
taining high reliability with NTP is the peer-selection and
combining algorithms. When new offset estimates are
produced for a peer or are revised as the result of timeout,
this mechanism is used to determine which peer should
be selected as the synchronization source and how to
adjust the local-clock, stratum and related variables.

Interactive consistency algorithms are designed to toler-
ate faulty clock processes which might indicate grossly
inconsistent offsets in successive readings or to different
readers. These algorithms use an agreement protocol
involving successive rounds of readings, possibly re-
layed and possibly augmented by digital signatures. Ex-
amples include the fireworks algorithm of [12] and the
optimum algorithm of [33]. However, these algorithms
as described require an excessive burden of messages,
especially when large numbers of clocks are involved,
and require statistically awkward assumptions in order
to certify correctness.

While drawing upon the technology of agreement algo-
rithms, the NTP peer-selection algorithm is not strictly
one of them, but an adaptation based on maximum-like-
lihood statistical principles and the pragmatic observa-
tion that the highest reliability is usually associated with
the lowest stratum and synchronization dispersion, while
the highest accuracy is usually associated with the lowest
stratum and synchronization distance. A key design as-
sumption is that truechimers are relatively numerous and
represented by random variables narrowly distributed
about UTC in the measurement space, while falsetickers

are relatively rare and represented by random variables
widely distributed throughout the measurement space.

The peer-selection algorithm begins by constructing a
list of candidate peers sorted first by stratum and then by
synchronization dispersion. To be included on the can-
didate list a peer must pass several sanity checks de-
signed to detect blatant errors and defective
implementations. If no peers pass the sanity checks, the
existing synchronization source, if any, is cancelled and
the local clock free-runs at its intrinsic frequency. The
list is then pruned from the end to a predetermined
maximum size and maximum stratum.

The next step is designed to detect falsetickers or other
conditions which might result in gross errors. The candi-
date list is re-sorted in the order first by stratum and then
by synchronization distance. Let m > 0 be the number of
candidates remaining in the list and let θj be the offset of
the jth candidate. For each j (0 ≤ j < m) the select disper-
sion εj relative to candidate j is defined

εj = ∑ 
k = 0

m − 1

|θj − θk| w
 k ,

where w is a factor experimentally adjusted for the
desired characteristic (see below). Then discard the can-
didate with maximum εj or, in case of ties the maximum
j, and repeat the procedure. The procedure terminates
when the maximum select dispersion over all candidates
remaining on the list is less than the minimum filter
dispersion of any candidate or until only a single candi-
date remains.

The above procedures are designed to favor those peers
near the beginning of the candidate list, which are at the
lowest stratum and lowest delay and presumably can
provide the most accurate time. With proper selection of
weight factor w, outlyers will be discarded from the end
of the list, unless some other entry disagrees significantly
with respect to the remaining entries, in which case that
entry is discarded. For example, with w = 0.75 as used in
the reference implementation, a single stratum-2 server
at the end of the candidate list will swing the vote
between two stratum-1 servers that disagree with each
other. While these outcomes depend on judicious choice
of w, the behavior of the algorithm is substantially the
same for values of w between 0.5 and 1.0.

The offsets of the peers remaining on the candidate list
are statistically equivalent, so any of them can be chosen
to adjust the local clock. Some implementations combine
them using a weighted-average algorithm similar to that
described in [1], in which the offsets of the peers remain-
ing on the list are weighted by estimated error to produce
a combined estimate. In these implementations the error

10



estimate is taken to be the reciprocal of synchronization
dispersion.

The update procedure also sets the local stratum to one
greater than the stratum of the selected peer. In addition,
the server synchronization distance - the sum of the total
roundtrip delays to the root of the synchronization sub-
net, as well as the server synchronization dispersion - the
sum of the total dispersions to the root of the synchroni-
zation subnet, are calculated and recorded in a system
state variable. All three of these quantities are included
in the NTP message header.

5.  Local-Clock Design

Precision timekeeping requires an exceptionally stable
local oscillator reference in order to deliver accurate time
when the synchronization path to a primary server has
failed. Furthermore, the oscillator and control loop must
maintain accurate time and stable frequency over wide
variations in synchronization path delays. In the NTP
local-clock model the fundamental system time refer-
ence, or logical clock, increments at some standard rate
such as 1000 Hz and can be adjusted to precise time and
frequency by means of periodic corrections determined
by NTP, a timecode receiver or a calibrated atomic clock.

