
1

The Nanokernel1,2

David L. Mills, Fellow ACM, Senior Member IEEE3

Poul-Henning Kamp

Abstract

Internet timekeeping has come a long way since first demonstrated almost two decades ago. In that era
most computer clocks were driven by the power grid and wandered several seconds per day relative to
UTC. As computers and the Internet became ever faster, hardware and software synchronization technol-
ogy became much more sophisticated. The Network Time Protocol (NTP) evolved over four versions
with ever better accuracy now limited only by the underlying computer hardware clock and adjustment
mechanism.

The clock frequency in modern workstations is stabilized by an uncompensated quartz or surface acoustic
wave (SAW) resonator, which are sensitive to temperature, power supply and component variations.
Using NTP and traditional Unix kernels, incidental timing errors with an uncompensated clock oscillator
is in the order of a few hundred microseconds relative to a precision source. Using new kernel software
described in this paper, much better performance can be achieved. Experiments described in this paper
demonstrate that errors with a modern workstation and uncompensated clock oscillator are in the order of
a microsecond relative to a GPS receiver or other precision timing source.

1. Introduction

Several years ago the software algorithms to discipline
the Unix system clock were overhauled to provide
improved accuracy, stability and resolution [5]. In addi-
tion, means were added to discipline the clock directly
from a precision timing source, such as a GPS receiver
or cesium oscillator. The software was integrated with
several operating system kernels of the day and eventu-
ally adopted as standard in Digital Tru64 (Alpha), Sun
Solaris, Linux and FreeBSD. The best performance
achieved with workstations of the day was a few hun-
dred microseconds in time and a few parts-per-million
(PPM) in frequency, so a clock resolution of one micro-
second seemed completely adequate.

With workstations and networks of today reaching
speeds in the gigahertz range, it is clear the solution of
several years ago is rapidly becoming obsolete.
Improved modelling techniques have resulted in better
discipline algorithms which are more responsive to
phase and frequency characteristics of computer clocks

[3]. Faster processors and a standardized application
program interface (API) allow more flexible and precise
timing of external signals [7]. Faster network speeds and
lower jitter provide more accurate timekeeping over the
Internet [4].

This paper describes new algorithms and kernel soft-
ware providing much improved time and frequency res-
olution, together with a more agile and precise clock
discipline mechanism. It discusses the analysis and
design of the algorithms and the results of proof-of-per-
formance experiments. The software has been imple-
mented and tested in all the kernels mentioned above
and is now standard in the Linux and FreeBSD public
distributions.

The kernel software replaces the clock discipline algo-
rithm in a synchronization daemon, such as the Network
Time Protocol [6], with equivalent functionality in the
kernel. It provides a resolution of 1 ns in time and .001
PPM in frequency. While clock corrections are recom-
puted about once per minute in the daemon, they are

1. Sponsored by: DARPA Information Technology Office Contract F30602-98-1-0225 and Digital Equipment Cor-
poration Research Agreement 1417.

2. Submited to Precise Time and Time Interval Meeting, November 2000. Please do not cite or circulate prior to
publication.

3. David L. Mills is with the Electrical and Computer Engineering Department, University of Delaware, Newark,
DE 19716, mills@udel.edu, http://www.eecis.udel.edu/~mills; Poul-Henning Kamp is with the FreeBSD Project,
Valbygrdsvej 8, DK-4200 Slagelse, Denmark. phk@freebsd.org.

2

recomputed once per second and amortized at every tick
interrupt in the kernel. This avoids errors that accumu-
late between updates due to the intrinsic hardware clock
frequency error.

The new software can be compiled for 64-bit machines
using native instructions or for 32-bit machines using a
macro package for double precision arithmetic. The
software can be compiled for kernels where the time
variable is represented in seconds and nanoseconds and
for kernels in which this variable is represented in sec-
onds and microseconds. In either case the resolution of
the clock is limited only by the resolution of the clock
hardware. Even if the resolution is only to the microsec-
ond, the software provides extensive signal grooming
and averaging to minimize reading errors.

