
1

The Network Computer as Precision Timekeeper 1,2

David L. Mills3

Electrical Engineering Department
University of Delaware

Abstract

This paper describes algorithms to discipline a computer clock to a source of standard time, such as a GPS
receiver or another computer synchronized to such a source. The algorithms are designed for use in the Net-
work Time Protocol (NTP), which is used to synchronize computer clocks in the global Internet. They have
been incorporated in the NTP software for Unix and Windows and, for the highest accuracy, in the operating
system kernels for Sun, DEC and HP workstations. RMS errors on LANs are usually less than 10 µs and on
global Internet paths usually less than 5 ms. However, rare disruptions of one kind or another can cause error
spikes up to 100 µs on LANs and 100 ms on Internet paths.

Keywords: computer network time synchronization,
clock discipline algorithm, pulse-per-second steering

1. Introduction

General purpose workstation n computers are becoming
faster each year, with processor clocks now operating at
300 MHz and above. Computer networks are becoming
faster as well, with speeds of 622 Mbps available now
and 2.4 Gbps being installed. Using available technol-
ogy and existing workstations and Internet paths, it has
been demonstrated that computers can be reliably syn-
chronized to better than a millisecond in LANs and bet-
ter than a few tens of milliseconds in most places in the
global Internet [3]. This technology includes the Net-
work Time Protocol (NTP), now used in an estimated
total of over 100,000 servers and clients in the global
Internet. Over 220 primary time servers are available in
this network, each connected to an external source of
time, such as a GPS radio clock or ACTS telephone
modem.

Reliable network synchronization requires crafted algo-
rithms which minimize jitter on diverse network paths
between clients and servers, determine the best subset of
redundant servers, and discipline the computer clock in
both time and frequency. The Network Time Protocol
(NTP) is designed to do this in Unix and Windows oper-

ating systems. The NTP architecture, protocol and algo-
rithms have evolved over almost two decades, with the
latest NTP Version 3 designated an Internet (draft) stan-
dard [6]. Among the goals of this design are:

1. Optimize the computer clock accuracy and stability,
subject to constraints of network overheads and/or
telephone toll charges, relative to local and/or
remote sources of time.

2. Enhance the reliability by detecting and discarding
misbehaving local and/or remote sources and
reconfigure network paths as necessary.

3. Automatically adjust algorithm parameters in
response to prevailing network delay/jitter condi-
tions and the measured stability of the computer
clock.

At the heart of the NTP design are the algorithms that
discipline the computer clock to an external source,
either an NTP server elsewhere in the Internet or a local
radio or modem. A key feature in this design is
improved accuracy to the order of a few microseconds at
the application program interface (API). The need for
this becomes clear upon observing that the time to read
the computer clock via a system call routine has been
reduced from 40 µs a few years ago on a Sun Microsys-

1. Sponsored by: DARPA Information Technology Office Contract DABT 63-95-C-0046, NSF Division of Network
and Communications Research and Infrastructure Grant NCR 93-01002, Northeastern Center for Electrical Engi-
neering Education Contract A303 276-93, Army Research Laboratories Cooperative Agreement DAA L01-96-2-
002, and Digital Equipment Corporation Research Agreement 1417.

2. Reprinted from: Mills, D.L. The network computer as precision timekeeper. Proc. Precision Time and Time
Interval (PTTI) Applications and Planning Meeting (Reston VA, December 1996, 96-108

3. Author's address: Electrical Engineering Department, University of Delaware, Newark, DE 19716; Internet mail:
mills@udel.edu; URL: www.eecis.udel.edu/~mills.

2

tems SPARC IPC to less than 1 µs today on an UltraS-
PARC.

