
A Probabilistic Approach for Achieving Fair Bandwidth Allocations in CSFQ

Peng Wang David L. Mills
Department of Electrical & Computer Engineering

University of Delaware
Newark, DE 19716

pwangee@udel.edu; mills@eecis.udel.edu

Abstract

The fair bandwidth allocations can isolate flows and pro-
tect well-behaved flows from ill-behaved ones. CSFQ (Core
Stateless Fair Queueing) achieves the approximate fairness
by dropping the extra packets beyond the fair share band-
width at the routers. A heuristic method is used to estimate
the fair share in CSFQ. Furthermore, we know that SRED
(Stabilized RED) uses a probabilistic method based on a
Zombie list to estimate the number of flows at the router. In
this paper, we take the probabilistic idea from SRED and
apply it in CSFQ to estimate the fair share without using
the Zombie list. Simulation results show that the new proba-
bilistic approach achieves a comparable or even better per-
formance than the original heuristic approach.

1. Introduction

The current Internet provides a connectionless, best-
effort, and end-to-end packet service by using the IP pro-
tocol. The stability of the Internet architecture depends to
a large extent on the end-to-end congestion control mech-
anisms provided by TCP. However, many implementations
of TCP do not include congestion control mechanisms ei-
ther deliberately or by accident. Moreover, more and more
UDP-based applications appear on the Internet, such as
video and audio. The misbehaving flows can consume most
of the bandwidth and starve out TCP-friendly flows.

The fair bandwidth allocations can isolate flows and pro-
tect well-behaved flows from ill-behaved ones. The defini-
tion of flows is very flexible. In this paper, the flow is de-
fined by 5-tuple (source IP address, destination IP address,
source port, destination port, and protocol) in the IP packet
header. In CSFQ all routers are classified as edge routers or

1This research is sponsored by the NSF grant ANI-0312851. Views
and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies or endorse-
ments of NSF or the US goverment.

core routers. The edge routers maintain the per-flow state,
and the core routers are stateless. The edge routers measure
the per-flow rate and attach the flow rate as a label to each
packet header. All routers (including edge routers and core
routers) measure the aggregate flow rate and estimate the
fair share. Then the incoming packets are dropped proba-
bilistically based on the packet label (flow rate) and the es-
timated fair share. Therefore, the accuracy of the estimated
fair share is the key factor in determining the performance
of CSFQ. CSFQ uses a heuristic method to estimate the fair
share. From extensive simulations, CSFQ approaches the
fair share of DRR (Deficit Round Robin) [6] and outper-
forms FIFO (First In First Out), and RED (Random Early
Detection) [4].

In order to stabilize its buffer occupation, SRED [5] de-
termines the dropping probability for each incoming packet
based on the estimated number of flows. A probabilistic
method based on a Zombie list is used to estimate the num-
ber of flows at the router. A Zombie list consists of a shift
register that is much larger than the router’s queue, and
stores the recently seen packets. For an incoming packet, a
packet is randomly selected from the Zombie list and com-
pared with the incoming packet. If they are from the same
flow, it is called a ”hit”. Otherwise, it is called a ”miss”. The
number of incoming packets divided by the number of hits
is a good estimate for the effective number of active flows
in the network. Furthermore, the estimated fair share is the
link bandwidth divided by the estimated number of flows.

In this paper, we take the probabilistic idea from SRED
and apply it in CSFQ without the Zombie list because CSFQ
has an important characteristic that each packet has its flow
rate as a label in the packet header. The new probabilistic
approach achieves a comparable performance to the original
heuristic approach. Extensive simulations are used to show
the performance of our probabilistic method.

The remainder of the paper is structured as follows. In
the next section, CSFQ architecture is described in more de-
tail. In Section 3, we describe a probabilistic approach for
achieving the fair share in detail. In Section 4, we evaluate

the performance of our method in comparison to the orig-
inal CSFQ by using simulations. Finally, we conclude in
Section 5.

