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Abstract

This paper traces the origins and evolution of the Network Time Protocol (NTP) over two decades of con-
tinuous operation. The technology has been continuously improved from hundreds of milliseconds in the
rowdy Internet of the early 1980s to tens of nanoseconds in the Internet of the new century. It includes a
blend of history lessons, technology milestones and series of experiments that shape, define and record
the early history of the Internet and NTP.

This narrative is decidedly personal, since the job description for an Internet timekeeper is highly individ-
ualized and invites very few applicants. There is no attempt here to present a comprehensive tutorial, only
a almanac of personal observations, eclectic minutiae and fireside chat. Many souls have contributed to
the technology, some of which are individually acknowledged in this paper, the rest too numerous left to
write their own memoirs. 

Keywords: computer network, time synchronization,
technical history, algorithmic memoirs

1.  Introduction

An argument can be made that the Network Time Proto-
col (NTP) is the longest running, continuously operat-
ing, distributed application in the Internet. As NTP is in
its third decade, it is of historic interest to document the
origins and evolution of the architecture, protocol and
algorithms. Not incidentally, NTP was an active partici-
pant in the early development of Internet technology
and its timestamps recorded many milestones in mea-
surement and prototyping programs.

This paper documents significant milestones in the evo-
lution of computer network timekeeping technology
over four generations of NTP to the present. The NTP
software distributions for Unix, Windows and VMS
have been maintained by a corps of over four dozen vol-
unteers at various times. There are too many to list here,
but the major contributors are revealed in the discussion
to follow. The current NTP software distribution, docu-
mentation and related materials, newsgroups and links
are on the web at www.ntp.org. In addition, all papers
and reports by this author and cited herein are in Post-
Script and PDF at www.eecis.udel.edu/~mills. Further
information, including executive summaries, project

reports and briefing slide presentations are at
www.eecis.udel.edu/~mills/ntp.html.

There are three main threads interwoven in the follow-
ing. First is a history lesson on significant milestones for
the NTP specifications, implementations and coming-
out parties. These milestones calibrate and are calibrated
by developments elsewhere in the Internet community.
Second is a chronology of the algorithmic refinements
leading to better and better accuracy, stability and secu-
rity that continue to the present. These algorithms repre-
sent the technical contributions as documented in the
references. Third is a discussion of the various proof-of-
performance demonstrations and surveys conducted
over the years, each attempting to outdo the previous in
calibrating the performance of NTP in the Internet of the
epoch. Each of these three threads winds through the
remainder of this narrative.

2.  On the Antiquity of NTP

NTP’s roots can be traced back to a demonstration at
NCC 79, believed to be the first public coming-out party
of the Internet sending data, speech and facsimile mes-
sages over a transatlantic satellite network. However, it
was not until 1981 that the synchronization technology
was documented in the now historic Internet Engineer-
ing Note series as IEN-173 [53]. The first specification
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of a public protocol developed from it appeared in RFC-
778 [52]. The first deployment of the technology in a
local network was as an integral function of the Hello
routing protocol documented in RFC-891 [50], which
survived for many years in a network prototyping and
testbed operating system called the Fuzzball [44].

NTP was not then and is not now the only synchroniza-
tion scheme available in the Internet. Other mechanisms
have been specified in the Internet protocol suite to
record and transmit the time at which an event takes
place, including the Daytime [58] and Time [60] proto-
cols and ICMP Timestamp [66] message defined as
Internet Standards, as well as the IP Timestamp option
[66].

The Unix timed, which arrived in 1984 [7], was
designed for use on a local Ethernet. It uses an election
algorithm to designate a single host as master and the
remaining hosts synchronized to it as slaves. The Digital
Time Synchronization Service (DTSS) [6], which was
adopted by the Enterprise community, uses a hierarchy
of time providers, servers and clerks similar to the NTP
stratum model. A scheme with features similar to NTP
is described in [57]. It is intended for multi-server LANs
where each of a set of possibly many time servers deter-
mines its time offset relative to each of the other servers
in the set using periodic timestamped messages, then
determines the local clock correction using a fault-toler-
ant averaging algorithm. However, none of these
schemes have crafted data grooming and clock disci-
pline algorithms as later developed for NTP.

What later became known as NTP Version 0 was imple-
mented in 1985, both in Fuzzball by this author and in
Unix by Louis Mamakos and Michael Petry at Univer-
sity of Maryland. Fragments of the Unix code survive in
the software running today. RFC-958 contains the first
formal specification of this version [47], but it did little
more than document the NTP packet header and offset/
delay calculations still used today. Considering the mod-
est speeds of networks and computers of the era, the
nominal accuracy that could be achieved on an Ethernet
was in the low tens of milliseconds. Even on paths span-
ning the Atlantic, where the jitter could spike one sec-
ond, the accuracy was generally better than 100 ms.