The computer clock discipline algorithm, which is at the
heart of the design, is described in this paper. It is imple-
mented as an adaptive-parameter, type-II, hybrid phase/
frequency-lock loop. Portions of the algorithm are
implemented in the NTP software that runs the protocol
and provides the computer clock corrections. The
remaining portions have been implemented in this soft-
ware and in the operating system kernel. For greater
accuracy, a stable oscillator and counter delivering a
pulse-per-second (PPS) signal can be used to steer the
computer clock frequency, while an external NTP server
or local radio provides the UTC time. For the highest
accuracy, a PPS signal synchronized to UTC can be
used directly to discipline the frequency and time within
the second, while an external source, such as an NTP
server or radio, provides the UTC seconds numbering.

2. Network Time Protocol

While not in itself the subject of this paper, an overview
of the NTP design will be helpful in understanding the
algorithms involved. As described in [4], a synchroniza-
tion subnet is a hierarchical set of time servers and cli-
ents organized by stratum, in much the same way as in
digital telephone networks. The servers at the lowest
stratum are synchronized to national standards by radio
or modem. In order to provide the most accurate, reli-
able service, clients typically operate with several
redundant servers over diverse network paths.

The NTP software operates in each server and client as
an independent process or daemon. At designated inter-
vals, a client sends a request to each configured server
and expects a response at some later time. The exchange
results in four clock readings, or timestamps, one at the
sending time (relative to the sender) and another at the
receiving time (relative to the receiver), for the request
and the reply. The client uses these four timestamps to
calculate the clock offset and roundtrip delay relative to
each server separately. The clock filter algorithm dis-
cards offset outlyers associated with large delays, which
can result in large errors. As a byproduct, a statistical
accuracy estimate called dispersion is produced which,
combined with the stratum, is used as a metric, called
synchronization distance, to organize the NTP subnet
itself as a shortest path spanning tree.

The clock offsets produced by the clock filter algorithm
for each server separately are then processed by the
intersection algorithm in order to detect and discard
misbehaving servers called falsetickers. The truechimers
remaining are then processed by the clustering algo-

rithm to discard outlyers on the basis of dispersions for
each server as compared to the ensemble dispersion.
The survivors remaining are then weighted by disper-
sion and combined to produce a correction used to disci-
pline the computer clock.

A clock correction is produced for each round of mes-
sages between a client and a survivor. Corrections less
than 128 ms are amortized using the NTP clock disci-
pline algorithm, which is the main topic of this paper.
Those greater than 128 ms cause a step change in the
computer clock, but only after a sanity period of 15 min-
utes while these large values persists. Corrections of this
magnitude are exceedingly rare, usually as the result of
reboot, broken hardware or missed leap-second event.

Primary servers sometimes operate with more than one
synchronization source, including multiple radios and
other primary servers, in order to provide reliable ser-
vice under all credible failure scenarios. The same NTP
algorithms are used for all sources, so that malfunctions
can be automatically detected and the NTP subnet
reconfigures according to the prevailing synchronization
distances.

3. Computer Clock Oscillator Characterization

The time-of-day (TOD) function in modern worksta-
tions is commonly implemented using an uncompen-
sated quartz crystal oscillator and counter, which
delivers a pulse train with period ranging from 10 ms to
less than 1 ms. Each pulse causes a a timer interrupt,
which increments a software logical clock variable by a
fixed value tick scaled in microseconds or nanoseconds.
Conventional Unix systems represent the TOD as two
32-bit words in seconds and microseconds/nanoseconds
from UTC midnight, 1 January 1970, with no provision
for leap seconds. Thus, the clock reading precision is
limited to the tick interval; however, many systems pro-
vide an auxiliary counter with reading precision of a
microsecond or less, which can be used to interpolate
between timer interrupts.

That typical computer clocks behave in ways quite
counterproductive to good timekeeping should come as
no surprise. There are no explicit means to control crys-
tal ambient temperature, power level, voltage regulation
or mechanical stability. For instance, in a survey of
about 20,000 Internet hosts synchronized by NTP, the
median intrinsic frequency error was 78 PPM, with
some hosts as much as 500 PPM. Since the clock oscil-
lator is not temperature stabilized, its frequency may
vary over a few PPM in the normal course of operation.