2. CSFQ Architecture

2.1. Objectives

The primary objective is to achieve max-min fairness
[1] among the flows in a congested router. This qualitative
property can be summarized as follows:

We allocate bandwidth max-min fairly if it is
not possible to increase the satisfaction of a flow
without simultaneously causing the decrease in
the satisfaction of a less satisfied flow.[3]

In fact, max-min fair bandwidth allocations are character-
ized by the fact that all flows that are bottlenecked by this
router have the same output rate. We call this rate the fair
share rate of the link.

Consider a link with capacity C serving N flows, the
flow’s arrival rate is ri(t), i = 1, ..., N . Let α(t) be the
fair share rate at time t and A(t) =

∑N
i=1 ri(t) be the total

arrival rate. Max-min fairness is then achieved when the fair
share α(t) is the unique solution to:

C =
N∑

i=1

min(ri(t), α(t)) (1)

If A(t) < C (no congestion happens), all packets pass
through the router unconstrained and the fair share α(t) is
set to maxi(ri(t)). On the other hand, the flow rate ri(t)
above the fair share α(t) is constrained to α(t), while the
flow rate ri(t) less than the fair share is unconstrained.

2.2. CSFQ Algorithm

To facilitate our discussion, let us introduce how CSFQ
achieves the above objective in three steps.
1) Measure the Flow Arrival Rate

The flow arrival rates ri(t) are estimated at the edge
routers, and the estimated flow rates are attached to the
packet header as a label. The exponential average is used
to calculate the flow arrival rate and updated for each in-
coming packet. Let tki and lki be the arrival time and the
packet length of the kth packet of flow i.

rnew
i = (1− e−T k

i /K)
lki
T k

i

+ e−T k
i /Krold

i (2)

where T k
i = tki − tk−1

i is the packet inter-arrival time, and
K is a constant.

2) Link Fair Rate Estimation
CSFQ uses a heuristic algorithm to estimate the fair

share rate. Let us introduce three variables first: α, the es-
timated fair share rate; A, the estimated aggregate arrival
rate; F , the estimated rate of the accepted traffic. The ex-
ponential average is used to calculate A and F . Detailed
descriptions for A and F can be found in [7].

Figure 1 shows that a FSM (finite state machine) with
three states is used to describe how to estimate the fair share.
Three states are defined:

• Congested: A > C at all times during a time interval
of length Kc

• Uncongested: A < C at all times during a time inter-
val of length Kc

• Normal: Otherwise

where C is the link capacity and Kc is a window size to
filter out the inaccuracy due to the exponential smoothing.

Normal UncongCong

A<C during Kc

Update and return immediately:

=max(p.label) during Kc

A>C during Kc

Update and return immediately:

= *C/F

Figure 1. FSM for fair share estimate in CSFQ

State Normal is a permanent state, while state Congested
and state Uncongested are both transient states. If the con-
dition for state Uncongested is satisfied, the fair share α is
set to the largest rate of the active flows in the last Kc time
units and the link state returns to state Normal immediately.
If the condition for state Congested is satisfied, the fair share
rate α is updated by the formula αnew = αold · C/F , and
the link state returns to state Normal immediately too. Gen-
erally, the fair share α is updated at the end of the interval
Kc no matter for state Congested or state Uncongested.

Moreover, to reduce the negative effects of buffer over-
flow, another heuristic rule is used: α is decreased by a
small fixed percentage for each buffer overflow. But α
cannot be decreased more than 25% consecutively to avoid
overcorrection.
3) Packet Dropping and Label Rewriting

For each incoming packet, the router calculates a drop-
ping probability based on the packet label and the fair share
estimate: Prob = max(0, 1 − α/p.label). The dropping
algorithm limits the flows to their fair share bandwidth. Fi-
nally, the packets are relabeled using the minimum of the
current packet label and the router’s estimated fair share α,

because the packets beyond the fair share are dropped at
the routers and the original packet label is not an accurate
estimate of its actual flow rate.

3. Probabilistic Approach for Fair Bandwidth
Allocations

To achieve fair bandwidth allocations, the easy way is to
know the number of flows passing through the router and
then allocate the bandwidth among the flows evenly. How-
ever, it is impossible to know the exact number of flows if
the router does not maintain the per-flow state. A proba-
bilistic method to estimate the number of flows is used in
the algorithm SRED without maintaining the per-flow state.