Version 1 of the NTP specification was documented
three years later in RFC-1059 [45]. It contained the first
comprehensive specification of the protocol and algo-
rithms, including primitive versions of the clock filter,

selection and clock discipline algorithms. The design of
these algorithms was guided largely by a series of exper-
iments, documented in RFC-956 [49], in which the
basic theory of the clock filter algorithm was developed
and refined. This was the first version which defined the
use of client/server and symmetric modes and, of
course, the first version to make use of the version field
in the header.

A transactions paper on NTP Version 1 appeared in
1991 [40]. This was the first paper that exposed the NTP
model, including the architecture, protocol and algo-
rithms, to the general engineering community. While
this model is generally applicable today, there have been
a continuing series of enhancements and new features
introduced over the years, some of which are described
in following sections.

The NTP Version 2 specification followed as RFC-1119
in 1989 [43]. A completely new implementation slavish
to the specification was built by Dennis Fergusson at
University of Toronto. This was the first RFC in Post-
Script and as such the single most historically orthogo-
nal document in the RFC publishing process. It was the
first to include a formal model and state machine
describing the protocol and pseudo-code defining the
operations. It introduced the NTP Control Message Pro-
tocol for use in managing NTP servers and clients, and
the cryptographic authentication scheme based on sym-
metric-key cryptography, both of which survive to the
present day.

There was considerable discussion during 1989 about
the newly announced DTSS. DTSS and NTP communi-
ties had much the same goals, but somewhat different
strategies for achieving them. One problem with DTSS,
as viewed by the NTP community, was a possibly seri-
ous loss of accuracy, since the DTSS design did not dis-

cipline the clock frequency4. The problem with the NTP
design, as viewed by the DTSS community, was the lack
of formal correctness principles in the design process. A
key component in the DTSS design upon which the cor-
rectness principles were based was an agreement algo-
rithm invented by Keith Marzullo in his dissertation and
described in [18].

In the finest Internet tradition of stealing good ideas, the
Marzullo algorithm was integrated with the existing
suite of NTP data grooming algorithms, including the
filter, clustering and combining algorithms, which the
DTSS design lacked. However, the Marzullo algorithm

4. NTP is not the only scheme to discipline the frequency; this is done also in the schemes described by Liao [13]
and Paxton [57], although the latter does not operate in real time.
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in its original form produced excessive jitter and seri-
ously degraded timekeeping quality over typical Internet
paths. The algorithm, now called the intersection algo-
rithm, was modified to avoid this problem. The resulting
suite of algorithms has survived substantially intact to
the present day, although many modifications and
improvements have been made over the years.

In 1992 the NTP Version 3 specification appeared as
RFC-1305 [37], again in PostScript and now running
some 113 pages. As the IETF insisted on ASCII, the
official IETF document is the Corel Ventura document
source with brutalized equations. The specification
included an appendix describing a formal error analysis
and an intricate error budget including all error contri-
butions between the primary reference source over inter-
vening servers to the eventual client. This provided the
basis to support maximum error and estimated error sta-
tistics, which provide a reliable characterization of time-
keeping quality, as well as a reliable metric for selecting
the best from among a population of available servers.
As in the Version 2 specification, the model was
described using a formal state machine and pseudo-
code. This version also introduced broadcast mode and
included reference clock drivers in the state machine.

Lars Mathiesen at University of Copenhagen carefully
revised the version 2 implementation to comply with the
version 3 specification. There was considerable give and
take between the specification and implementation and
some changes were made in each to reach consensus, so
that the implementation was aligned precisely with the
specification. This was a major effort which lasted over
a year during which the specification and implementa-
tion converged to a consistent formal model.

In the years since the version 3 specification, NTP has
evolved in various ways adding new features and algo-
rithm revisions while still preserving interoperability
with older versions. Somewhere along the line, it
became clear that a new version number was needed,
since the state machine and pseudo-code had evolved
somewhat from the version 3 specification, so it became
NTP Version 4. The evolution process was begun with a
number of white papers, including [33] and [30].

Subsequently, a simplified version 4 protocol model was
developed for the Simple Network Protocol (SNTP) ver-
sion 4 in RFC-2030 [28]. SNTP is compatible with NTP
and specified for the IPv4, IPv6 and OSI protocol

stacks5. However, SNTP does not include the crafted
mitigation and discipline algorithms. These algorithms

are not necessary in an implementation intended solely
for a PC client or a server synchronized to an external
time source, such as a GPS receiver. SNTP version 4 has
appeared in Windows XP and is used in several standal-
one NTP servers integrated with GPS receivers.

There is a certain sense of the radio amateur in the
deployment of NTP around the globe. Certainly, each
new country found running NTP was a new notch in the
belt. A particularly satisfying conquest was when the
national standards laboratory of a new country came up
an NTP primary server connected directly to the
national time and frequency ensemble. Internet time-
keepers Judah Levine at NIST and Richard Schmidt at
USNO deployed public NTP primary servers at several
locations in the US and overseas. There was a period
where NTP was well lit in the US and Europe but dark
elsewhere in South America, Africa and the Pacific Rim.
Today, the Sun never sets or even gets close to the hori-
zon on NTP. The most rapidly growing populations are
in Eastern Europe and South America, but the real prize
is a new one found in Antarctica. Experience in global
timekeeping is documented in [27].