The remaining sections of this paper are organized as
follows. Section 2 describes the characteristics of typi-
cal computer clock oscillators, which are based on the
Allan deviation statistic used in the most recent NTP
algorithms. Section 3 describes the software design,
which is based on two interacting hybrid phase-lock/fre-
quency-lock (PLL/FLL) feedback loops. Section 4
describes the software implementation, which is inte-
grated in the kernels mentioned above. Section 5 sum-
marizes the results of proof-of-performance experiments
which validate the claims in this paper. Section 6 con-
cludes with suggestions for further improvements.

2. Computer Clock Characterization

In order to understand how the new kernel algorithms
operate, it is necessary to understand the design of a typ-
ical computer clock and how the time and frequency is
controlled. The accuracy attainable with NTP, or any
other protocol that provides periodic offset measure-
ments, depends strongly on the stability of the clock
oscillator and the precision of its adjustment mecha-
nism. The clock frequency in modern workstations is
stabilized by an uncompensated quartz or surface acous-
tic wave (SAW) resonator, which are affected by tem-
perature, power supply and component variations. The
most significant affect is the temperature dependency,
which is typically in the order of one PPM in frequency
per degree Celsius.

In typical computer clock designs the clock oscillator
drives a counter that produces processor interrupts at
fixed tick intervals in the range 1-20 ms. At each tick
interrupt a software clock variable is updated by the
number of microseconds or nanoseconds in the tick
interval. The means used by the traditional Unix kernel
to adjust the clock time is the adjtime() kernel rou-
tine, which causes a fixed value, typically 5 µs, to be

added to or subtracted from the clock time at each tick
interrupt. The adjtime() function computes how
long these increments must be continued in order to
amortize the adjustment specified. In order to provide a
frequency offset, the NTP daemon calls the adj-
time() routine at intervals of one second. Since the
intrinsic clock oscillator frequency error can range to
several hundred PPM, this can result in sawtooth-like
time errors ranging to several hundred microseconds.
This was the prime motivation to avoid the adj-
time() routine and implement the clock discipline
directly in the kernel.

Almost all modern processors provide means to measure
intervals for benchmarking and profiling. These means
typically take the form of a processor cycle counter
(PCC), which can be read by a machine instruction.
Upon receiving a request to read the clock, the kernel
uses the PCC to compute the number of microseconds
or nanoseconds since the last tick interrupt. Since the
PCC and clock oscillator may not run at the same fre-
quency and, in the case of multiprocessor systems, there
may be more than one PCC, the kernel must carefully
mitigate the differences and develop a stable, monotoni-
cally increasing timescale.

It is well known that the behavior of an oscillator can be
characterized in terms of its Allan deviation, which is a
function of stability, interpreted as first-order frequency
differences, and averaging interval [1]. In order to deter-
mine this statistic for a typical uncompensated computer
oscillator, sample offsets relative to a cesium standard
were measured with the computer oscillator allowed to
free-run over periods ranging from 1.5 to 10 days. These
data were saved in files and later used to construct plots
in log-log coordinates showing stability versus averag-
ing interval.

Figure 1, reproduced from [3], shows the results of
experiments with the microsecond kernel described in
[5]. Trace 1 represents an older SPARC architecture,
while trace 2 represents a modern Pentium architecture
some twenty times faster. But, in trace 1 the ambient
room temperature was held to a narrow range less than
one degree Celsius, while in trace 2 the temperature var-
ied over a much wider range on a hot Summer day in
Denmark.

In order to determine the performance improvement
possible with a nanosecond kernel, a special purpose
noise generator was used to simulate an oscillator with
phase and frequency characteristics matching trace 1.
Then, the phase noise was reduced to match a microsec-
ond clock (trace 3) and then a nanosecond clock (trace
4). The goal in the nanosecond kernel is to approach as

3

closely as possible trace 4. Apparently, there is consider-
able room for improvement.