3.1. Estimate the Number of Flows in
SRED

SRED uses a Zombie list that is a large shift register to
store several thousand recently seen packets. For each in-
coming packet, SRED randomly selects a packet from the
Zombie list and compares these two packets. If they are
from the same flow, it is called a ”hit”. Otherwise, it is
called a ”miss”. The router maintains a hit-frequency count.

We assume that each arrival packet belongs to one of the
N flows. Let Pi be the probability that a packet belongs to
flow i, and assume Pi is stationary over the time in which
the estimation is done. We also assume that the probability
that an arriving packet belongs to a given flow is indepen-
dent of all other packets. For an incoming packet, the prob-
ability that the packet belongs to flow i is Pi. The proba-
bility that a randomly selected packet from the Zombie list
belongs to flow i is Pi too, since the Zombie list is large.
Thus, the hit probability that each arrival packet belongs to
flow i is P 2

i . Then the hit probability for an incoming packet
is equal to the sum of the hit probability for each flow:

Phit =
N∑

i=1

P 2
i (3)

In general, the hit probability satisfies the equation:

1
N

< Phit < 1 (4)

The lower limit is achieved only when N flows have the
same traffic intensity. The upper limit is achieved only when
one flow sends all packets and the other (N − 1) flows send
zero packets. Thus, if the flows have the the same traffic
intensity, the hit probability Phit is 1/N . The inverse of the
hit probability is an exact estimate of the number of flows.
Even when the flows have asymmetric traffic intensities, the
inverse of the hit probability is a reasonable estimate of the
number of the active flows.

After sampling n new arrival packets, there are m hits
total.

n · 1
N
≈ n · Phit = m (5)

The estimated hit probability is m/n, and the estimated
number of flows is equal to n/m. Furthermore, the esti-
mated fair share is equal to C · m/n where C is the out-
put link capacity. We realize that the estimated number of
flows is always less than the actual number of flows for the
asymmetric traffic since n · 1

N < n · Phit = m, and then
N > n/m.

3.2. Estimate the Number of Flows in
CSFQ

We take the probabilistic idea from SRED and apply it to
estimate the number of flows in CSFQ without the Zombie
list. The algorithm and the implementation are described in
the following two sections.

3.2.1 Estimate the Number of Flows

We assume that each arrival packet belongs to one of the N
flows. Let ri be the rate of flow i stored in the packet label
and A be the aggregate flow rate measured at the router. Let
P̂i = ri/A denote the proportion of traffic that belongs to
flow i. We assume that P̂i is stationary over the time in
which the estimation is done. This means that we can view
P̂i as the probability that an incoming packet belongs to
flow i. We also assume that the probability that an arriving
packet belongs to a given flow is independent of all other
packets.

For n new arrival packets, there are n · Pi packets that
belong to flow i, i = 1, . . . , N and

∑N
i=1 Pi = 1 (Pi is the

actual probability). When a packet from flow i arrives at the
router, the probability Pi is approximated by P̂i = ri/A.
After the n · Pi packets that belong to flow i arrive at the
router, the sum of the probability P̂i for these n ·Pi packets
is equal to (n · Pi) · P̂i ≈ n · Pi

2 . Furthermore, since there
are N flows, the sum of the probability P̂i for each flow i is
equal to n · Pi

2 where i = 1, . . . , N .
However, it is impossible to compute n · Pi

2 for each
flow i since the core router does not maintain the per-flow
state and the packets cannot be classified into the different
flows. But if we sum probability P̂i for all n packets without
classifying them into the different flows, we can get a sum
m:

m = nP 2
1 + nP 2

2 + · · ·+ nP 2
N = n

N∑

i=1

P 2
i = nPhit (6)

This is the same as the formula (5) used in SRED. The es-
timated number of flows is equal to n/m. Furthermore, the

estimated fair share is equal to C ·m/n where C is the out-
put link bandwidth.