One of the real problems in fielding a large, complex
software distribution is porting to idiosyncratic hard-
ware and operating systems. There are now over two
dozen ports of the distribution for just about every hard-
ware platform running Unix, Windows and VMS mar-
keted over the last twenty years, some of them truly
historic in their own terms. Various distributions have
run on everything from embedded controllers to super-
computers. Maintaining the configuration scripts and
patch library is a truly thankless job and getting good at
it may not be a career enhancer. Volunteer Harlan Stenn
currently manages this process using modern autocon-
figure tools. New versions are tested first in our research
net DCnet, then in bigger sandboxes like CAIRN and
6BONE and finally put up for public release at
www.ntp.org. The bug stream arrives at bugs@ntp.org.

At this point the history lesson is substantially complete.
However, along the way several specific advancements
need to be identified. The remaining sections of this
paper discuss a number of them in detail.

3.  Autonomous Authentication

Some time around 1985 Project Athena at MIT was
developing the Kerberos security model, which provides
cryptographic authentication of users and services. Fun-
damental to the Kerberos design is the ticket used to

5. An implementation of NTP using the OSI protocol stack over X.25 is described by Crowcroft [5].
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access computer and network services. Tickets have a
designated lifetime and must be securely revoked when
their lifetime expires. Thus, all Kerberos facilities had to
have secure time synchronization services. While the
NTP protocol contains specific provisions to deflect
bogus packets and replays, these provisions are inade-
quate to deflect more sophisticated attacks such as mas-
querade. In order to deflect such attacks, NTP packets
can be authenticated using symmetric key cryptography
with keyed message digests and private keys. The origi-
nal scheme used the Digital Encryption Standard operat-
ing in Cipher Block Chaining mode (DES-CBC).

Provision of DES-based source authentication created
problems for the public software distribution. Due to the
International Trade in Arms Regulations (ITAR) at the
time, DES could not be included in NTP distributions
exported outside the US and Canada. Initially, the way
to deal with this was to provide two versions of DES in
the source code, one operating as an empty stub and the
other with the algorithm but encrypted with DES and a
secret key. The idea was that, if a potential user could
provide proof of residence, the key was revealed. Later,
this awkward and cumbersome method was replaced
simply by maintaining two distributions, one intended
for domestic use and the other for export. Recipients
were placed on their honor to fetch the politically cor-
rect version.

However, there was still the need to authenticate NTP
packets in the export version. Louis Mamakos at Univer-
sity of Maryland adapted the MD5 message digest algo-
rithm for NTP. This algorithm is specifically designed
for the same function as the DES-CBC algorithm, but is
free of ITAR restrictions. In NTP Version 4 the export
distribution has been discontinued and the DES source
code deleted; however, the message digest algorithm
interface is compatible with the OpenSSL cryptographic
library widely used in the Internet of today. Presumably,
OpenSSL Blowfish-CBC or IDEA-CBC could be used
according to fancy.

While message digest source authentication has worked
well, it requires secret keys, which complicates key dis-
tribution and, especially for multicast-based modes, is
vulnerable to compromise. Public-key cryptography
simplifies key distribution, but can severely degrade
timekeeping quality.

The Internet Engineering Task Force (IETF) has defined
several cryptographic algorithms and protocols, but
these require persistent state, which is not possible in
some NTP modes. Some appreciation of the problems is
apparent from the observation that secure timekeeping
requires secure cryptographic media, but secure media

require reliable lifetime enforcement [23]. The implied
circularity applies to any secure time synchronization
service, including NTP [22].

These problems were addressed in NTP Version 4 with a
new security model and protocol called Autokey [19].
Autokey uses a combination of public-key cryptography
and a pseudo-random keystream. Since public-key cryp-
tography hungers for large chunks of processor
resources and can degrade timekeeping quality, the
algorithms are used sparingly to sign and verify time
values, while the much less expensive keystream is used
to authenticate packets relative to the signed values.
Furthermore, Autokey is completely self-configuring, so
that servers and clients can be deployed and redeployed
in an arbitrary topology and automatically exchange
signed values without manual intervention.

Autokey uses industry standard certificates and trusted
authorities; however, certificate trails are a middleman
hazard in an ad-hoc network, which NTP surely is. To
avoid a middleman masquerade, a number of crypto-
graphic challenge-response identity schemes have been
incorporated in the design. In general, the goals of the
schemes are that clients cannot masquerade as servers
and servers cannot masquerade as trusted authorities
(TA), but they differ somewhat on how to achieve these
goals. To the extent that identity can be verified without
revealing the group key, the schemes are properly
described as zero-knowledge proofs. Two of these
schemes are described below.