In [3] a simple model is developed which characterizes
the performance of each individual time server. The
model characterizes each combination of synchroniza-
tion source and clock oscillator by two intersecting
straight lines in log-log coordinates similar to Figure 1.
In general, network and computer latency variations
produce jitter, which is modelled as white phase noise
and appears as a straight line with slope −1 on the plot.
The jitter is lower in trace 2 than trace 1 in part because
the Pentium is much faster than the SPARC.

On the other hand, oscillator frequency variations pro-
duce wander, which is modelled as random-walk fre-
quency noise and appears as a straight line with slope
+0.5. Obviously, the intrinsic stability of the oscillator in
trace 1 is much better than in trace 2.

The intersection of the two straight lines is called the
Allan intercept, which serves to characterize the particu-
lar combination of source and oscillator. It represents
the optimum averaging interval for the best oscillator
stability. If the averaging interval is less than this, errors
due to source jitter dominate, while if greater, errors due
to oscillator wander dominate. The traces shown in Fig-
ure 1 show intercepts that vary from 2 s for trace 4 to
2000 s for trace 1. Notwithstanding these observations,
it is probably better to err on the high side of the inter-
cept, since the slope of the wander characteristic is half
that of the jitter characteristic.

The averaging interval is roughly equal to the frequency
time constant used in the clock discipline algorithm, and
this is related to the interval between NTP poll messages
sent across the network. With a minimum poll interval
of 16 s in the current NTP design, the averaging interval
is about 4,000 s, which is on the high side of the opti-

mum range, and the match gets worse with larger poll
intervals. Thus, the best accuracy is achieved at the min-
imum poll interval, but this may result in unacceptable
network overhead. Therefore, when the NTP daemon is
started, it uses a relatively small poll interval in order to
respond quickly to the particular oscillator frequency
offset, then gradually increases the interval to an upper
limit. Depending on desired accuracy and allowable net-
work overhead, the upper limit could be a small as a few
seconds or as large as a day or more.

A phase-lock loop (PLL) functions best with poll inter-
vals below the Allan intercept where jitter predominates,
while a frequency-lock loop (FLL) functions best above
the intercept where wander predominates. As the result
of previous research [2][3], a hybrid PLL/FLL clock dis-
cipline algorithm has been designed, implemented and
tested in the NTP version 4 software for Unix, Windows
and VMS. A kernel implementation based on this design
is described in the following section.

3. Software Design

The nanokernel software design is based on the NTP
implementation, but includes two separate but interlock-
ing feedback loops. The PLL/FLL discipline operates
with periodic updates produced by a synchronization
daemon such as NTP, while the PPS discipline operates
with an external PPS signal and modified serial or paral-
lel port drivers. Both algorithms include grooming pro-
visions that significantly reduce the impact of source
selection jitter or clockhopping and network delay tran-
sients. In addition, the PPS algorithm can continue to
discipline the clock frequency even if other synchroniza-
tion sources or the daemon itself crash.

3.1 PLL/FLL Discipline

The PLL/FLL discipline is specially tailored for typical
Internet delay jitter and clock oscillator wander. How-
ever, the kernel embodiment provides better accuracy
and stability than the NTP discipline, as well as a wider
operating range. Both the kernel discipline and NTP dis-
cipline operate in the same manner except for one
important detail. The NTP discipline uses the kernel
adjtime() system call, which has an inherent resolu-
tion of 1 µs in time and 5 PPM in frequency and amor-
tizes adjustments once every second. The kernel
discipline has an inherent resolution of 1 ns in time and
.001 PPM in frequency and amortizes adjustments at
every tick interrupt.

Both the kernel discipline and NTP discipline operate as
a hybrid of phase-lock and frequency-lock feedback
loops. Figure 2 shows the functional components of the

Figure 1. Allan Deviation

4

kernel discipline. In the NTP discipline the components
below the dotted line are implemented in the daemon.
The phase difference Vd between the reference source θr

and clock θc is determined by the NTP daemon. The

value is then groomed by the NTP clock filter and
related algorithms to produce the phase update Vs used

by the loop filter in the kernel to produce the phase pre-
diction x and frequency prediction y. These predictions
are used to produce clock adjustment updates at inter-
vals of 1 s which result in the correction term Vc. This
value represents the increment in time necessary to cor-
rect the clock at the end of the next second.