One of the problems encountered by the above method
is an inaccuracy when the traffic density is vastly different.
The heavy flows with large labels contribute more than the
light flows to the value m and affect the estimated accuracy
of the fair share. Thus, we consider n accepted packets in-
stead of n incoming packets at the routers. The incoming
packets are classified as successfully transmitted packets,
dropped packets due to dropping policy and dropped pack-
ets due to queue overflows. The accepted packets include
successfully transmitted packets and dropped packets due
to the queue overflow at the routers. Not surprising, most
dropped packets are from the heavy flows. Therefore, con-
sidering the accepted packets reduces the impact of heavy
flows and improves the estimated accuracy. Moreover, the
estimated number of flows converges to the actual number
of flows after several iterations. The following example is
given to show the convergence process.

Let us consider the case that two aggregate flows arrive
at a core router. The bandwidth of the core router is 5, 000
packets/sec and the packet size is fixed. The first aggregate
flow consists of 500 flows with the flow rate 10 packets/sec
each. The second aggregate flow consists of 5 flows with
the flow rate 1, 000 packets/sec each. Thus, the aggregate
arrival rate A is 10, 000 packets/sec. The P̂i for each flow
in the first aggregate flow is 1/1000 and the P̂i for each
flow in the second aggregate flow is 1/10. We set the initial
value of the estimated fair share is 5, 000 packets/sec. The
estimated number of flows is updated once each second at
the core router.

At the end of the first second, 5, 000 packets from the
first aggregate flow and 5, 000 packets from the second ag-
gregate flow are accepted by the core router (although 5, 000
packets are dropped due to the queue overflows). The m is
equal to 5000 · 1/1000 + 5000 · 1/10 = 505. Thus, the
estimated number of flows is N = 10000/505 = 19.8020,
and the fair share is C/N = 5000/19.8020 = 252.4997.

At the end of the second second, 5, 000 packets from the
first aggregate flow and 5 · 252.4997 packets from the sec-
ond aggregate flow are accepted by the core router. The m
is equal to 5000 ·1/1000+5 ·252.4997 ·1/10 = 131.2498.
Thus, the estimated number of flows is N = (5000 +
5 ∗ 252.4997)/131.2498 = 47.7143, and the fair share is
C/N = 5000/47.7143 = 104.7904.

The estimated number of flows converges to 505 after
12 iterations. Figure 2 gives the convergence process of the
estimate. This shows that the probabilistic method is rea-
sonable and converges if the flows are stationary. However,
the convergence speed may be slow.

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14

The number of iteration

T
h

e
 e

s
ti

m
a

ti
o

n
 o

f
th

e
 n

u
m

b
e

r

o
f

fl
o

w
s

Figure 2. The convergence of the estimated
number of flows

3.2.2 Implementation of the Probabilistic Method

Let us define n as the sampling size and the time to accept
these n packets as a sampling period. After n packets are
accepted by the router, the estimated fair share bandwidth
is updated, and n, m are reset. We need to determine the
value of n that affects the estimated accuracy. In this pa-
per the sampling size n is defined as the number of packets
transmitted successfully in the output link for a 0.1s inter-
val. In the following simulation section, the link bandwidth
is 10Mbps, and the packet size is fixed at 1000 bytes. Thus,
the sampling size n is about 1, 000.

However, setting a constant estimated fair share for the
next sampling period may result in a oscillation of the
throughput of the flow. To solve the oscillation problem,
BLACK (for BLACKlist unresponsive flows) [2] gives hints
that the n and m in the current sampling period need to be
considered to improve the estimated accuracy. Therefore,
we further divide the sampling size into five equal length
segments, and the segment size is 1/5 of the sampling size.
In the current sampling period, when the number of the ac-
cepted packets is k(k = 1, 2, 3, 4, 5) times the segment size,
we update the fair share based on the information from both
the current and previous sampling periods. The equation
(7) is used to update the number of flows:

N =
n + n last

m + m last
(7)

where m last is the value of m in the last sampling period,
n last is the sampling size, m is the accumulated sum of P̂i

in the current sampling period, and n is the number of the
accepted packets in the current period. When the number
of the accepted packets is equal to the sampling size, the
value of m last and n last are updated to the m and n of
the current period. This modification responds quickly to
changing dynamics in the flow rates.