The IFF scheme [63] is intended for servers operated by
national laboratories. The servers use a private group
key and provide a password encrypted client key on
request. The servers share the same group key, but it is
not neccesary that they protect each other from mas-
querade. The clients do not know the group key, so can-
not masquerade as legitimate servers. The University of
Delaware primary NTP time servers use this scheme
along with an automated mail system to retrieve
encrypted client keys.

The MV scheme [56] is intended for the most challeng-
ing scenarios where it is neccesary to protect against
both TA and server masquerade. The private values used
by the TA to generate the cryptosystem are not available
to the servers and the private values used by the servers
to generate client keys are not available to the clients.
However, a client can verify a server has the correct
group key even though neither the client nor server
know the group key, nor can either manufacture a client
key acceptable to any other client. A further feature of
this scheme is that the TA can collaborate with the serv-
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ers to revoke a client key without changing other client
keys.

Further information is available at www.eecid.udel.edu/
~mills/identity.html.

4.  Autonomous Configuration

It became clear as the NTP development continued that
a most valuable enhancement would be the capability
for a number of clients and servers to automatically con-
figure and deploy in an NTP subnet delivering the best
timekeeping quality, while conserving processor and
network resources. Not only would this avoid the
tedious chore of engineering specific configuration files
for each server and client, but it would provide a robust
response and reconfiguration scheme should compo-
nents of the subnet fail. The DTSS model described in
[6] goes a long way to achieve this goal, but has serious
deficiencies, notably the lack of cryptographic authenti-
cation.

In NTP Version 3, configuration files had to be con-
structed manually using information found in the lists of
public servers at www.ntp.org, although some sites par-
tially automated the process using crafted DNS records.
Where very large numbers of clients are involved, such
as in large corporations with hundreds and thousands of
personal computers and workstations, the method of
choice is broadcast mode, which was added in NTP Ver-
sion 3, or IPv4 multicast mode and IPv6 broadcast
mode, which were added in NTP Version 4.

However, in NTP Version 3 clients did not send to serv-
ers, so there was no way to calibrate and correct for the
server-client propagation delay, nor was there a way to
initialize the Autokey protocol and run the identity
schemes. This is provided in NTP Version 4 by a proto-
col modification in which the client, once receiving the
first broadcast packet, executes a volley of client/server
exchanges in order to calibrate the delay and run the
Autokey protocok, then reverts to listen-only mode.

In spite of the protocol modification, broadcast mode
provides somewhat less accuracy than client/server
mode, since it does not track variations due to routing
changes or network loads. In addition, it is not easily
adapted for autonomous deployment. In NTP Version 4
a new Manycast mode was added where a client sends
to an IP multicast group address and any server listening
on this address responds with a unicast packet, which
then mobilizes an association in the client. The client
processes the the unicast packets from a few to a dozen
servers, then winnows the population down to three
using the NTP mitigation algorithms.

Manycast mode has the potential to allow at least mod-
erate numbers of servers and clients to nucleate about a
number of primary servers, but the full potential for
autonomous deployment can be realized only using
symmetric mode, where the NTP subnet can grow and
flex in fully distributed and dynamic ways. In his disser-
tation Ajit Thyagarajan examines a class of heuristic
algorithms that may be useful management candidates.
Meanwhile, the quest for new technology continues.

5.  Radios, we have Radios

For as many years as NTP has ticked on this planet, the
definitive source for public NTP servers in the Internet
has been a set of public lists, one for primary servers and
the other for secondary servers, maintained at
www.ntp.org. Each server in those tables is operated as
a public service and maintained by a volunteer staff. Pri-
mary (stratum 1) servers have up to several hundred cli-
ents and a few operated by NIST and USNO have many
thousands. A primary server requires a primary refer-
ence source, usually a radio or satellite receiver or
modem. Following is a history lesson on the develop-
ment and deployment of NTP primary servers in the
Internet.

The first use of radios as a primary reference source was
in 1981 when a Spectracom WWVB receiver was con-
nected to a Fuzzball at COMSAT Laboratories in
Clarksburg, MD [52]. This machine provided time syn-
chronization for Fuzzball LANs in the US, UK, Norway,
Germany and Italy. These LANs were used in the
DARPA Atlantic Satellite program for satellite measure-
ments and protocol development. Later, the LANs were
used to watch the national power grids of the US, UK
and Norway swish and sway over the heating and cool-
ing seasons [48].

DARPA purchased four of the Spectracom WWVB
receivers, which were hooked up to Fuzzballs at MIT
Lincoln Laboratories, COMSAT Laboratories, USC
Information Sciences Institute, and SRI International.
The radios were redeployed in 1986 in the NSF Phase I
backbone network, which used Fuzzball routers [46]. It
is a tribute to the manufacturer that all four radios are
serviceable today; two are in regular operation at Uni-
versity of Delaware, a third serves as backup spare and
the fourth is in the Boston Computer Museum.