It is important to point out that the various performance
data displayed herein were derived from the phase
update Vs, since this is a common measuring point for

both the daemon and kernel; however, this may not be
best estimator of the actual time difference, since it does
not include the effects of the loop filter and clock resolu-
tiontion. While the resolution in a modern architecture
including a PCC is only a nanosecond or two, older
architectures may have resolutions of 1000 ns or more.
In addition, the Vs signal necessarily varies with time, so

the value depends on when it is sampled.

The x and y predictions are developed from the phase
update Vs as shown in Figure 3. As in the NTP algo-

rithm, the phase and frequency are disciplined sepa-
rately in both PLL and FLL modes. In both modes x is
the value Vs, but the actual phase adjustment is calcu-

lated by the clock adjust process using an exponential
average with an adjustable weight factor. The weight
factor is calculated as the reciprocal of the time constant
specified by the API. The value can range from 1 s to an
upper limit determined by the Allan intercept. In PLL
mode it is important for the best stability that the update

interval does not significantly exceed the time constant
for an extended period.

The frequency is disciplined quite differently in PLL
and FLL modes. In PLL mode, y is computed using an
integration process as required by PLL engineering prin-
ciples; however, the integration gain is reduced by the
square of the time constant, so adjustments become
essentially ineffective with poll intervals above 1024 s.
In FLL mode, y is computed directly using an exponen-
tial average with weight 0.25. This value, which was
determined from simulation with real and synthetic data,
is a compromise between rapid frequency adaptation
and adequate glitch suppression.

In operation, PLL mode is preferred at small update
intervals and time constants and FLL mode at large
intervals and time constants. The optimum crossover
point between the PLL and FLL modes, as determined
by simulation and analysis, is the Allan intercept. As a
compromise, the PLL/FLL algorithm operates in PLL
mode for update intervals of 256 s and smaller and in
FLL mode for intervals of 1024 s and larger. Between
256 s and 1024 s the mode is specified by the API. This
behavior parallels the NTP daemon behavior, except that
in the latter the weight given the FLL prediction is lin-
early interpolated from zero at 256 s to unity at 1024 s.

3.2 PPS Discipline

In order to reduce incidental errors to the lowest practi-
cal value, it is necessary to use a precision source, such
as a GPS receiver or precision oscillator. The kernels
mentioned above have been modified for this purpose.
For serial drivers the PPS signal is connected to the
DCD pin via a level converter; for parallel drivers the
signal is connected directly to the ACK pin. A compre-
hensive API has been designed and implemented for this
function. It is currently the subject of a Internet Engi-
neering Task Force proposed standard [7].

iThe PPS discipline shown in

The PPS algorithm shown in Figure 4 s functionally sep-
arate from the PLL/FLL discipline; however, the two
disciplines have interlocking control functions designed
to provide seamless switching between them as neces-
sary. The discipline is called at each PPS on-time signal

Figure 2. Clock Discipline Feedback Loop

Figure 3. FLL/PLL Prediction Functions

Figure 4. PPS Discipline

5

transition with arguments including a clock timestamp
and a virtual nanosecond counter sample. The virtual
counter can be implemented using the PCC in modern
computer architectures or a dedicated counter in older
architectures. The intent of the design is to discipline the
clock phase using the timestamp and the clock fre-
quency using the virtual counter. This makes it possible,
for example, to stabilize the clock frequency using a
precision PPS source, while using an external time
source, such as a radio or satellite clock or even another
time server, to discipline the phase. With frequency reli-
ably disciplined, the interval between updates from the
external source can be greatly increased. Also, should
the external source fail, the clock will continue to pro-
vide accurate time limited only by the accuracy of the
precision source.