The pseudo code reflecting this algorithm is described in
Figure 3. We further reduce the impact of the heavy traffic
by multiplying coefficients to P̂i. If the current queue size is
larger than the threshold and the packet label is greater than

Estimate_ (p, dropped)

// is initialized to the packet label when the queue size

// first reaches the threshold

A = estimate_rate (A , p); //estimate aggregate arrival rate

if (dropped == TRUE)

return;

if (A>C)

if (pkt_label > && queue_size > Threshold)

m = m + 0.75 * pkt_label /A;

else if (pkt_label >)

m = m + 0.98 * pkt_label /A;

else

m = m + 1 * pkt_label /A;

else

m = m + 1 * pkt_label /A;

n++; // enqueueing number of flows

if (n == 1./5 * SAMPLE_SIZE)

N = (n + n_last) / (m + m_last) ;

if (n == SAMPLE_SIZE)

n_last = SAMPLE_SIZE;

m_last = m;

n = 0;

m = 0;

return = C/N;

Figure 3. Pseudo of fair share estimate

the estimated fair share, P̂i multiplies a coefficient 0.75.
If the packet label is greater than the estimated fair share,
P̂i multiplies a coefficient 0.98. These two coefficients are
given arbitrarily and may be varied in a range without af-
fecting the performance greatly.

4. Simulations

In this section we evaluate our proposal using the ns-
2 simulator. Stoica [7] has shown using simulations that
CSFQ achieves a good performance when compared with
FIFO, RED, FRED (Flow Random Early Drop) and DRR.
Thus, we only compare our modified CSFQ with the origi-
nal CSFQ in a series of experiments to see whether the prob-
abilistic estimation approach for the estimated fair share is
accurate and gives a comparable performance. We call the
modified CSFQ as CSFQIMP. Unless otherwise specified,
we use the same parameters as those in CSFQ. Each output
link has a latency of 1ms, a buffer of 64kB, and a buffer
threshold is 16kB. The averaging constant used in estimat-
ing the flow rate is K = 100ms. The packet size is fixed
at 1k bytes, and the simulation time is 10s. The sampling
size n is 1, 000. Detailed descriptions of other simulation
parameters of CSFQ can be found in [7].

4.1. Single Congested Link

The topology of the first set of simulations is shown in
Figure 4. The single congested link is shared by N flows,

and we evaluate the fairness among the flows with three ex-
periments.

Flow 0

Flow 1

Flow N-1

Sources

Router

Sink

Figure 4. Single congested link

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

E
st

im
at

io
n

of
 fa

ir
B

an
dw

id
th

 (M
bp

s)

Time

FAIR
CSFQ

CSFQIMP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25 30

B
an

dw
id

th
 (M

bp
s)

Flow Number

FAIR
CSFQ

CSFQIMP

Figure 5. (a) Fair share estimation (b) Average
throughput over 10s

In the first experiment, 32 CBR (Constant Bit Rate)
flows, indexed from 0, share the 10Mbps bottleneck link.
The flow rate of flow i is (i + 1) times more than its fair
share, i.e. (i + 1) · 10/32Mbps. Figure 5(a) shows the
estimated fair share over a 10−s interval. Both of the es-
timates of the fair share are comparable. In the probabilis-
tic method, the estimated fair share should converge to the
actual fair share, since the flow rates of CBR flows are sta-
tionary. But in some portion of the graph, the estimated
fair share is less than the theoretical value. The reason is
that we multiply a coefficient 0.75 to reduce the impact of
the heavy flows. Figure 5(b) shows the average throughput

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

E
st

im
at

io
n

of
 fa

ir
B

an
dw

id
th

 (M
bp

s)

Time

FAIR
CSFQ

CSFQIMP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30

B
an

dw
id

th
 (M

bp
s)

Flow Number

FAIR
CSFQ

CSFQIMP

Figure 6. (a) Fair share estimation (b) Average
throughput over 10s

of each flow over a 10−s interval. CSFQ and CSFQIMP
achieve a comparable performance.