In order to correct for an intrinsic frequency error,
adjustments must be made at intervals depending on the

3

accuracy and jitter requirements. At a typical clock
period of 10 ms and a frequency tolerance of 500 PPM,
for example, the TOD function must add or subtract 5 µs
at each timer interrupt and complete the entire 500-µs
adjustment within a 1-s adjustment interval. The resid-
ual error thus has a sawtooth characteristic with maxi-
mum amplitude 500 µs, which can be reduced only by
reducing the intrinsic frequency error or by reducing the
adjustment interval as described later in this paper.

Assuming the clock discipline can learn the nominal fre-
quency error of each clock oscillator separately and cor-
rect for it, the primary characteristic affecting the clock
accuracy is the oscillator stability. The traditional char-
acterization of oscillator stability is a plot of Allan vari-
ance [1], which is defined as follows. Consider a series
of time offsets measured between a computer clock and
some external standard. Let xk be the kth measurement

and τk be the interval since the last measurement. Define
the fractional frequency

, (1)

which is a dimensionless quantity. Now, consider a
sequence of N independent fractional frequency samples
yk (k = 0, 1,..., N − 1). If the interval between measure-
ments τ is the same as the averaging interval, the 2-sam-
ple Allan variance is defined

(2)

and the Allan deviation as the square root of this quan-
tity. Figure 1 shows the results of an experiment
designed to determine the Allan deviation of a typical
workstation (Sun SPARC IPC) under normal room-tem-
perature conditions over about five days. The data used
to generate this plot were obtained using the PPS signal
of a GPS receiver captured by a special interface
described in [7].

It is important to note that both the x and y scales of Fig-
ure 1 are logarithmic, but the axes are labelled in actual
values. Starting from the left at τ = 2 s, the plot tends to
a straight line with slope near −1, which is characteristic
of white phase noise [8]. In this region, increasing τ
increases the frequency stability in direct proportion. At
about τ = 1000 s the plot flattens out, indicating that the
white phase noise becomes dominated first by white fre-
quency noise (slope −0.5), then by flicker frequency

noise (flat slope). In other words, as τ is increased, there
is less and less correlation between one averaging inter-
val and the next. The inflection point between these two
regions is important in the design of the clock discipline
algorithm, as described later.

4. The NTP Clock Discipline

The clock discipline algorithm adjusts the computer
clock time as determined by NTP, compensates for the
intrinsic frequency error, and adjusts the server update
interval and loop time constant dynamically in response
to measured network jitter and oscillator stability. A
comprehensive description of the algorithm is given
below (an outline of the algorithm appeared previously
in [3]). The algorithm is implemented as the feedback
loop shown in Figure 2. The variable θr represents the
reference phase provided by NTP and θc the control
phase produced by the variable frequency oscillator
(VFO), which controls the computer clock. The phase
detector produces a signal Vd representing the instanta-
neous phase difference between θr and θc. The clock fil-

ter functions as a tapped delay line, with the output Vs

taken at the sample selected by the algorithm. The loop
filter, with impulse response F(t), produces a correction
Vc, which controls the VFO frequency ωc and thus its
phase. The characteristic behavior of this model, which
is determined by F(t) and the various gain factors, is
studied in many textbooks and summarized in [5].

The new clock discipline differs from the one described
in the NTP specification and previous reports. It is based
on an adaptive-parameter, hybrid phase-lock/frequency-
lock loop (PLL/FLL) design which gives good perfor-
mance with update intervals τ from a few seconds to
tens of kiloseconds, depending on accuracy require-
ments and acceptable network overheads. In the most

yk

xk xk 1––

τk
-----------------------≡

σy
2 τ() yk yk 1––()2〈 〉≡

1

2 N 2–()τ2
--------------------------= xk

2
2xkx

k 1–
xk 2–

2
+–

k 2=

N 1–

∑

Figure 1. Allan Deviation Plot

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10

A
lla

n
D

ev
ia

tio
n

(P
P

M
)

Time Interval (s)

4

general formulation, an algorithm that corrects for clock
time and frequency errors computes a prediction

 and then a correction .