At each PPS on-time transitional the offset in the second
is determined relative to the clock phase. A range gate
rejects errors more than 500 microseconds from the
nominal interval of 1 s, while a frequency discriminator
rejects errors more than 500 PPM from the nominal fre-
quency of 1 Hz; however, the design tolerates occasional
dropouts and noise spikes. The virtual counter samples
are processed by an ambiguity resolver that corrects for
counter rollover and certain anomalies when a tick inter-
rupt occurs in the vicinity of the second rollover or when
the PPS interrupt occurs while processing a tick inter-
rupt. The latter appears to be a feature of at least some
Unix kernels which rank the serial port interrupt priority
above the tick interrupt priority.

PPS samples are then processed by a 3-stage shift regis-
ter. The median value of these samples is the raw phase
signal and the maximum difference between them is the
raw jitter signal. The PPS phase correction is computed
as the exponential average of the raw phase with weight
equal to the reciprocal of the calibration interval
described below. In addition, a jitter statistic is com-
puted as the exponential average of the raw jitter with
weight 0.25 and reported as the jitter value in the API.

Occasional electrical transients due to light switches, air
conditioners and water pumps are a principal hazard to
PPS discipline performance. A spike (popcorn) suppres-
sor rejects phase outlyers with amplitude greater than 4
times the jitter statistic. This value, as well as the jitter
averaging weight, was determined by simulation with
real and synthetic PPS signals. Each occurrence of this
condition sets a bit in the status word and increments the
jitter counter in the API. Surviving phase samples disci-
pline the clock only if enabled by the API.

The PPS frequency is computed directly from the differ-
ence between the virtual counter values at the beginning

and end of the calibration interval, which varies from 4 s
to a maximum specified by the API. When the system is
first started, the clock oscillator frequency error can be
quite large, in some cases 200 PPM or more. In order to
avoid ambiguities, the counter differences must not
exceed the tick interval, which can be less than a milli-
second in some kernels. The choice of minimum cali-
bration interval of 4 s insures that the differences remain
valid for frequency errors up to 250 PPM with a 1-ms
tick interval.

The actual PPS frequency is calculated by dividing the
virtual counter difference by the calibration interval in
seconds. In order to avoid divide instructions and intri-
cate residuals management, the calibration interval is
always a power of 2, so division reduces to a shift. How-
ever, due to signal dropouts or noise spikes, either the
length may not be a power of 2 or the signal may appear
outside the valid frequency range. Each occurrence of
this condition sets a bit in the status word and incre-
ments the error counter in the API.

The required frequency adjustment is computed and
clamped not to exceed 100 PPM. This acts as a damper
in case of abrupt changes that can occur at reboot, for
example. Each occurrence of this condition sets a bit in
the status word and increments the wander counter in
the API. The PPS frequency is computed continuously,
but controls the clock only if enabled by the API. In
addition, a wander statistic is calculated as the exponen-
tial average of frequency adjustments with weight 0.25.
The statistic is reported as the wander value in the API,
but not otherwise used by the algorithm.

4. Software Implementation and Operation

Figure 5 shows the general organization of the kernel
software. Updates produced by the NTP daemon are
processed by the hardupdate() routine, while PPS
signal interrupts are processed by the hardpps() rou-
tine. The values in both routines are calculated using
extended precision arithmetic to preserve nanosecond
resolution and avoid overflows over the range of clock
oscillator frequencies from 50 Hz to above 1000 Hz.
The actual corrections are redetermined once per second
and linearly amortized over the second at each hardware
tick interrupt. In contrast to the NTP daemon, where

Figure 5. Kernel Clock Discipline

6

most computations use floating-double data types, the
kernel is limited to integer data types.