In the second experiment, we evaluate the impact of an
ill-behaved CBR flow (Flow ID = 0) on a set of 31 TCP
flows. The flow rate of the CBR flow is 10Mbps, which tries
to occupy all of the link capacity. Figure 6(a) shows the
estimated fair share over a 10−s interval. The probabilis-
tic method converges slower but is more accurate than the
heuristic method. Figure 6(b) shows the average through-
put of each flow over a 10−s interval. The performance
of CSFQIMP is a little worse than that of CSFQ, although
the estimated fair share in CSFQIMP is more accurate. The
reason is that the congestion control mechanism of TCP re-
duces the transmission window size to half when the flow
rate reaches the estimated fair share. For example, if there
are 15 consecutive packets with the flow rate 10% over the
estimated fair share, the probability that at least one packet
is dropped is 1 − (1 − 0.1)15 = 79.41%. Furthermore, the
more accurate the estimated fair share is, the worse is the
TCP performance due to the congestion control mechanism
in this scenario.

In the third experiment, we evaluate a TCP flow against
an increasing number of ill-behaved CBR flows. We per-
form 31 simulations. In the ith simulation, one TCP flow
is against i CBR flows. The CBR flow rate is twice the fair

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h

Total Number of Flows

CSFQ
CSFQIMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10

E
st

im
at

io
n

of
 fa

ir
B

an
dw

id
th

 (M
bp

s)

Time

FAIR
CSFQ

CSFQIMP

Figure 7. (a) A TCP flow sharing the link with
N CBR flows (b) Fair Share Estimate for 18
flows

share rate. Figure 7(a) shows the normalized bandwidth of
TCP flow that competes with N CBR flows. The perfor-
mance of CSFQIMP is a little worse than that of CSFQ. The
reason is also due to the congestion control mechanism of
TCP. Figure 7(b) shows the estimated fair share in the case
with 17 CBR flows. The estimated fair share in CSFQIMP
is comparable to, or even better than that in CSFQ.

4.2. Multiple Congested Links

CBR-1

Source

Router 1

Sink

CBR-10

CBR/TCP-0

Sources

CBR-11

Router 2

CBR-20

Sinks

CBR-1-CBR-10

CBR-K1

Router K

CBR-K10

Router K+1

CBR-K1-CBR-K10

CBR/TCP-0

Figure 8. Multiple congested links

The second set of simulations is run with the topology
shown in Figure 8. The purpose is to analyze how the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h

Number of Congested Links

CSFQ
CSFQIMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h

Number of Congested Links

CSFQ
CSFQIMP

Figure 9. (a) Normalized throughput of CBR-
0 as a function of the number of congested
links (b) CBR-0 is replaced by a TCP flow

throughput of a well-behaved flow is affected when the flow
traverses more than one congested link. All CBR flows, ex-
cept CBR−0, send at 2Mbps. The cross traffic enters the
path in one of the routers and exits at the next. The well-
behaved flow is a UDP flow sending at its fair share or a
TCP flow.

In the first experiment, the well-behaved flow is CBR
flow (CBR−0) sending at its fair share rate of 0.909Mbps.
Figure 9(a) shows the normalized bandwidth of CBR−0
versus the number of the congested links. The UDP flow
is not much affected by the cross traffic and achieves a good
fairness in both CSFQ and CSFQIMP.

In the second experiment, a TCP flow replaces the
CBR−0. Figure 9(b) shows the normalized bandwidth
of TCP versus the number of the congested links. CS-
FQIMP performs better than CSFQ since the cross CBR
traffic is reduced by the accurate estimate of the fair share
in CSFQIMP. In the case with 5 congested links, the esti-
mated fair share of the heuristic method is given in the Fig-
ure 10(a), and the estimated fair share of the probabilistic
method is given in Figure 10(b). We plot the estimated fair
share for each congested link. As expected, the probabilis-
tic method is better than the heuristic method in this case.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 2 4 6 8 10

E
st

im
at

e
of

 F
ai

r S
ha

re

Time

fair share
Congested link 1
Congested link 2
Congested link 3
Congested link 4
Congested link 5

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2 4 6 8 10

E
st

im
at

e
of

 F
ai

r S
ha

re

Time

fair share
Congested link 1
Congested link 2
Congested link 3
Congested link 4
Congested link 5

Figure 10. (a) Fair share estimate of CSFQ for
5 congested links (b) Fair share estimate of
CSFQIMP for 5 congested links

4.3. Bursty cross traffic

The simulations are run with the topology shown in Fig-
ure 8 with 5 congested links. The CBR sources that formed
the cross traffic are now replaced with ON/OFF sources.
The burst (ON) and idle (OFF) time periods are both expo-
nentially distributed with the same average chosen between
5 msec and 0.5 sec.