As each correction is determined, the clock is adjusted
by x, so that it displays the correct time, and the fre-
quency yk is adjusted to minimize the corrections in

future. Between updates, which can range from seconds
to hours, the algorithm amortizes x in small increments
at adjustment intervals tA. At each adjustment interval
the the frequency is changed by

, (3)

and x is multiplied by , where a is a constant
between zero and one in Hz. In the NTP daemon for
Unix and Windows, tA is one second; while, in the mod-

ified kernel described later, tA is one clock tick. This
model provides rapid adjustment (fast convergence)
when x is relatively large, together with fine adjustment
(low jitter) when x is relatively small. In PLL mode, the
first term in (3) is necessary for stability; in both PLL
and FLL modes, it is also necessary in order to prevent
monotonicity violations when the magnitude of adjust-
ment is large

The PLL mode is used in configurations with remote
NTP servers or local radios, where the averaging inter-
val is usually below the knee of the Allan deviation plot.
In this mode the frequency at the kth update is deter-
mined directly from the summation

, (4)

where b is a constant between zero and one in Hz2. In
order to understand the PLL dynamics, it is useful to
consider the limit as τi approach zero. From (3) and (4),
the oscillator frequency is adjusted by

. (5)

Since phase is the integral of frequency, the integral of
the right hand side represents the overall open-loop
impulse response of the feedback loop. Taking the
Laplace transform,

, (6)

where the extra pole at the origin is due to the integra-

tion which converts the frequency y(s) to phase θ(s).
After some rearrangement, the transfer function G(s)
can be written

, (7)

where is the loop gain and is the cor-

ner frequency. From elementary theory, this is the trans-
fer function of a type-II PLL which can control both
time and frequency. The averaging interval is deter-
mined by the loop time constant, which depends on the
choice of a and b; however, these constants must be cho-

sen so that the damping factor ,

in order to preserve good transient response. For good
stability, the time constant should be at least eight times

Figure 2. NTP Clock Discipline

Clock Filter

Loop Filter

Frequency
Discipline

VCO

Phase
Detector

PPS

NTP Vd

Vc

y

Vs

θr+

θc−

x̂k xk 1– yk 1– τk+= x x̂k x– k=

y∆ x∆
tA
------ a= = x yk+

1 a–

yk b xiτi

i 1=

k 1–

∑=

y t() ax t() b+ x τ() τd
0

t

∫=

θ s() x s()1
s
--- a

b
s
---+ 

  x s()G s()==

1
s

ωc
2

s
2

--------- 1
s

ωz
------+ 

 

ωc
2

b= ωz
b
a
---=

ξ
ωc

2ωz

a

2 b
---------- 2= = =

5

the total loop delay which, because of the clock filter
delay, is eight times the update interval. For values of a

= 2-10, b = 2-24 and τ = 64 s for instance, the PLL has a
risetime in response to a phase step of about 53 minutes
and a 63% fresponse to a frequency step of about 4.25
hours, which is a useful compromise between stability
and network overhead on a LAN. Values of τ as low as
64 s are necessary to achieve the required capture range
of ±500 PPM; however, much larger values are appro-
priate on long paths in the Internet. For other values of τ,

a varies as , while b varies as .

The FLL mode is used in configurations with modem
services, such as those operated by NIST, USNO, PTB
and NPL, where the averaging interval (τ in this case) is
usually above the knee. The FLL, adapted from [2],
operates is the same way as the PLL, except that the fre-
quency yk is determined indirectly from the exponential
average

, (8)

with w = 0.25 determined by experiment. The goal of
the clock discipline is to adjust the clock time and fre-
quency so that xk = 0 for all k. To the extent this has been

successful in the past, we can assume corrections prior
to xk are all zero and, in particular, . There-

fore, from (1) and (8) we have

. (9)

In PLL mode, (4) is used for yk in (3); while, in FLL
mode, (9) is used instead.