These four radios, together with a Heath WWV receiver
at COMSAT Laboratories and a pair of TrueTime GOES
satellite receivers at Ford Motor Headquarters and Digi-
tal Western Research Laboratories, provided primary
time synchronization services throughout the ARPA-
NET, MILNET and dozens of college campuses,
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research institutions and military installations. By 1988
two Precision Standard Time WWV receivers joined the
flock, but these along with the Heath WWV receiver are
no longer available. From the early 1990s these nine pri-
mary servers were joined by an increasing number of
volunteer radio-equipped servers now numbered over
120 in the public Internet.

As the cost of GPS receivers plummeted from the strato-
sphere (the first one this author bought cost $17,000),
GPS receivers started popping up all over the place. In
the US and Canada the longwave radio alternative to
GPS is WWVB transmitting from Colorado, while in
Europe it is DCF77 from Germany. However, shortwave
radio WWV from Colorado, WWVH from Hawaii and
CHU from Ontario have been useful sources. While
GOES satellite receivers are available, GPS receivers
are much less expensive and provide better accuracy.
Over the years some 44 clock driver modules supporting
these and virtually every radio, satellite and modem
national standard time service in the world have been
implemented for NTP.

Recent additions to the driver library include drivers for
the WWV, WWVH and CHU transmissions that work
directly from an ordinary shortwave receiver and audio
sound card or motherboard codec. Some of the more
exotic drivers built in our laboratory include a computer-
ized LORAN-C receiver with exceptional stability [38]
and a DSP-based WWV demodulator/decodor using
theoretically optimal algorithms [25].

6.  Hunting the Nanoseconds

When the Internet first wound NTP clocksprings, com-
puters and networks were much, much slower than
today. A typical WAN speed was 56 kb/s, about the
speed of a telephone modem of today. A large timeshar-
ing computer of the day was the Digital Equipment
TOPS-20, which wasn’t a whole lot faster, but did run an
awesome version of Zork. This was the heyday of the
minicomputer, the most ubiquitous of which was the
Digital Equipment PDP11 and its little brother the LSI-
11. NTP was born on these machines and grew up with
the Fuzzball operating system. There were about two
dozen Fuzzballs scattered at Internet hotspots in the US
and Europe. They functioned as hosts and gateways for
network research and prototyping and so made good
development platforms for NTP.

In the early days most computer hardware clocks were
driven by the power grid as the primary timing source.
Power grid clocks have a resolution of 16 or 20 ms,
depending on country, and the uncorrected time can
wander several seconds over the day and night, espe-

cially in summertime. While power grid clocks have
rather dismal performance relative to accurate civil time,
they do have an interesting characteristic, at least in
areas of the country that are grid-synchronous. Early
experiments in time synchronization and network mea-
surement could assume the time offsets between grid-
synchronized clocks was constant, since they all ran at
the same frequency and close phase, so all NTP had to
do was calibrate the constant offsets.

Later, computer clocks were driven by an oscillator sta-
bilized by a quartz crystal resonator, which is much
more stable than the power grid, but has the disadvan-
tage that the intrinsic frequency offset between crystal
clocks can reach several hundred parts-per-million
(PPM) or several seconds per day. In fact, over the years
only Digital has paid particular attention to the manu-
facturing tolerance of the clock oscillator, so their
machines make the best timekeepers. In fact, this is one
of the reasons why all the primary servers operated by
NIST are Digital Alphas.

As crystal clocks came into widespread use, the NTP
clock discipline algorithm was modified to adjust the
frequency as well as the time. Thus, an intrinsic offset of
several hundred PPM could be reduced to a residual in
the order of 0.1 PPM and residual timekeeping errors to
the order of a clock tick. Later designs decreased the
tick from 16 or 20 ms to 4 ms and eventually to 1 ms in
the Alpha. The Fuzzballs were equipped with a hard-
ware counter/timer with 1-ms tick, which was consid-
ered heroic in those days.

To achieve resolutions better than one tick, some kind of
auxiliary counter is required. Early Sun SPARC
machines had a 1-MHz counter synchronized to the tick
interrupt. In this design, the seconds are numbered by
the tick interrupt and the microseconds within the sec-
ond read directly from the counter. In principle, these
machines could keep time to 1 µs, assuming that NTP
could discipline the clocks between machines to this
order. In point of fact, performance was limited to a few
milliseconds, both because of network and operating
system jitter and also because of small varying fre-
quency excursions induced by ambient temperature vari-
ations.

Analysis, simulation and experiment led to continuing
improvements in the NTP clock discipline algorithm,
which adjusts the clock time and frequency in response
to an external source, such as another NTP server or a
local source such as a radio or satellite receiver or tele-
phone modem [35]. As a practical matter, the best time-
keeping requires a directly connected radio; however,
the interconnection method, usually a serial port, itself
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has inherent jitter. In addition, the method implemented
in the operating system kernel to adjust the time gener-
ally has limitations of its own [41].

In a project originally sponsored by Digital and later by
Sun, components of the NTP clock discipline algorithm
were implemented directly in the kernel. In addition, an
otherwise unused counter was harnessed to interpolate
the microseconds. In addition to these improvements, a
special clock discipline loop was implemented for the
pulse-per-second (PPS) signal produced by some radio
clocks and precision oscillators. The complete design
and application interface was reported in [32], some sec-
tions of which appeared as RFC-1589 [34]. The kernel
software is now an integral component of the kernels
distributed with Digital and Sun workstations.