The model shown in Figure 6 can be described as a
type-II, adaptive-parameter, phase-lock loop (PLL),
which continuously corrects local oscillator phase and
frequency variations relative to received updates. The
difference between the peer time and server time
TB − TA; that is, the offset θ shown in Figure 3, is proc-
essed by the phase detector PD to produce the output
Vd. The filtering, selection and combining algorithms
shown in Figure 2 operate as a variable delay network to
produce the output Vs. The loop filter produces the output
Vc, which is used to adjust the frequency of the voltage-
controlled oscillator VCO in order to reduce the offset
θ.

Using familiar techniques of analysis [32], the (open-
loop) transfer function of the PLL can be approximated
as

F(s) = 
ωc

2

s2τ2
 (1 + 

sτ
ωz

) e−sT ,

where ωc is the gain (crossover frequency), ωz the corner
frequency of the lead network (necessary for PLL stabil-
ity), T is the data-filter delay and τ is a parameter used
for bandwidth control. Simulation of the entire PLL with
the variables and constants specified in [22] results in the
following characteristics: At the widest bandwidth
(smallest τ) and a 100-ms phase change the PLL reaches
zero error in 39 minutes, overshoots 7 ms in 54 minutes
and settles to less than 1 ms in about six hours.

Bandwidth control is necessary to match the PLL dynam-
ics to varying levels of timing noise due to the intrinsic
stability of the local oscillator and the prevailing delay
variances in the network. On one hand, the PLL must
track room-temperature quartz oscillators found in com-
mon computing equipment, where the frequency may be
accurate to only .01 percent and may vary several parts-
per-million (ppm) as the result of normal room-tempera-
ture variations. On the other hand, after the frequency
errors have been tracked for several days, and assuming
the local oscillator is appropriately compensated, the
loop must maintain stabilities to the order of .01 ppm.
The NTP PLL is designed to adapt automatically to these
regimes by measuring the dispersions and adjusting τ
over a five-octave range. Design details are discussed in
[22] and performance assessed in [24].

6.  NTP in the Internet System

The penetration of NTP in the Internet has steadily
increased over the last few years. It is estimated that well
over 2000 hosts presently synchronize local clocks to
UTC using NTP and the Internet primary servers. In this
section an overview of the various NTP implementations
and subnet configurations is presented along with an
evaluation of performance expected in routine operation.

The Fuzzball [21] is a software package consisting of a
fast, compact operating system and an array of applica-
tion programs for network protocol development, testing
and evaluation. It usually runs on a DEC LSI-11 personal
workstation, which functions as an experiment platform
capable of millisecond timing accuracies and supports
several types of timecode receivers and precision time-
bases. Since NTP and its forebears were developed and
tested on the Fuzzball, the present implementation is the
reference one for the NTP specification. An implemen-
tation of NTP for Unix systems was built by Michael
Petry and Louis Mamakos at the University of Maryland.
An implementation of NTP for Unix systems and for a
dedicated Motorola 68000 microprocessor was built by
Dennis Ferguson at the University of Toronto. Both Unix
implementations adjust the local-clock phase and fre-
quency using kernel primitives designed for this purpose
and support various types of timecode receivers. Other

VCO 

TB

TA
Filtering, Selection and

Combining

Loop Filter

Vs

Vc

PD
+

–

Vd

Figure 6. Phase-Lock Loop Model
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implementations are in progress at Hewlett-Packard
Laboratories, University College London and University
of Delaware.

The NTP primary synchronization subnet now operating
in the Internet consists of over two dozen Fuzzball and
Unix primary time servers located in the U.S., Canada,
the United Kingdom and Norway. All servers are syn-
chronized to UTC via radio or satellite. Two servers use
calibrated atomic clocks and two use LORAN-C timing
receivers as precision timebases. Six servers are con-
nected directly to national backbone networks, including
NSFNET and ARPANET, and are intended for ubiqui-
tous access, while the remainder are connected to re-
gional networks and intended for regional and local
access. All primary servers continuously exchange NTP
messages with most of the other primary servers, which
provides an exceptional level of redundancy and protec-
tion against failures. For instance, if a timecode receiver
fails, a primary (stratum-1) server synchronizes via NTP
to the nearest primary peer and continues operation as a
secondary (stratum-2) server. If a primary server turns
falseticker, discrepancies become apparent to its NTP
peers, which then deselect the server as the result of the
algorithms described previously.