A key feature of the NTP design is the automatic selec-
tion of τ in response to measured network jitter and
oscillator stability. The ensemble dispersion is used as a
measure of oscillator stability in both the PLL and FLL

modes. If the correction exceeds this value, the
oscillator frequency is deviating too fast for the clock
discipline to follow, so τ is reduced in stages to the min-
imum. If the opposite case holds for some number of
updates, τ is slowly increased in steps to the maximum.
Under typical operating conditions, τ hovers close to the
maximum; but, on occasions when the oscillator fre-
quency wanders more than about 1 PPM, it quickly
drops to lower values until the wander subsides.

5. Operating System Kernel Modifications

Previous experience has justified the claim that an ordi-
nary workstation running the algorithms described
above can reliably maintain time accurate to a millisec-
ond or two relative to a server on the same LAN. How-
ever, with a 1-s adjustment interval, 500-PPM frequency
tolerance and τ at the knee of the Allan deviation plot, it
is not possible to improve the accuracy much better than
this, primarily due to the instability of the clock oscilla-
tor and also due to the sawtooth error. Both of these
problems can be addressed in the form of operating sys-
tem kernel modifications, which in effect move the
clock discipline algorithm to the kernel, as described in
[7]. This provides a smaller adjustment interval, which
reduces the sawtooth error and also provides more pre-
cise phase and frequency control. Without the kernel
modifications, the adjustment interval is limited by prac-
tical considerations to 1 s; with the kernel modifications,
the adjustments occur at every timer interrupt.

The modifications have been implemented and tested on
Sun, DEC and HP workstations. They areidistributed in
Digital Unix 4 for the DEC Alpha and planned for early
release in Solaris 2 for the Sun SPARC. They include
two system functions, one to read the system clock and
related status indicators and error bounds, and another to
adjust the clock phase and frequency. The clock disci-
pline algorithm operates as shown in Figure 2, with
phase corrections provided at each NTP update. The
oscillator frequency is preset when the NTP daemon is
first started, in order to reduce the startup transient, after
which the frequency is controlled by the algorithm.

The PPS signal is connected using a pulse generator and
level converter. Each on-time transition causes an inter-
rupt to the serial port driver, which latches the current
seconds offset and disciplines the clock oscillator, as
shown in Figure 2. The signal can be used in two ways,
to discipline the oscillator frequency and to discipline
the phase. Frequency discipline is used when a stable
PPS signal is available, but not synchronized to UTC
time. In this case, the floor of the Allan deviation plot
moves downward and the knee moves to the right. Thus,
τ can be made much larger, increasing the averaging
time and improving the accuracy. Frequency and phase
discipline is used when a PPS signal synchronized to
UTC time is available.

Since noise problems on the PPS signal could lead to
serious errors, the kernel routines carefully grade and
groom the data. Three-stage median filters are used to
discard outlyers and provide quality metrics for jitter
and wander. The nominal frequency offset is computed
from the time difference between the beginning and end

1
τ

1

τ2

yk yk 1– w
xk

τk
----- yk 1–– 

 +=

xk 1– 0=

yk yk

xk

τk
-----+=

x

6

of a calibration interval and added directly to the fre-
quency variable, as shown in Figure 2. These operations
are complicated by the requirement that all values must
depend only on the clock hardware. When relatively
small tick values are involved, less than a millisecond
with DEC Alpha, and large frequency errors, as much as
500 PPM, this requires the initial calibration interval to
be not more than 4 s. If the stability metric exceeds a
threshold, the length of the calibration interval is
reduced by half. If this is not the case for several consec-
utive intervals, the interval is doubled up to a maximum
of 256 s, which corresponds to a frequency resolution of

a few parts in 109.