A systematic search for sources of jitter described in the
paper [29] revealed significant contributions due to
serial port drivers, I/O system latencies and process
scheduling. Most of these latencies were avoided using
crafted I/O appliques in the form of BSD line disciplines
and STREAMS modules. Van Jacobson and Craig Leres
at Lawrence Berkeley Laboratory, built one that used
PPS signal transitions on a serial port lead to generate a
precision timestamp with a latency of only 6 µs. How-
ever, these appliques were in general not portable and
were implemented for only a few systems.

An interesting application of the PPS signal was in Nor-
way, where a Fuzzball NTP primary server was con-
nected to a cesium frequency standard with PPS output.
In those days the Internet bridging the US and Europe
had notoriously high jitter, in some cases peaks reaching
over one second. The cesium standard and kernel disci-
pline maintained constant frequency, but did not provide
a way to number the seconds. NTP provided this func-
tion via the Internet and other primary servers. The
experience with very high jitter resulted in special non-
linear signal processing code, called the popcorn spike
suppressor, in the NTP clock discipline algorithm.

Still, network and computer speeds were reaching
higher and higher. The time to cycle through the kernel
and back, once 40 µs in a Sun SPARC IPC, was decreas-
ing to 1 µs in a Digital Alpha and 0.4 µs in a Sun Blade
1000. In order to insure a reliable ordering of events, the
need was building to improve the clock resolution better
than 1 µs and the nanosecond seemed a good target.
NTP Version 4 now implements all clock adjustments in
floating double, which in principle could discipline the
clock with femtosecond resolution, if the underlying
hardware supported it.

For the ultimate accuracy, the original microsecond ker-
nel was overhauled to support a nanosecond clock con-

forming to the PPS interface specified in RFC-2783
[54]. Nanosecond kernels have been built and tested for
SunOS, Alpha, Linux and FreeBSD systems, the latter
two of which include the code in current systems [20].
The results with the new kernel demonstrate that the
residual RMS error with modern hardware and a preci-
sion PPS signal is in the order of 50 ns [21]. The skeptic
should see Figure 1, although admittedly this shows the
jitter and not the systematic offset, which must be cali-
brated separately.

This represents the state of the art in current timekeep-
ing practice. Having come this far, the machine used by
this author now runs at 2GHz and can chime with
another across the country at full 100-Mb/s speeds,
which raises the possibility of a picosecond clock. The
inherent resolution of the NTP timestamp is about 232
picoseconds, which suggests we soon might approach
that limit and require rethinking the NTP protocol
design. At these speeds NTP could be used to synchro-
nize the motherboard CPU and ASIC oscillators using
optical interconnects.

7.  Experimental Studies

Over the years a good deal of effort has gone into the
analysis of computer clocks and methods to stabilize
them in frequency and time. As networks and computers
have become faster and faster, the characterization of
computer clock oscillators and the evolution of synchro-
nization technology has continuously evolved to match.
Following is a technical timeline on the significant
events in this progress.

When the ICMP protocol divorced from the first Internet
routing protocol GGP, one of the first functions added to
ICMP was the ICMP Timestamp message, which is sim-
ilar to the ICMP Echo message, but carries timestamps
with millisecond resolution [59]. Experiments with
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these messages used Fuzzballs and the very first imple-
mentation of ICMP. In fact, the first use of the name
PING (Packet InterNet Groper) can be found in RFC-
889 [51]. Related experiments were later reported by
Cole [3].

While the hosts and gateways did not at first have syn-
chronize clocks, they did record timestamps with a gran-
ularity of 16 ms or 1 ms, which could be used to
measure roundtrip times and synchronize experiments
after the fact. Statistics collected this way were used for
the analysis and refinement of early TCP algorithms,
especially the parameter estimation schemes used by the
retransmission timeout algorithm.

The first comprehensive survey of NTP operating in the
Internet was published in 1985 [48]. Later surveys
appeared in 1990 [42] and 1997 [27]. The 1997 survey
was a profound undertaking. It attempted to find and
expose every NTP server and client in the public Inter-
net using data collected by the standard NTP monitoring
tools. After filtering to remove duplicates and falsetick-
ers, the survey found over 185,000 client/server associa-
tions in over 38,000 NTP servers and clients. The results
actually represented only a fraction of the total number
of NTP servers and clients. It is known from other
sources that many thousands of NTP servers and clients
lurk behind firewalls where the monitoring programs
can’t find them. Extrapolating from data provided about
the estimated population in Norway, it is a fair statement
that well over 100,000 NTP daemons were prowling the
Internet in 1997 and more likely several times that num-
ber. Recently, a NTP client was found hiding in a stan-
dalone print server. The next one may be found in an
alarm clock.