Both the hardupdate() and hardpps() routines
include improved algorithms to discipline the computer
clock in nanoseconds in time and nanoseconds per sec-
ond in frequency. There are two programs which imple-
ment the kernel algorithms, ktime.c and micro.c.
The ktime program includes code fragments that
implement the hardupdate() and hardpps() rou-
tines, as well as the ntp_gettime() and
ntp_adjtime() system calls that implement the
API. These programs can be compiled for both 64-bit
and 32-bit architectures and where the kernel time vari-
able is in microseconds or nanoseconds. The API pro-
vides access to the latest PPS offset samples and
conversion to other than native timestamp formats.

The micro.c program implements a nanosecond clock
using the tick interrupt augmented by the virtual counter
described above. In its present form, it can be compiled
only for 64-bit architectures. In that program the
nano_time() routine measures the intrinsic proces-
sor clock frequency, then interpolates the nanoseconds
be scaling the PCC to one second in nanoseconds. The
unavoidable divide instruction is the only one in the
nanokernel software. The design supports multiproces-
sor systems with common or separate PCCs of the same
or different frequencies. The clock can be read by any
processor at any time without compromising monoto-
nicity or jitter. When a PPS signal is connected, the PPS
interrupt can be vectored to any processor. The tick
interrupt must always be vectored to a single processor,
but it doesn’t matter which one. The routine also sup-
ports a microsecond clock for legacy purposes.

At each processing step, limit clamps are imposed to
avoid overflow and prevent runaway phase or frequency
excursions. In particular, the time offset provided by the
NTP daemon is clamped not to exceed 500 ms and the
calculated frequency offset clamped not to exceed 500
PPM. The maximum phase offset exceeds that allowed
by the NTP daemon, normally 128 ms. Moreover, the
NTP daemon includes an extensive suite of data groom-
ing algorithms which filter, select, cluster and combine
time values before presenting then to either the NTP or
kernel discipline algorithms.

Since the PPS signal is inherently ambiguous, the sec-
onds numbering is established by another NTP server or

a local radio clock using the PLL/FLL discipline. The
PPS frequency determination is independent of any
other means to discipline the clock frequency and oper-
ates continuously. When the NTP daemon recognizes
from the API that the PPS frequency has settled down, it
switches the clock frequency discipline to the PPS sig-
nal, but continues to discipline the clock phase using the
PLL/FLL algorithm.

When the PLL/FLL phase is reduced well below 0.5 s to
insure unambiguous seconds numbering, the daemon
switches the phase discipline to the PPS signal. Should
the synchronization source or daemon malfunction, the
PPS signal continues to discipline the clock phase and
frequency until the malfunction has been corrected. The
sometimes intricate mitigation rules that control the
detailed sequencing are beyond the scope of this paper;
they are given in the software documentation [8].

5. Performance Evaluation

Following previous practice, the ktime and micro.c
routines have been embedded in a special purpose, dis-
crete event simulator. In this context it is possible not
only to verify correct operation over the wide range of
tolerances likely to be found in current and future com-
puter systems, but to verify that resolution and accuracy
specifications can be met with precision synchronization
sources. The simulator can measure the response to time
and frequency transients, monitor for unexpected inter-
actions between the simulated clock oscillator, PCC and
PPS signals, and verify correct monotonic behavior as
the various counters interact due to small frequency
variations. The simulator can operate with internally
synthesized data or read raw data files produced by the
NTP daemon during regular operation in order to deter-

mine the behavior under actual conditions.4

The routines have been inserted in the kernel sources,
together with new code supporting the PPS interrupt and
API. Tests in kernels for Alpha, SPARC and Intel archi-
tectures confirmed correct behavior relative to the simu-
lator. However, the most interesting proof of
performance issue is the behavior with the PPS disci-
pline under actual operation with ambient temperature
variations and interrupt latencies. Detailed performance
data have been collected for three systems: Rackety is a
busy SPARC IPC time server running SunOS 4.1.3 and
connected to four radio clocks - dual redundant GPS

4. It is important to note that the actual code used in all kernels is very nearly identical to the code used in the simu-
lator. The only differences in fact have to do with the particular calling and argument passing conventions of each
system. This is important in order to preserve correctness assertions and performance specifications.