The NTP daemon performs a number of sanity checks to
insure the integrity of the radio or modem ASCII time-
code and the PPS signal itself. The sanity checks are
implemented by a suite of mitigation algorithms which
identify improperly operating hardware or software, cast
out the truants, and continue operating with the remain-
ing sources, even if this means casting out a radio or
modem and demoting the stratum. For instance, before
the PPS signal can be considered valid, the computer
clock must be within 128 ms of the offset associated
with the source of the signal. In addition, the source
must remain among the survivors of the intersection and
clustering algorithms. In practice, failures of this kind
are not uncommon with WWVB radio clocks in our part
of the country, since a combination of poor signal
strength and local interference sometimes cause rela-
tively large receiver errors.

Considerable effort was made in the implementation of
the NTP software and kernel modifications to reduce
hardware and operating system delay variations; how-
ever, not all machines make good timekeepers. Unpre-
dictable delay variations occur in the hardware, interrupt
routines, buffering operations and system scheduling
policies. In the case of a network interface, the network
driver captures a receive timestamp in the interrupt rou-
tine. In the case of a radio or modem, this is done using
a line discipline, which is invoked by the serial port
driver. It inspects for one of a designated set of intercept
characters, usually the one designated on-time in the
ASCII timecode string sent by the radio. Upon finding
an intercept character, it captures a receive timestamp
and stuffs the bits in the input buffer following the inter-
cept character. The NTP daemon captures a transmit
timestamp before computing the cryptographic message
digest used to verify the server authenticity. Fortunately,
the MD5 algorithm used for this purpose has an almost
constant running time independent of the message con-
tents. The daemon measures this time and then advances

the transmit timestamp by a like amount in the following
message.

6. Performance Analysis

In order to assess the performance of the NTP algo-
rithms in the global Internet, recordings of raw times-
tamp data were made over an 11-day period involving
three paths selected to represent extreme cases with pre-
sumed large delays and delay variations. The three paths
are between the University of Delaware (pogo.udel.edu)
and (WUSTL) Washington University in St. Louis
(navobs1.wustl.edu, 15 router hops), (IEN) IEN Galileo
Ferraris in Torino, Italy (time.ien.it, 19 hops), and (OZ)
University of Melbourne in Australia (ntp.cs.mu.oz, 22
hops). Each server is synchronized to GPS, although
only pogo has the modified kernel and PPS support.

A common assumption is that network delays are recip-
rocal; that is, the statistics exploited by the various NTP
algorithms on each direction of transmission are the
same. In order to test this assumption, the raw data col-
lected on all three paths were processed by a simulator
program which faithfully models the NTP algorithms
and includes provisions to adjust the various parameters
and graph the results. The propagation delay can be esti-
mated as the mean of the ten lowest delays on each
direction. The IEN outbound path delay was 93.0 ms
and the return 97.9 ms, while the figures for the OZ path
were 124.6 and 138.4 ms, and for the WUSTL path are
19.6 and 19.5 ms. The offset errors due these nonrecip-
rocal delays are half the differences, 2.45, 6.9 and 0.05
ms, respectively. These errors are surprisingly small,
considering the number of router hops and the great dis-
tances involved.

In addition to the fixed propagation delays, there are
variable delays due to queueing in routers along the
path. For instance, the mean roundtrip delays on the
IEN, OZ and WUSTL paths are 345.4, 359.9 and 65.4
ms, respectively, leaving 154.5, 96.9 and 26.3 ms as the
mean queueing delays. Thus, between a quarter and a
half of the mean roundtrip delays are due to queueing
delays. However, after processing by the NTP algo-
rithms, The degree to which the NTP algorithms clean
up the raw data can be seen in the following: The mean
offset errors for the raw data are 15.2, 9.8 and 4.8 ms for
the IEN, OZ and WUSTL paths, respectively, while the
RMS errors are 64.0, 470.0 and 19.5 ms. However, after
processing by the NTP algorithms, the mean offset
errors are reduced to .045, .004 and .003 ms, respec-
tively, while the RMS errors are reduced to 2.9, 3.0 and
0.15 ms. These values should be added to the nonrecip-
rocal path errors in the total error budget. Figure 3

7

shows the results for the WUSTL path; the other paths
behave in similar ways.