The paper [39] is a slightly tongue-in-cheek survey of
the timescale, calendar and metrology issues involved in
computer network timekeeping. Of particular interest in
that paper was how to deal with leap seconds in the UTC
timescale. While provisions are available in NTP to dis-
seminate leap seconds throughout the NTP subnet,
means to anticipate their scheduled occurrence was not
implemented in radio, satellite and modem services until
relatively recently and not all radios and only a handful
of kernels support leap seconds. If fact, on the eleven
leap second occasions since NTP began in the Internet
until 1997, the behavior of the NTP subnet on and
shortly after each leap could only be described in terms
of a pinball machine.

Today there is no excuse for leap second misadventures.
In NTP Version 4 the leap bits are set automatically in
the NIST and USNO servers and passed up the stratum
tree by dependent servers and clients.

While almost all time dissemination means in the world
are based on Coordinated Universal Time (UTC), some
users have expressed the need for TAI, including means
to metricate intervals that span multiple leap seconds
[11]. NTP Version 4 includes a simple mechanism to
retrieve a table of historic leap seconds from NIST serv-
ers and distribute it throughout the NTP subnet. How-
ever, at this writing a suitable API has yet to be designed
and implemented and then navigate the IETF standards
process. Refinements to the Autokey protocol have been
made to insure the most recentcopy of this table is dis-
tributed using secure means.

8.  Theory and Algorithms

As all this was going on, there was a good deal of
excitement in the theoretical community developing
abstract models and algorithms for time synchroniza-
tion. The fundamental abstraction from which correct-
ness principles are based is the happens-before relation
introduced by Lamport [9]. Lamport, et al, [10] show

that  clocks are required in order to determine a
reliable time value if no more than m of them are falset-

ickers, but only  clocks are required if digital
signatures are used, as is the case with NTP Autokey.

Interactive-consistency algorithms use a Byzantine
agreement protocol involving successive rounds of read-
ings, possibly relayed and possibly augmented by digital
signatures. Examples include the fireworks algorithm of
Halpern, et al, [8] and the optimum algorithm of Sri-
kanth and Toueg [65]. These algorithms require large
numbers of messages and are designed to detect faults
that have rarely been found in the Internet experience.
Convergence algorithms use statistical clustering tech-
niques such as the FTA and CNV algorithms of Lunde-
lius and Lynch [17], the majority-subset algorithm of
Mills [49], the non-Byzantine algorithm of Rickert [61]
and the egocentric algorithm of Schneider [64].

The particular choice of offset measurement and compu-
tation procedure used in NTP is a variant of the return-
able-time system used in some digital telephone
networks as described by Lindsay and Kantak [14]. The
clock filter and selection algorithms are designed so that
the clock synchronization subnet self-organizes as a
hierarchical-master-slave configuration as in Mitra [55].
A different approach is the probabilistic scheme sug-
gested by Cristian [4] and implemented in a distributed
context by Arvind [2] and Liao [13]. For various rea-
sons, none of these algorithms in their original form per-
form well with the extreme jitter prevalent in the
Internet.

3m 1+

2m 1+
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Drawing from this work, a cascade of four algorithms
was developed for NTP, including the filter, selection,
clustering and combining algorithms. In a series of
experiments documented in RFC-956 [48], the algo-
rithm that emerged computes the roundtrip delay for
each of the last eight measurement rounds and selects
the offset associated with the minimum roundtrip delay.
This algorithm, somewhat modified, survives to the
present.

The NTP selection algorithm is based on the intersec-
tion algorithm of Marzullo and Owicki [18], together
with a refinement algorithm similar to the self-stabiliz-
ing algorithm of Lu [16]. The maximum error bound for
any server is represented by an interval equal to the
roundtrip delay with center the apparent time. A clique
is formed from a number of servers whose intervals
overlap. If there is a clique containing a majority of
servers, those servers are truechimers. All the rest are
falstickers. If no clique has a majority of servers, no
decision is possible.

The truechimers which survive of the intersection algo-
rithm are processed by the clustering algorithm, which
repeatedly casts out outlyers furthest from the cluster
median until a minimum number of survivors remain.
While the details differ, this algorithm is fundamentally
the same as used by Paxton [57]. Finally, the surviving
offsets are combined using a weighted average to form
the final offset used to discipline the computer clock,
which is essentially the same technique NIST uses to
wrangle their herd of cesium clocks [1].

The fundamentals of computer clock discipline technol-
ogy were presented in the 1992 report [36], which
remains valid today. That report set forth mathemati-
cally precise models for error analysis, transient
response and clock discipline principles. Selected sec-
tions of that report were condensed and refined in the
paper [35].

In a series of careful measurements over a period of two
years with selected servers in the US, Australia and
Europe, an analytical model of the idiosyncratic com-
puter clock oscillator was developed and verified. While
a considerable body of work on this subject has accreted
in the literature, with few exceptions the object of study
has been precision oscillators of the highest quality used
as time and frequency standards. Computer oscillators
have no such pedigree, since there are generally no pro-
visions to stabilize the ambient environment, in particu-
lar the crystal temperature.