The NTP secondary synchronization subnet presently
includes an estimated total of over 2000 secondary time
servers using some thousands of transmission paths on
hundreds of networks. A secondary server operating at
stratum n > 1 ordinarily operates with at least three peers,
two at stratum n − 1 and one or more at stratum n. In the
most robust configurations a set of servers agree to
provide backup service for each other, so run NTP with
some of the stratum-(n − 1) servers and some of the other
stratum-n servers in the same set. In a typical example
configuration used at the University of Illinois and the
University of Delaware the institution operates three
stratum-2 campus servers, each operating with two out
of six different stratum-1 primary servers and with each

other. The three campus servers in turn provide synchro-
nization for several stratum-3 department servers, each
operating with all three campus servers. Department
servers, many of which also function as file servers, then
deliver time to possibly hundreds of stratum-4 worksta-
tions in client/server or multicast modes.

As part of normal operations the Fuzzball time servers
monitor delay and offset data from each of their peers.
Periodically, these data are collected and analyzed to
construct scatter diagrams, time-series diagrams and dis-
tribution functions. Scatter diagrams such as Figure 5
have proven exquisitely sensitive indicators of network
performance and possible malfunctions. Time-series dia-
grams showing absolute offsets such as Figure 7, con-
structed from the same data as Figure 5, are useful for
assessing algorithm performance and systematic errors.
Distribution functions plotted on log-log axes such as
Figure 8, also constructed from the same data, are useful
in evaluating the performance of data-filtering algo-
rithms. The figure shows the absolute raw offsets (upper
curve) and filtered offsets (lower curve), from which it
is apparent that the maximum error after the filter is less
than about 30 ms for all but about one percent of the
samples and less than about 50 ms for all samples. A
companion paper [24] contains an extended discussion
of performance issues and concludes that, using the
adaptive-parameter PLL model described above together
with the new combining algorithm, timing accuracies to
a few milliseconds and frequency stabilities to a few
milliseconds per day are regularly achieved.

7.  Future Directions

The IRIG-H timecode format established in 1970 and
used since then by NBS/NIST radio broadcast services
does not include either year information or advance
notice of leap-second insertion. Currently, this informa-
tion must be provided at the primary servers by other
means. It is reported (personal communication) that this
information will soon be available in at least some radio
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services. In fact, the recently introduced NIST telephone
time service [26] already includes both the year and
advance leap-second information.

The current mechanism of time delivery using dedicated
radio systems and multifunction radionavigation and
land-resources satellite systems requires relatively ex-
pensive timecode receivers subject to occasional disrup-
tion due to propagation path or radio failure. A plan once
proposed by NIST using national television networks for
time transfer has been generally thwarted by the growing
use of buffered frame regeneration at the local stations.
However, the growing penetration of cable television
systems suggests a new opportunity for time distribution,
such as providing incentives for cable operators to re-
broadcast WWV, for example. An agenda should be
pursued to promote the installation of NTP primary
servers with Internet connectivity at various national
standards laboratories. In fact, a pilot project is now in
operation at the Norwegian Telecommunications Ad-
ministration Research Establishment, in which Fuzzball
primary NTP servers are synchronized directly to the
Norwegian national standards.

As experience accumulates, improvements are being
made continuously to the filtering and selection algo-
rithms described in this paper. Recent improvements
now being tested include engineered budgets for reading
errors and skew-error accumulation, as well as an im-
proved peer-selection algorithm based on the work of
Marzullo and Owicki [18]. The goal is to provide reliable
timing and timing-error information while preserving
correctness, stability and accuracy. There may also be
room for additional improvements in the offset-combi-
nation algorithm recently introduced, for example, as
well as methods to compensate for asymmetric delays
commonly found on Internet paths. Other improvements
being considered include automatic subnet configuration
and dynamic activation of peer associations when other
peer associations become unreachable. These features
are intended to reduce the network overhead when a large
number of possible peers are available, but only a few
are needed for reliable synchronization.

At present, NTP support is available only for Fuzzball
and Unix systems. Support is needed for other systems,
including mainframes and personal workstations of vari-
ous manufacture. While NTP has been evolved within
the Internet protocol suite, there is obvious application
to the OSI protocol suite, in particular the protocols of
the connectionless (CNLS) branch of that suite. Perhaps
the most attractive methodology would be to integrate
NTP functions directly into the ES-IS and IS-IS routing
functions and network management systems.
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