The graph has a spikey characteristic shared by the other
paths and suggests further processing might eliminate
most or all of the spikes, especially if the PPS signal
were used to stabilize the clock oscillator and the length
of the clock filter increased a substantial amount. While
the emphasis in this paper is on heroic paths in the Inter-
net, a similar experiment involving pogo and another
machine on the same Ethernet LAN shows negligible
mean error, RMS error .007 ms and maximum error .078
ms, the latter due to a single spike of unknown origin
during a run of 15 days,

7. Summary and Conclusions

The significance of this work is confirmation that gen-
eral purpose workstations with appropriate software
support can deliver timekeeping accuracies in the low
millisecond range over global distances using the Inter-
net shared with many other users and applications. This
may be especially useful for astronomy, oceanography,
manufacturing and process control applications.

The key to achieving accuracies of this order is through
carefully crafted algorithms and the use of a stable
external oscillator and counter to produce a PPS signal.
The signal is processed by algorithms embedded in the
operating system kernel and used to discipline the fre-
quency of the computer clock at every timer interrupt.

The package of NTP software and kernel modifications
has been implemented for several families of Unix and
Windows workstations and is available for public distri-
bution. The kernel modifications have been incorporated
in the standard Digital Unix operating system and are
planned for early release in the Solaris operating system.

8. References

References 3-7 are available from Internet archives in
PostScript format. Contact the author for location and
availability.

1. Allan, D.W. Time and frequency (time-domain)
estimation and prediction of precision clocks and
oscillators. IEEE Trans. on Ultrasound, Ferroelec-
trics, and Frequency Control UFFC-34, 6 (Novem-
ber 1987), 647-654. Also in: Sullivan, D.B., D.W.
Allan, D.A. Howe and F.L. Walls (Eds.). Character-
ization of Clocks and Oscillators. NIST Technical
Note 1337, U.S. Department of Commerce, 1990,
121-128.

2. Levine, J. An algorithm to synchronize the time of a
computer to universal time. IEEE Trans. Networks
3, 1 (February 1995), 42-50.

3. Mills, D.L. Improved algorithms for synchronizing
computer network clocks. IEEE/ACM Trans. Net-
works (June 1995), 245-254.

4. Mills, D.L. Internet time synchronization: the Net-
work Time Protocol. IEEE Trans. Communications
COM-39, 10 (October 1991), 1482-1493. Also in:
Yang, Z., and T.A. Marsland (Eds.). Global States
and Time in Distributed Systems, IEEE Press, Los
Alamitos, CA, 91-102.

5. Mills, D.L. Modelling and analysis of computer
network clocks. Electrical Engineering Department
Report 92-5-2, University of Delaware, May 1992,
29 pp.

6. Mills, D.L. Network Time Protocol (Version 3)
specification, implementation and analysis. Net-
work Working Group Report RFC-1305, University
of Delaware, March 1992, 113 pp.

7. Mills, D.L. Unix kernel modifications for precision
time synchronization. Electrical Engineering
Department Report 94-10-1, University of Dela-
ware, October 1994, 24 pp.

8. Stein, S.R. Frequency and time - their measurement
and characterization (Chapter 12). In: E.A. Gerber
and A. Ballato (Eds.). Precision Frequency Control,
Vol. 2, Academic Press, New York 1985, 191-232,
399-416. Also in: Sullivan, D.B., D.W. Allan, D.A.
Howe and F.L. Walls (Eds.). Characterization of
Clocks and Oscillators. National Institute of Stan-
dards and Technology Technical Note 1337, U.S.
Government Printing Office (January, 1990), TN61-
TN119.

Figure 3. Processed Data Offsets

5.0366 5.0368 5.037 5.0372 5.0374 5.0376 5.0378

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

MJD

O
ffs

et
 (

m
s)