The clock discipline algorithm in the paper [31] further
extended and refined the model evolved from the report

[36]. The algorithm design was considerably influenced
by a collaboration with Judah Levine at NIST. Levine’s
own lockclock algorithm, which is used in the NTP pri-
mary servers operated by NIST, is described in his paper
[12].

The paper [31] introduced the concept of Allan devia-
tion, a statistic useful for the characterization of clock
discipline performance. This statistic is commonly dis-
played by a plot of stability versus averaging interval in
log-log coordinates, as shown in Figure 2. Each Internet
server is characterized by a straight line with slope −1,
which is associated with white phase noise. Each com-
puter oscillator is characterized by a straight line with
slop +0.5, which is associated with random-walk fre-
quency noise. Knowing these two characteristics allows
the optimum averaging interval to be determined for
each combination of server and oscillator. The paper
also described a number of algorithmic improvements
incorporated in the NTP Version 4 design, including the
intersection algorithm and an improved discipline and
hardware model for the kernel PPS signal.

The paper [24] further extended and quantified the clock
discipline model developed in [31]. Its primary contri-
bution is the Allan intercept model which characterizes
typical computer oscillators. The Allan intercept is the
point (x, y) where the straight-line asymptotes shown in
Figure 2 for each individual source and oscillator inter-
sect. This work resulted in a hybrid algorithm, imple-
mented in NTP Version 4, which both improves
performance over typical Internet paths and allows the
message poll intervals to be substantially increased
without degrading accuracy. A special purpose simula-
tor including substantially all the NTP algorithms was
used to verify predicted behavior with both simulated
and actual data over the entire envelope of frenetic
Internet behaviors.
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9.  Growing Pains

In the beginning, almost all NTP servers operated in cli-
ent/server mode, where a client sends requests at inter-
vals ranging from one minute to tens of minutes,
depending on accuracy requirements. In this mode, time
values flow outward from the primary servers through
possibly several layers of secondary servers to the cli-
ents. In some cases involving multiply redundant serv-
ers, peers operate in symmetric mode and values can
flow from one peer to the other or vice versa, depending
on which one is closest to the primary source according
to a defined metric. Some institutions like University of
Delaware and GTE, for example, operate multiple pri-
mary servers, each connected to one or more redundant
radio and satellite receivers using different dissemina-
tion services. This forms an exceptionally robust syn-
chronization source for both on-campus and off-campus
public access.

While NTP service makes only minimal demands on the
host processor, the client population of popular servers
like NIST and USNO has been growing to huge propor-
tions, with the busiest servers handling several hundred
packets per second. In the Internet of today, even this
flux doesn’t daunt these servers, at least if the clients use
common sense and reasonable message poll intervals.

However, common sense is not a ubiquitous commodity
even in the NTP community. Whether due to terror or
ignorance, on occasion clients send packets as fast as
possible, like 256 packets in one second. In Australia,
where packets are counted and charged, this is an unac-
ceptable hazard.

A suite of defensive measures has been incorporated in
the latest NTP design. One of these, called the kiss-of-
death packet, is returned to a misbehaving client send-
ing at terrorist rates. If the client uses the public NTP
distribution, receiving this packet causes the client asso-
ciation to be demobilized and a pique sent to the system
log.

Not every NTP implementation is as polite as the public
distribution. In order to defend against clogging attacks
like the 256-packet miscreant, a feature similar to what
telephone providers defube call-gap has been incorpo-
rated in the design. The scheme uses a LRU list of IP
source addresses and time values and operates to discard
packets which exceed given peak and average rate lim-
its.

10.  As Time Goes By

In retrospect, while NTP has been a technical adventure
in its own right by providing the means for accurate and

dependable time synchronization, NTP has also been an
enabling technology for practical uses of synchronized
clocks. Using NTP for timestamping stock trades, radio
and television broadcast programs and distributed data
acquisition readily springs to mind; but, as Liskov points
out [15], synchronized clocks are vital to some impor-
tant distributed algorithms and could improve perfor-
mance in others.

At the beginning of the new century it is quite likely that
precision timekeeping technology has evolved about as
far as it can given the realities of available computer
hardware and operating systems. Using specially modi-
fied kernels and available interface devices, Poul-Hen-
ning Kamp and this author have demonstrated that
computer time in a modern workstation can be disci-
plined within some tens of nanoseconds relative to a
precision source such as a cesium or rubidium frequency
standard [21]. While not many computer applications
would justify such heroic means, the demonstration sug-
gests that the single most useful option for high perfor-
mance timekeeping in a modern workstation may be a
temperature compensated or stabilized oscillator.

It is likely that future deployment of public NTP ser-
vices might well involve an optional secure timestamp-
ing service, perhaps for-fee. This agenda is being
pursued in a partnership with NIST and Certified Time,
Inc. In fact, several NIST servers are now being
equipped with timestamping services. This makes pub-
lic-key authentication a vital component of such a ser-
vice, especially if the Sun never sets on the service area.
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