In the first experiment, the well-behaved flow is CBR
flow (CBR−0) sending at its fair share rate of 0.909Mbps.
Figure 11(a) shows the normalized bandwidth of CBR−0
versus the burst time period. The UDP flow is not much
affected by the bursty cross traffic and achieves a good fair-
ness in both CSFQ and CSFQIMP.

In the second experiment, a TCP flow replaces the
CBR−0. Figure 11(b) shows the normalized bandwidth of
TCP versus the burst time period. CSFQIMP performs bet-
ter than CSFQ. In the case with 0.5s average burst time, the
estimated fair share for both methods are given in the Fig-
ure 12(a) and 12(b). We plot the estimated fair share for
each congested link. As expected, the probabilistic method
is better than the heuristic method in this case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h

Average burst/idle time of ON/OFF sources (in seconds)

CSFQ
CSFQIMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h

Average burst/idle time of ON/OFF sources (in seconds)

CSFQ
CSFQIMP

Figure 11. (a) Normalized throughput of CBR-
0 as a function of the number of congested
links (b) CBR-0 is replaced by a TCP flow

5. Conclusion

In this paper we present a probabilistic approach for
achieving fair bandwidth allocations in CSFQ. The prob-
abilistic idea is taken from SRED and applied in CSFQ
without using the Zombie list. We discuss its design goals
and present the performance simulations and experiments
that demonstrate its performance compared to the existing
scheme in various scenarios.

The probabilistic method is simple and easy to imple-
ment. The estimated number of flows converges to the ac-
tual number of flows under the assumption that P̂i is sta-
tionary. The performance of CSFQIMP is comparable to
that of CSFQ. However, the convergence speed of the esti-
mate is slow, which makes the stationary assumption sus-
pect. Thus, there are a number of situations that the proba-
bilistic method cannot handle well due to an inaccuracy in
estimating the number of flows. Further research includes
developing a method to speed up the convergence of the es-
timate.

It is interesting to note that TCP flows are difficult to
achieve the fair share bandwidth in CSFQ due to the TCP’s
congestion control mechanism. Thus, although it is impor-
tant to the stability of the current Internet, TCP congestion
control mechanism may be poison in the scenario where the

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

E
st

im
at

e
of

 F
ai

r S
ha

re

Time

fair share
Congested link 1
Congested link 2
Congested link 3
Congested link 4
Congested link 5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

E
st

im
at

e
of

 F
ai

r S
ha

re

Time

fair share
Congested link 1
Congested link 2
Congested link 3
Congested link 4
Congested link 5

Figure 12. (a) Fair share estimate of CSFQ for
5 congested links (b) Fair share estimate of
CSFQIMP for 5 congested links

routers are responsible for allocating bandwidth. From the
good performance of the UDP flows, a rate-based transport
protocol may be more efficient than TCP in CSFQ.

References

[1] D. Bertsekas and R. Gallager. Data Networks. pp. 524-529,
Prentice-Hall, 1987.

[2] G. Chatranon, M. Labrador, and S. Banerjee. Black: Detec-
tion and preferential dropping of high bandwidth unrespon-
sive flows. In Proceedings of IEEE ICC, pages 664–668, May
2003.

[3] A. Clerget and W. Dabbous. TUF : Tag-based unified fairness.
In Proceedings of INFOCOM, pages 498–507, 2001.

[4] S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Net-
working, 1(4):397–413, 1993.

[5] T. J. Ott, T. V. Lakshman, and L. H. Wong. SRED: Stabilized
RED. In Proceedings of INFOCOM, volume 3, pages 1346–
1355, 1999.

[6] M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round robin. In Proceedings of ACM SIGCOMM’1995,
pages 231–243, 1995.

[7] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queue-
ing: a scalable architecture to approximate fair bandwidth al-
locations in high-speed networks. IEEE/ACM Transactions
on Networking, 11:33–46, February 2003.