7

receivers and dual redundant WWVB receivers. The
PPS signal is derived from one of the GPS receivers.
Churchy is a Digital 433au personal workstation run-
ning Tru64 4.0d and connected to a GPS receiver and
PPS signal. Freebsd is an Intel Pentium II 400 labora-
tory machine running FreeBSD 4.0 and connected to a
GPS receiver and PPS signal. Its system clock is synthe-
sized by a special purpose FPGA counter stabilized by a
rubidium oscillator.

The performance of the three machines was determined
by running them for a day or so and collecting residual
time and frequency offsets using the NTP monitoring
facilities. This technique provides accurate time and fre-
quency statistics, but does not include calibrated offsets
due to the delay between the signal transition and times-
tamp capture.

The results show that all three systems can keep good
time within a microsecond or two, in spite of the fact
that rackety is much slower than the others and suffers a
processing load of some 15 packets per second. How-
ever, it is necessary to put these results in proper per-
spective. Following are a number of issues that merit
further discussion.

5.1 Automatic Power Control

A more careful examination of the results for freebsd
reveals an interesting and important design issue. The
particular Intel chipset used by this kernel has provi-
sions for automatic power control (APC), which can be
enabled by a BIOS parameter. The result of the APC on
system timekeeping is shown in Figures 6 and 7. Figure
6 shows the phase offset with APC disabled over a 1000
s interval, while Figure 7 shows the offset with APC
enabled over the same interval. The problem is immedi-
ately apparent as the occurrence of 50-µs spikes at inter-

vals of about 250 s. There is no immediate explanation
why these spikes occur, whether they occur in other con-
texts or whether they occur with other chipsets. Appar-
ently, some chipsets make better timekeepers than
others.

5.2 Phase and Frequency Offset

The figures below show the phase and frequency charac-
teristic for rackety Figures 8 and 9) and churchy Figures
10 and 11). The cause of the higher wander with trace 2
is readily apparent in the frequency offset characteristic
of Figure 8, which is considerably more wiggly than
Figure 10. In fact, there are some nasty discontinuities in
Figure 6 due to unknown causes. From experience, Fig-
ure 8 is more typical of workstations in temperature con-
trolled office environments. Note also the grass in

Figure 6. Time Offsets of APC-Disabled Kernel

Figure 7. Time Offset of APC-Enabled Kernel

Figure 8. Time Offset for Rackety Kernel

8

Figure 8, which is absent in Figure 8. While this does
not seriously affect the phase offset, the cause is proba-

bly due the fact the kernel can resolve time values to
only 1 µs.

5.3 Dependency on Averaging Interval

Throughout discussion until this point, it has been
assumed that the optimum performance (lowest standard
error) is achieved when the averaging interval is equal to
the Allan intercept. Figures 12 and 13 show the standard
error for the nanosecond kernel and microsecond kernel
as the averaging interval is varied from 4 s to 32,768 s.

The lowest standard error is reached at 50 s in Figure 12
and 500 s in Figure 13. These values should be com-
pared with the Allan intercept for each case, 50 s and
2000 s, respectively. While the Allan intercept is an
accurate predictor of optimum averaging interval for the
nanosecond kernel, it is less so for the microsecond ker-
nel. On the other hand, the valley is quite broad and
results in only minor increase in standard error over the

Figure 9. Frequency Offset for Nanosecond Kernel

Figure 10. Phase Offset for Microsecond Kernel

Figure 11. Frequency Offset for Microsecond Kernel

Figure 12. Standard Error for Nanosecond Kernel

Figure 13. Standard Error for Microsecond Kernel

9

range from 100 s to 5000 s. From these data a value of
128 s appears a good compromise choice.

It should be noted that the PPS discipline uses the aver-
aging interval differently for phase averaging and fre-
quency averaging. An exponential average is used for
phase discipline, while a simple average is used for fre-
quency discipline. With this design the combined effect
of the two discipline loops becomes marginally stable at
the lowest averaging interval of 4 s and explains why the
traces shown in the figures rise so fast at the lowest end.
The interval of 4 s is used only at startup and after a
drastic change in clock frequency is sensed. The disci-
pline increases the interval after that until reaching the
maintaining the interval shown on the plot.

6. Summary and Conclusions

This paper demonstrates that modern computers can
maintain nominal accuracy relative to precision time
sources of a microsecond or two, assuming systematic
latencies due to signal conditioning, interrupt processing
and timestamp capture can be calibrated out. In order to
achieve this level of performance, a hybrid phase/fre-
quency-lock feedback loop is used for NTP discipline
together with separate time and frequency loops for PPS
discipline. This level of performance is probably near
best that can be achieved where the clock oscillator is
not stabilized by some means. Where a fast computer
with precision hardware clock is available, the perfor-
mance can be improved to the order of a few tens of
nanoseconds at the API. The accuracy expectations of
individual applications will vary depending on the mix
of applications and operating system scheduling laten-
cies.

Observations of the kernel disciplines in actual opera-
tion suggest a few areas where further improvements
may be possible. One of these is the grooming algorithm
used in the PPS discipline. The complexity of the
median calculation increases rapidly with the number of
register stages, which is only three in the current design.
However, the NTP discipline operates in user space, so
its resource commitments are more flexible. The NTP
daemon includes a PPS driver with a 60-stage register.
The algorithm sorts the offsets, then iteratively trims off
the sample furthest from the median until a prespecified
fraction of the original samples are left. Finally, it pre-
sents the average of these samples to the kernel PLL/
FLL discipline.

The PPS driver provides significantly less jitter than the
kernel PPS discipline; however, the performance advan-
tage due to the quick response of the kernel discipline is
lost. While the current minimum daemon update inter-

val is currently limited to 16 s in the interest of minimiz-
ing kernel overhead, it might be acceptable in fast
machines to reduce that interval to 1 s. Should this be
done, it would be practical to do almost all discipline
loop processing in user space and move the per-second
processing to the daemon, where more flexible proces-
sor and memory resource commitments are possible.

7. References

Note: Papers and reports by D.L. Mills can be found in
PostScript and PDF forma at www.eecis.udel.edu/
~mills.

1. Allan, D.W. Time and frequency (time-domain)
estimation and prediction of precision clocks and
oscillators. IEEE Trans. on Ultrasound, Ferroelec-
trics, and Frequency Control UFFC-34, 6
(November 1987), 647-654. Also in: Sullivan,
D.B., D.W. Allan, D.A. Howe and F.L. Walls
(Eds.). Characterization of Clocks and Oscilla-
tors. NIST Technical Note 1337, U.S. Department
of Commerce, 1990, 121-128.

2. Levine, J. An algorithm to synchronize the time of
a computer to universal time. IEEE Trans. Net-
working 3, 1 (February 1995), 42-50.

3. Mills, D.L. Adaptive hybrid clock discipline algo-
rithm for the Network Time Protocol. IEEE/ACM
Trans. Networking 6, 5 (October 1998), 505-514.

4. Mills, D.L. The network computer as precision
timekeeper. Proc. Precision Time and Time Inter-
val (PTTI) Applications and Planning Meeting
(Reston VA, December 1996), 96-108.

5. Mills, D.L. Unix kernel modifications for preci-
sion time synchronization. Electrical Engineering
Report 94-10-1, University of Delaware, October
1994, 24 pp.

6. Mills, D.L. Network Time Protocol (Version 3)
specification, implementation and analysis. Net-
work Working Group Report RFC-1305, Univer-
sity of Delaware, March 1992, 113 pp.

7. Mogul, J., D. Mills, J. Brittenson, J. Stone and U.
Windl. Pulse-per-second API for Unix-like oper-
ating systems, version 1. Request for Comments
RFC-2783, Internet Engineering Task Force,
March 2000, 31 pp.

8. Network Time Protocol Version 4 software distri-
bution, including sources and documentation.
Available via the web at www.ntp.org.

10

